Minimax estimation of discontinuous optimal transport maps: The semi-discrete case

Aram-Alexandre Pooladian

New York University

Computational Optimal Transport Foundations of Computational Mathematics (FoCM)

Minimax estimation of discontinuous optimal transport maps: The semi-discrete case

Aram-Alexandre Pooladian New York University

Computational Optimal Transport Foundations of Computational Mathematics (FoCM)

(Supported by NSF grant DMS 2232812)

in collaboration with

Vincent Divol

Jonathan Niles-Weed

Call T a transport map if $T_{\sharp}P = Q$ i.e. $X \sim P, T(X) \sim Q$

Optimal transport map

Optimal transport map

Monge (1781) [colorized]

Optimal transport map

Monge (1781)
$$T_0 := \underset{T:T_{\sharp}P=Q}{\operatorname{argmin}} \mathbb{E}_{X \sim P} ||X - T(X)||^2$$

Brenier map

Brenier (1991)
$$\nabla \varphi_0 := \underset{T:T_{\sharp}P=Q}{\operatorname{argmin}} \mathbb{E}_{X \sim P} ||X - T(X)||^2$$

Brenier map

Brenier (1991)
$$\varphi_0$$
 is convex

$$\nabla \varphi_0 := \underset{T:T_{\sharp}P=Q}{\operatorname{argmin}} \mathbb{E}_{X \sim P} ||X - T(X)||^2$$

$$\varphi_0 = \operatorname{argmin}_{\varphi} \int \varphi dP + \int \varphi^* dQ$$

Brenier map

Brenier (1991)
$$\nabla \varphi_0 := \underset{T:T_{\sharp}P=Q}{\operatorname{argmin}} \mathbb{E}_{X \sim P} ||X - T(X)||^2$$

$$\varphi_0 = \operatorname{argmin}_{\varphi} \mathcal{S}(\varphi)$$

- Generative modelling
 - Huang et al. (2020), Amos (2023), Chen et al. (2023), etc.

- Generative modelling
 - Huang et al. (2020), Amos (2023), Chen et al. (2023), etc.
- Multivariate rank and quantile estimation
 - Ghosal & Sen (2022), Hallin et al. (2021), Chernozukov et al. (2017)

- Generative modelling
 - Huang et al. (2020), Amos (2023), Chen et al. (2023), etc.
- Multivariate rank and quantile estimation
 - Ghosal & Sen (2022), Hallin et al. (2021), Chernozukov et al. (2017)
- Computational biology (predicting trajectories of single-cell genomics)
 - Schiebinger et al. (2019), Bunne et al (2021, 2022, 2023)

- Generative modelling
 - Huang et al. (2020), Amos (2023), Chen et al. (2023), etc.
- Multivariate rank and quantile estimation
 - Ghosal & Sen (2022), Hallin et al. (2021), Chernozukov et al. (2017)
- Computational biology (predicting trajectories of single-cell genomics)
 - Schiebinger et al. (2019), Bunne et al (2021, 2022, 2023)
- Causal inference
 - Gunsilius et al. (2020, 2021)

- Generative modelling
 - Huang et al. (2020), Amos (2023), Chen et al. (2023), etc.
- Multivariate rank and quantile estimation
 - Ghosal & Sen (2022), Hallin et al. (2021), Chernozukov et al. (2017)
- Computational biology (predicting trajectories of single-cell genomics)
 - Schiebinger et al. (2019), Bunne et al (2021, 2022, 2023)
- Causal inference
 - Gunsilius et al. (2020, 2021)
- Transfer learning and domain adaptation
 - Alvarez-Melis and Fusi (2020), Flamary et al. (2015)

- Generative modelling
 - Huang et al. (2020), Amos (2023), Chen et al. (2023), etc.
- Multivariate rank and quantile estimation
 - Ghosal & Sen (2022), Hallin et al. (2021), Chernozukov et al. (2017)
- Computational biology (predicting trajectories of single-cell genomics)
 - Schiebinger et al. (2019), Bunne et al (2021, 2022, 2023)
- Causal inference
 - Gunsilius et al. (2020, 2021)
- Transfer learning and domain adaptation
 - Alvarez-Melis and Fusi (2020), Flamary et al. (2015)
- among many others!

