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Transport maps

Call  a transport map if T T♯P = Q i.e. X ∼ P, T(X) ∼ Q

P Q

T
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T0

T0 := argmin
T : T♯P=Q ∫

1
2

∥x − T(x)∥2
2 dP(x) Brenier’s Theorem:  for 


some convex function 
T0 = ∇φ0

φ0



P Q

Statistical estimation of OT maps

Given  (e.g. standard Normal) and i.i.d samples P Y1, …, Yn ∼ Q

T0



P Q

Statistical estimation of OT maps

Question: How to estimate  on the basis of samples? T0

Given  (e.g. standard Normal) and i.i.d samples P Y1, …, Yn ∼ Q

T0



Q

Goal: Define estimator  s.t. under appropriate assumptions,̂Tn

Statistical estimation of OT maps

P

̂Tn

𝔼∥ ̂Tn − T0∥2
L2(P) ≲ ?



Prior work

Results (prior work):
• [HR21] proposed a wavelet based estimator

• [MB+21] proposed the 1-Nearest-Neighbor estimator

• [PNW21] proposed the entropic map estimator

• among others

•  have compact support, with densities bounded above and below

• 

•  is bi-Lipschitz, equivalently 

P and Q
T0 ∈ Cs (s-times differentiable)
T0 Iα ⪯ ∇2φ0 ⪯ βI

Assumptions (prior work):
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Prior work

• [HR21] proposed a wavelet based estimator, 

• [MB+21] proposed a 1-Nearest-Neighbor estimator ( =1), 

• [PNW21] proposed the entropic map estimator ( =1),   

∇φ̂W
s ̂T1NN

s ∇φ̂ε

Results (prior work):

𝔼∥∇φ̂ε − ∇φ0∥2
L2(P) ≲log(n) n− 1

d + 2

Method: entropic optimal transport
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This talk: 

•  have compact support, with densities bounded above and below
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•  is bi-Lipschitz, equivalently 

P and Q
T0 ∈ Cs (s-times differentiable)
T0 Iα ⪯ ∇2φ0 ⪯ βI
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Assumptions (prior work):

This talk: extend assumptions to include

•  have compact support, with densities bounded above and below

• 

•  is bi-Lipschitz, equivalently 

P and Q
T0 ∈ Cs (s-times differentiable)
T0 Iα ⪯ ∇2φ0 ⪯ βI



Prior work
Assumptions (prior work):

This talk: extend assumptions to include

• 

•  can exist in more general function spaces

P and Q not having compact support
φ0

•  have compact support, with densities bounded above and below

• 

•  is bi-Lipschitz, equivalently 

P and Q
T0 ∈ Cs (s-times differentiable)
T0 Iα ⪯ ∇2φ0 ⪯ βI
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Semidual formulation

1
2 W2

2(P, Q) = min
T : T♯P=Q ∫

1
2

∥x − T(x)∥2
2 dP(x) = 1

2 (M2(P) + M2(Q)) − S(φ0)

with S(φ0) = min
φ ∫ φ(x)dP(x) + ∫ φ*(y)dQ(y)



Semidual formulation

1
2 W2

2(P, Q) = min
T : T♯P=Q ∫

1
2

∥x − T(x)∥2
2 dP(x) = 1

2 (M2(P) + M2(Q)) − S(φ0)

with S(φ0) = min
φ ∫ φ(x)dP(x) + ∫ φ*(y)dQ(y)

Why?  is the optimal Brenier potential, and φ0 T0 = ∇φ0
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Semidual formulation

argminφ S(φ) = ∫ φ(x)dP(x) + ∫ φ*(y)dQ(y)

Idea from [HR21]: study properties of the minimizer to the empirical semidual

φ̂ℱ = argmin
φ∈ℱ

Sn(φ) := ∫ φ(x)dP(x) +
1
n

n

∑
i=1

φ*(Yi)

for some function class  that  lies in or is close to. 
 
Our final estimator is then 

ℱ φ0

̂T = ∇φ̂ℱ

Established that map estimation is equivalent to solving:



Semidual formulation

argminφ S(φ) = ∫ φ(x)dP(x) + ∫ φ*(y)dQ(y)

φ̂ℱ = argmin
φ∈ℱ

Sn(φ) := ∫ φ(x)dP(x) +
1
n

n

∑
i=1

φ*(Yi)

for some function class  that  lies in or is close to. 
 

ℱ φ0

Established that map estimation is equivalent to solving:

Our final estimator is then ̂T = ∇φ̂ℱ

Idea from [HR21]: study properties of the minimizer to the empirical semidual



Potential function classes

Examples of parametric classes:

Examples of non-parametric classes:

• Finite set (new!)

• Quadratics potentials (new!)

• Input Convex Neural Networks (ICNNs) (new!)

• -Hölder smooth functions (prior work)

• Reproducing Kernel Hilbert Spaces (new!)

• Shallow Neural Networks (a.k.a Barron space) (new!)

• “Low-dimensional” potential functions (new!)

s



Assumptions
• (A1)  satisfies a Poincaré inequality (with bounded or unbounded domain!) 

