Optimal Transport Map Estimation
in General Function Spaces

Aram-Alexandre Pooladian
New York University

Simons Institute (UC Berkeley)
GMOS Reunion Workshop



in collaboration with

Vincent Divol Jon Niles-Weed



Dirt Moving




Dirt Moving

T, T T

M- s -
W = rI0S GO OV e —"

A




Dirt Moving




Dirt Moving

— — — T W —

-
- .
TR

- J:‘-: ‘; <.‘~'_*" PO aea S U"* 3
e A - : . N

~

~
. - - - >




Dirt Moving




Transport maps




Transport maps

Q



Transport maps
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Call T'a transport map it T,P = Q i.e. X~ P, T(X)~ Q

P



Optimal transport maps

\/ -




Optimal transport maps




Optimal transport maps

Brenier’'s Theorem: 7, = V¢, tor

some convex function @,
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Statistical estimation of OT maps

TO

P Q

Given P (e.g. standard Normal) and i.i.d samples Y;, ..., Y, ~ Q

Question: How to estimate T, on the basis of samples?



Statistical estimation of OT maps

Goal: Define estimator fn s.t. under appropriate assumptions, || T, — TOH%z(p) S ?




Prior work

e P and Q have compact support, with densities bounded above and below
e T, € C° (s-times differentiable)
e T, is bi-Lipschitz, equivalently Ia < V%@, < fI

Results (prior work):

» [HR21] proposed a wavelet based estimator

e [MB+21] proposed the 1-Nearest-Neighbor estimator
e [PNW21] proposed the entropic map estimator

e among others
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Results (prior work):
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e [HR21] proposed a wavelet based estimator, V @y,
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Method: compute OT coupling (X, Y,;)) , match to closest Y ;) from training set
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Results (prior work):
e [HR21] proposed a wavelet based estimator, V @y,

» [PNW21] proposed the entropic map estimator

A , B
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Method: compute OT coupling (X, Y,;)) , match to closest Y ;) from training set
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Prior work

Results (prior work):
» [HR21] proposed a wavelet based estimator, V @y,

o [MB+21] proposed a 1-Nearest-Neighoor estimator (s=1), 7A’1 NN

1

. 2
_HV(pE T V¢O“L2(P) S]Qg(n) n d+2

Method: entropic optimal transport
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Prior work

e P and Q have compact support, with densities bounded above and below
e T, € C° (s-times differentiable)
e T, is bi-Lipschitz, equivalently Ia < V%@, < fI

This talk: extend assumptions to include

e P and Q not having compact support

* (, can exist in more general function spaces
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Semidual formulation

1
IWAP.Q = min | Sl TIRAPG) = LM(P) + My(Q) ~ Sl

T: T,P=Q

with  S(gg) = Hl(/‘)in Jw(X)dP(X) + [qo*(y)dQ(y)



Semidual formulation

1
IWAP.Q = min | Sl TIRAPG) = LM(P) + My(Q) ~ Sl

T: T,P=Q

with  S(gg) = Hl(pin Jw(X)dP(X) + [qo*(y)dQ(y)

Why? ¢, is the optimal Brenier potential, and T, = V ¢,



Semidual formulation

Established that map estimation is equivalent to solving:

argmin_ S(¢) = Jqﬂ(X)dP(X) + Jcﬂ*(y)dQ(y)
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Semidual formulation

Established that map estimation is equivalent to solving:

argmin_ S(¢) = [qﬂ(X)dP(X) + Jcﬂ*(y)dQ(y)

Idea from [HR21]: study properties of the minimizer to the empirical semidual

\ . I ¥
Pz =argmin 5,(¢) := J p(X)AP(x) +— ) @*(¥))
n

pEF i=1

for some tunction class & that ¢, lies in or is close to.

Our final estimator is then T = Vo



Potential function classes

Examples of non-parametric classes:
o s-Holder smooth functions (prior work)
» Reproducing Kernel Hilbert Spaces (new!)
» Shallow Neural Networks (a.k.a Barron space) (new!)
» “Low-dimensional” potential functions (new!)