(A1) P has density $0 < p_{\min} \le p(x) \le p_{\max}$ with convex support supp $(P) \subseteq B(0;R)$

(A1) P has density $0 < p_{\min} \le p(x) \le p_{\max}$ with convex support supp $(P) \subseteq B(0;R)$

Given i.i.d. samples $X_1, \ldots, X_n \sim P$ and $Y_1, \ldots, Y_n \sim Q$

Given i.i.d. samples $X_1, \ldots, X_n \sim P$ and $Y_1, \ldots, Y_n \sim Q$

Question: How to estimate T_0 on the basis of samples?

Goal: Construct estimator \hat{T}_n with "good" computational and statistical properties

Goal: Construct estimator \hat{T}_n with "good" computational and statistical properties

$$\mathbb{E}\|\hat{T}_n - T_0\|_{L^2(P)}^2 \lesssim ?$$

Suppose (A1) and T_0 bi-Lipschitz, $0 \prec \mu I \preceq DT_0 \preceq LI$

Prior Work

Suppose (A1) and T_0 bi-Lipschitz, $0 \prec \mu I \preceq DT_0 \preceq LI$

Suppose (A1) and T_0 bi-Lipschitz, $\mathbb{E}\|\hat{T}_n - T_0\|_{L^2(P)}^2 \lesssim n^{-2/d} \qquad 0 \prec \mu I \preceq DT_0 \preceq LI$

Suppose (A1) and
$$T_0$$
 bi-Lipschitz,
$$\mathbb{E}\|\hat{T}_n - T_0\|_{L^2(P)}^2 \lesssim n^{-2/d} \qquad 0 \prec \mu I \preceq DT_0 \preceq LI$$

- Hütter & Rigollet (2019): Estimator based on wavelets
- Deb et al., and Manole et al. (2021): Plug-in estimators
- Muzellec et al. (2021): Kernel SoS (tractable; high smoothness regime)
- Manole et al. (2021): 1-Nearest-Neighbor estimator (tractable, optimal)
- P. & Niles-Weed (2021): Entropic optimal transport (tractable, suboptimal)

Suppose (A1) and
$$T_0$$
 bi-Lipschitz,
$$\mathbb{E}\|\hat{T}_n - T_0\|_{L^2(P)}^2 \lesssim n^{-2/d} \qquad 0 \prec \mu I \preceq DT_0 \preceq LI$$

- Hütter & Rigollet (2019): Estimator based on wavelets
- Deb et al., and Manole et al. (2021): Plug-in estimators
- Muzellec et al. (2021): Kernel SoS (tractable; high smoothness regime)
- Manole et al. (2021): 1-Nearest-Neighbor estimator (tractable, optimal)
- P. & Niles-Weed (2021): Entropic optimal transport (tractable, suboptimal)

How? Crucial lemma:
$$\|\tilde{T} - T_0\|_{L^2(P)}^2 \lesssim L(\mathcal{S}(\tilde{\varphi}) - \mathcal{S}(\varphi_0))$$

$$\mathbb{E}\|\hat{T}_n - T_0\|_{L^2(P)}^2 \lesssim ?$$

$$\mathbb{E}\|\hat{T}_n - T_0\|_{L^2(P)}^2 \lesssim ?$$

$$\mathbb{E}\|\hat{T}_n - T_0\|_{L^2(P)}^2 \lesssim ?$$

$$\mathbb{E}\|\hat{T}_n - T_0\|_{L^2(P)}^2 \lesssim ?$$

- Hütter & Rigollet (2019): Estimator based on wavelets
- Deb et al., and Manole et al. (2021): Plug-in estimators
- Muzellec et al. (2021): Kernel SoS (tractable; high smoothness regime)
- Manole et al. (2021): 1-Nearest-Neighbor estimator (tractable, optimal)
- P. & Niles-Weed (2021): Entropic optimal transport (tractable, suboptimal)