• (A2) All  are -smooth —  

• (A3)  is -strongly convex and -smooth —  

• (A4) Metric entropy condition on 

P

φ ∈ ℱ β ∇2φ ⪯ βI

φ0 α β αI ⪯ ∇2φ0 ⪯ βI

ℱ
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“Meta” theorems

𝔼∥∇φ̂ℱ − ∇φ0∥2
L2(P) ≲log(n),log(d) Rate(ℱ, n)

[Theorem 2+3, (Divol, Niles-Weed, P. 2022)]

Today: second of two “meta” theorems:

- Theorem 2 has suboptimal rates but weaker conditions

- To have improved rates: need strong convexity, Poincaré inequality, 

and  having a nice densityP
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Sanity check: ℱ is a finite set
Suppose:

-  is a set of strongly convex, smooth potentials

- You know that 

ℱ = {φ1, …, φK}
φ0 ∈ ℱ

𝔼∥∇φ̂ℱ − ∇φ0∥2
L2(P) ≲log(n) n−1

Improves upon the work of [VV21]; they don’t assume Poincaré



Sanity check: ℱ is the set of Quadratics

Suppose:

-  


- You know that  i.e. 

ℱ = {x ↦ 1
2 x⊤A1/2x + b⊤x : A ∈ 𝕊d

+, b ∈ ℝd}
φ0 ∈ ℱ T0(x) = A1/2x + b

𝔼∥∇φ̂ℱ − ∇φ0∥2
L2(P) ≲log(n) n−1

Recovers the work of [FLF19] where they use the plug-in estimator



Sanity check: Parametric family

𝔼∥∇φ̂ℱ − ∇φ0∥2
L2(P) ≲log(n)

m
n

Let  and consider potentials s.t. Θ ⊆ ℝm |φθ(x) − φθ′￼
(x) | ≤ L∥θ − θ′￼∥(1 + ∥x∥)p

Example:  can be represented as an ICNN with  parametersφ0 m



Example 1: RKHS

𝔼∥∇φ̂ℱ − ∇φ0∥2
L2(P) ≲log(n) n−1

Suppose  and  is sufficiently nicef ∈ ℋ with f(x) = ⟨ f, 𝒦( ⋅ , x)⟩ℋ 𝒦

-  has finite spectrum

-  has exponentially decaying spectrum (e.g. Gaussian Kernel)

𝒦
𝒦



Special case: when both  and  are log-smooth, and log-strongly concave, 
Caffarelli contraction kicks in (see [Chewi, P. 2022]): 

P Q

𝔼∥∇φ̂ℱ − ∇φ0∥2
L2(P) ≲log(n) n−2/d

𝔼∥∇φ̂ℱ − ∇φ0∥2
L2(P) ≲log(n) n− 2s

2s + d − 2

Example 2: Hölder-smooth functions

Suppose  and let  (finite wavelets over cube)φ0 ∈ Cs+1
L (Ω) ℱ = WJ( □R )



Example 3: “Low-dimensional” potentials

Potential functions that resemble the “Spiked Transport Model” [NWR21]

-  and  live on 

- Support  with 

- Noise outside i.e. on 

- Only pay for underlying  

dimension 

P Q 𝒰
𝒰 dim(𝒰) = k

𝒰⊥

k ≪ d𝒰



Example 3: “Low-dimensional” potentials

Potential functions that resemble the “Spiked Transport Model” [NWR21]

-  and  live on 

- Support  with 

- Noise outside i.e. on 

- Only pay for underlying  

dimension 

P Q 𝒰
𝒰 dim(𝒰) = k

𝒰⊥

k ≪ d𝒰

Final rate: n− 2s
2s + k − 2 ≪ n− 2s

2s + d − 2
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Example 4: Barron Spaces

We now say  if we can write  whereφ ∈ ℱσ φ(x) = ∫ σ(x, v) dθ(v)

- 

-

x ↦ σ(x, v) is convex, with σ(0,v) = 0, and β-smooth
v ↦ σ(x, v) ∈ Cs(ℳ)

See e.g.  
- [EMW22], [Bach17] for theory  
- [Mak+20], [Hua+21], [BKC22] for practice
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𝔼∥∇φ̂ℱ1
σ
− ∇φ0∥2

L2(P) ≲log(n) n− 1
2 − 1

d



We now say  if we can write  whereφ ∈ ℱσ φ(x) = ∫ σ(x, v) dθ(v)

- 

-

x ↦ σ(x, v) is convex, with σ(0,v) = 0, and β-smooth
v ↦ σ(x, v) ∈ Cs(ℳ)

Example:  i.e.  is a shallow NN with ReLU activationσ(⟨x, v⟩) = ⟨x, v⟩2
+ ∇φ0

𝔼∥∇φ̂ℱ1
σ
− ∇φ0∥2

L2(P) ≲log(n) n− 1
2 − 1

d

Example 4: Barron Spaces

(Can handle more smooth activation functions of this form!)



Future directions:

Hard question: estimation discontinuous transport map e.g. 

φ0(x) = 2 |x1 |+ 1
2 ∥x∥2



Thanks!
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