Examples of parametric classes:

 Finite set (newtl)
e Quadratics potentials (new!)
* Input Convex Neural Networks (ICNNs) (new!)



Assumptions

(A1) P satisfies a Poincaré inequality (with bounded or unbounded domain!)
(A2) All p € F are f-smooth — V2@ < BI
(A3) @, is a-strongly convex and B-smooth — al < V2@, < Bl

(A4) Metric entropy condition on &
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"Meta” theorems

[Theorem 2+3, (Divol, Niles-Weed, P. 2022)]

A )
“IVeg — Vol 12(P) Slog(n),log(d) Rate(#, n)

Today: second of two “meta” theorems:
- Theorem 2 has suboptimal rates but weaker conditions

- To have improved rates: need strong convexity, Poincaré inequality,
and P having a nice density



Sanity checks




Sanity check: 7 is a finite set

Suppose:

- F ={@y, ..., Px} is a set of strongly convex, smooth potentials
- You know that ¢, € F

1

~ o _
_vaﬂfﬁ o V(pOHLz(p) Slog(n) n

Improves upon the work of [VV21]; they don't assume Poincaré



Sanity check: & is the set of Quadratics

Suppose:

- F = {XH%XTAI/ZX-FI?TX : Aegi,bet ay

- You know that g, € F i.e. To(x) = A’ x + b

1

~ o _
_Hvéﬂgz o V(pOHLz(p) Slog(n) n

Recovers the work of [FLF19] where they use the plug-in estimator



Sanity check: Parametric family

Let ©@ C R™ and consider potentials s.t. | @y(x) — @pd{x)| < L||0 = O'||(1 + |[x]])?

Example: ¢, can be represented as an ICNN with m parameters

A 2 < m
"HVCDPZ o VCDO“U(P) ~log(n) ;



Example 1: RKHS

Suppose f € Z with f(x) = (f, (- ,x))g and H is sufficiently nice

- K has finite spectrum

- K has exponentially decaying spectrum (e.g. Gaussian Kernel)

1

~ o) _
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Example 2: Holder-smooth functions

Suppose @, € C;t1(Q) and let F = W,([Jg) (finite wavelets over cube)

A o) 2s
_vaﬂg o qu()HLZ(P) Sl()g(n) n 2s+d-2

Special case: when both P and Q are log-smooth, and log-strongly concave,
Caftarelli contraction kicks in (see [Chewi, P. 2022]):

—2/d

= A 2
vaﬂffr o VC”OH[}(}D) Slog(n) n



Example 3: “Low-dimensiona

III

potentials

Potential functions that resemble the “"Spiked Transport Model” [NWR21]

--------

--------

- Pand QO live on %

- Support % with dm(%) =k
- Noise outside i.e. on %+

- Only pay for underlying

dimension kK < d
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Example 3: “Low-dimensional” potentials

Potential functions that resemble the “"Spiked Transport Model” [NWR21]

- Pand Q live on
- Support % with dm(%) =k
- Noise outside i.e. on %+

S O - Only pay for underlying

dimension kK < d

. 2s 2s
Final rate: n ™ >+c—2 <« n” 2+d-2
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Example 4: Barron Spaces

We now say ¢ € F _ it we can write @(x) = Ja(x, v) dO(v) where

- x — o(x,Vv) is convex, with ¢(0,v) = 0, and f-smooth

- v olx,v) € C(M)

See e.g.
- [EMW?22], [Bach17] for theory

- [Mak+20], [Hua+21], [BKC22] tor practice
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Example 4: Barron Spaces

We now say ¢ € F _ it we can write @(x) = Ja(x, v) dO(v) where

- x — o(x,Vv) is convex, with ¢(0,v) = 0, and f-smooth

- v ox,v) € C(M)

Example: 6({x,v)) = (x,v)% i.e. Vg, is a shallow NN with ReLU activation

1 1

A 2
_vaﬂgé T V(pOHLZ(P) S]og(n) n 2 4

(Can handle more smooth activation functions of this form!)



Future directions:

Hard question: estimation discontinuous transport map e.g.

1
P00 = 2| x|+ 1]
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