Suppose (A1) and T_0 discontinuous,

$$\mathbb{E}\|\hat{T}_n - T_0\|_{L^2(P)}^2 \lesssim ?$$

- Hütter & Rigollet (2019): Estimator based on wavelets
- Deb et al., and Manole et al. (2021): Plug-in estimators
- Muzellec et al. (2021): Kernel SoS (tractable; high smoothness regime)
- Manole et al. (2021): 1-Nearest-Neighbor estimator (tractable, optimal)
- P. & Niles-Weed (2021): Entropic optimal transport (tractable, suboptimal)

Why? Crucial lemma:
$$\|\tilde{T} - T_0\|_{L^2(P)}^2 \lesssim L(\mathcal{S}(\tilde{\varphi}) - \mathcal{S}(\varphi_0))$$

Suppose (A1) and T_0 discontinuous,

$$\mathbb{E}\|\hat{T}_n - T_0\|_{L^2(P)}^2 \lesssim ?$$

- Hütter & Rigollet (2019): Estimator based on wavelets
- Deb et al., and Manole et al. (2021): Plug-in estimators
- Muzellec et al. (2021): Kernel SoS (tractable; high smoothness regime)
- Manole et al. (2021): 1-Nearest-Neighbor estimator (tractable, optimal)
- P. & Niles-Weed (2021): Entropic optimal transport (tractable, suboptimal)

Why? Crucial lemma:
$$\|\tilde{T} - T_0\|_{L^2(P)}^2 \lesssim L(\mathcal{S}(\tilde{\varphi}) - \mathcal{S}(\varphi_0))$$

Suppose (A1) and T_0 semi-discrete OT map,

Suppose (A1) and T_0 semi-discrete OT map,

$$\mathbb{E}\|\hat{T}_n - T_0\|_{L^2(P)}^2 \lesssim n^{-1/2}$$

Suppose (A1) and T_0 semi-discrete OT map,

$$\mathbb{E}\|\hat{T}_n - T_0\|_{L^2(P)}^2 \lesssim n^{-1/2}$$

Surprising! Why? $Q_n \simeq Q$ but P_n is still far from P!

Suppose (A1) and T_0 semi-discrete OT map,

$$\mathbb{E}\|\hat{T}_n - T_0\|_{L^2(P)}^2 \lesssim n^{-1/2}$$

Surprising! Why? $Q_n \simeq Q$ but P_n is still far from P!

Rest of this talk: We will show

- Manole et al. (2021): 1-Nearest-Neighbor estimator (suffers from c.o.d.!)
- P., Divol, & Niles-Weed (2023): Entropic optimal transport (minimax optimal)

Discrete OT: compute $C_{ij} = ||X_i - Y_j||_2^2$ and solve $\min_{\Pi} \langle \Pi, C \rangle$ s.t. $\Pi \in \mathrm{DS}_n \subseteq \mathbb{R}_+^{n \times n}$

$$\hat{\Pi} = \underset{\Pi}{\operatorname{argmin}} \langle \Pi, C \rangle \quad \text{s.t.} \quad \Pi \in \mathrm{DS}_n \subseteq \mathbb{R}_+^{n \times n}$$

- Need to store $C \in \mathbb{R}^{n \times n}_+$ (i.e. costly)
- Runtime: $O(n^3)$ (i.e. slow)

$$\hat{\Pi} = \underset{\Pi}{\operatorname{argmin}} \langle \Pi, C \rangle \quad \text{s.t.} \quad \Pi \in \mathrm{DS}_n \subseteq \mathbb{R}_+^{n \times n}$$

- Need to store $C \in \mathbb{R}^{n \times n}_+$ (i.e. costly)
- Runtime: $O(n^3)$ (i.e. slow)

$$\hat{\Pi} = \underset{\Pi}{\operatorname{argmin}} \langle \Pi, C \rangle \quad \text{s.t.} \quad \Pi \in \mathrm{DS}_n \subseteq \mathbb{R}_+^{n \times n}$$

