Chewi, S., Pooladian, A-A., and Zhang, M.“Stability of the Kim—Milman flow map”arXivPDFbib
Ghafourpour, L., Chewi, S., Figalli, A., and Pooladian, A-A.“Variational inference via radial transport”
Pooladian, A-A., and Niles-Weed, J.“Entropic estimation of optimal transport maps”(Best paper award at OTML NeurIPS workshop; 2021)arXivPDFbib
Journal articles
Jiang, Y., Chewi, S., and Pooladian, A-A. (supervisory role)“Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space”,Foundations of Computational Mathematics (2025+)arXivPDFSlidesbib
Pooladian, A-A., and Niles-Weed, J.“Plug-in estimation of Schrödinger bridges”,SIAM Journal on Mathematics of Data Science (2025+)arXivPDFbib
Divol, V., Niles-Weed, J., and Pooladian, A-A. (alphabetical)“Tight stability for entropic Brenier maps”,International Mathematics Research Notices (2025+)arXivPDFbib
Divol, V., Niles-Weed, J., and Pooladian, A-A. (alphabetical)“Optimal transport map estimation in general function spaces”,Annals of Statistics (2025+)arXivPDFSlidesbib
Chewi, S., and Pooladian, A-A. (alphabetical)“An entropic generalization of Caffarelli's contraction theorem via covariance inequalities”,Comptes Rendus Mathématique (2023)arXivPDFSlidesbib
Domingo-Enrich, C., and Pooladian, A-A. (alphabetical)“An Explicit Expansion of the Kullback—Leibler Divergence along its Fisher-Rao gradient flow”,Transactions on Machine Learning Research (2023)arXivPDFbib
Conference papers
Haviv, D.* , Pooladian, A-A.* , Pe'er, D., and Amos, B. (Joint first author)“Wasserstein Flow Matching: Generative modeling over families of distributions”,41st International Conference on Machine Learning (ICML 2025)arXivPDFbib
Baptista, R.* , Pooladian, A-A.* , Brennan, M., Marzouk Y., and Niles-Weed, J. (Joint first author)“Conditional simulation via entropic optimal transport: Toward non-parametric estimation of conditional Brenier maps”,28th International Conference on Artificial Intelligence and Statistics (AISTATS 2025)arXivPDFbib
Kassraie, P., Pooladian, A-A., Klein, M., Thornton, J., Niles-Weed, J., and Cuturi, M.“Progressive Entropic Optimal Transport Solvers”,38th Conference on Neural Information Processing Systems (NeurIPS 2024)arXivPDFbib
Klein, M., Pooladian, A-A., Ablin, P., Ndiaye, E., Niles-Weed, J., and Cuturi, M.“Learning Costs for Structured Monge Displacements”,38th Conference on Neural Information Processing Systems (NeurIPS 2024)arXivPDFbib
Jiang, Y., Chewi, S., and Pooladian, A-A. (Supervisory role)“Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space”,extended abstract in the 37th Conference on Learning Theory (COLT 2024)arXivPDFSlidesbib
Pooladian, A-A., Domingo-Enrich, C., Chen R., and Amos, B.“Neural Optimal Transport with Lagrangian Costs”,40th International Conference on Uncertainty in Artificial Intelligence (UAI 2024)PDFbib
Pooladian, A-A.* , Divol, V.* , and Niles-Weed, J. (Joint first author)“Minimax estimation of discontinuous optimal transport maps: The semi-discrete case”,40th International Conference on Machine Learning (ICML 2023)arXivPDFSlidesbib
Pooladian, A-A.* , Ben-Hamu, H.* , Domingo-Enrich, C.* , Amos, B., Lipman, Y., and Chen, R. (Joint first author)“Multisample Flow Matching: Straightening Flows with Minibatch Couplings”,40th International Conference on Machine Learning (ICML 2023)arXivPDFbib
Pooladian, A-A., Cuturi, M., and Niles-Weed, J.“Debiaser Beware: Pitfalls of Centering Regularized Transport maps”,39th International Conference on Machine Learning (ICML 2022)arXivPDFSlidesbib
pre-PhD conference, journal, and workshop papers
Finlay, C., Gerolin, A., Oberman, A., Pooladian A-A. (alphabetical)“Learning normalizing flows from Entropy-Kantorovich potentials”,Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models (ICML 2020 workshop), with contributing talkarXivPDFbib
Hoheisel, T., Pablos, B., Pooladian, A-A., Schwartz, A., and Steverango, L. (alphabetical)“A study of one-parameter regularizations for mathematical programs with vanishing constraints”,Optimization Methods and Software (2020)arXivPDFbib
Pooladian, A-A., Finlay, C., Hoheisel, T., and Oberman, A.“A principled approach for generating adversarial images under non-smooth dissimilarity metrics”,23rd International Conference on Artificial Intelligence and Statistics (AISTATS 2020)arXivPDFbib
Finlay, C., Pooladian, A-A., and Oberman, A.“The LogBarrier Adversarial Attack: Making effective use of decision boundary information”,IEEE International Conference on Computer Vision (ICCV 2019)arXivPDFbib