- Need to store $C \in \mathbb{R}^{n \times n}_+$ (i.e. costly)
- Runtime: $O(n^3)$ (i.e. slow)

$$\hat{\Pi} = \underset{\Pi}{\operatorname{argmin}} \langle \Pi, C \rangle \quad \text{s.t.} \quad \Pi \in \mathrm{DS}_n \subseteq \mathbb{R}_+^{n \times n}$$

- Need to store $C \in \mathbb{R}^{n \times n}_+$ (i.e. costly)
- Runtime: $O(n^3)$ (i.e. slow)

$$\hat{\Pi} = \underset{\Pi}{\operatorname{argmin}} \langle \Pi, C \rangle \quad \text{s.t.} \quad \Pi \in \mathrm{DS}_n \subseteq \mathbb{R}_+^{n \times n}$$

- Need to store $C \in \mathbb{R}^{n \times n}_+$ (i.e. costly)
- Runtime: $O(n^3)$ (i.e. slow)

$$\hat{\Pi} = \underset{\Pi}{\operatorname{argmin}} \langle \Pi, C \rangle \quad \text{s.t.} \quad \Pi \in \mathrm{DS}_n \subseteq \mathbb{R}_+^{n \times n}$$

- Need to store $C \in \mathbb{R}^{n \times n}_+$ (i.e. costly)
- Runtime: $O(n^3)$ (i.e. slow)
- Estimator only exists in sample

$$\hat{\Pi} = \underset{\Pi}{\operatorname{argmin}} \langle \Pi, C \rangle \quad \text{s.t.} \quad \Pi \in \mathrm{DS}_n \subseteq \mathbb{R}_+^{n \times n}$$

Sinkhorn's algorithm: Iteratively fit marginals on the data $(X_i, Y_j)_{i,j=1}^n$

Sinkhorn's algorithm: Iteratively fit marginals on the data $(X_i, Y_j)_{i,j=1}^n$

At optimality: on the data, $(\Pi_{\varepsilon})_{ij} = \exp(X_i^{\top} Y_j - (\hat{\varphi}_{\varepsilon})_i - (\hat{\psi}_{\varepsilon})_j)$ with the fixed-point relationship

Sinkhorn's algorithm: Iteratively fit marginals on the data $(X_i, Y_j)_{i,j=1}^n$

At optimality: on the data, $(\Pi_{\varepsilon})_{ij} = \exp(X_i^{\top} Y_j - (\hat{\varphi}_{\varepsilon})_i - (\hat{\psi}_{\varepsilon})_j)$ with the fixed-point relationship

Sinkhorn's algorithm: Iteratively fit marginals on the data $(X_i, Y_j)_{i,j=1}^n$

At optimality: Can extend to functions OFF the data [NW21, MNW19]

Sinkhorn's algorithm: Iteratively fit marginals on the data $(X_i, Y_j)_{i,j=1}^n$

At optimality: Can extend to functions OFF the data [NW21, MNW19]

$$\hat{\varphi}_{\varepsilon}(x) = \varepsilon \log \left(\frac{1}{n} \sum_{j=1}^{n} \exp(x^{\top} Y_{j} - (\hat{\psi}_{\varepsilon})_{j}) / \varepsilon \right)$$

$$\hat{\psi}_{\varepsilon}(y) = \varepsilon \log \left(\frac{1}{n} \sum_{i=1}^{n} \exp(X_{i}^{\top} y - (\hat{\varphi}_{\varepsilon})_{i}) / \varepsilon \right)$$

Given
$$\hat{\varphi}_{\varepsilon}(x) = \varepsilon \log \left(\frac{1}{n} \sum_{j=1}^{n} \exp(x^{\top} Y_j - (\hat{\psi}_{\varepsilon})_j) / \varepsilon \right)$$
, our estimator is

Given
$$\hat{\varphi}_{\varepsilon}(x) = \varepsilon \log \left(\frac{1}{n} \sum_{j=1}^{n} \exp(x^{\top} Y_j - (\hat{\psi}_{\varepsilon})_j) / \varepsilon\right)$$
, our estimator is

$$\hat{T}_{(\varepsilon,n)}(x) := \nabla \hat{\varphi}_{\varepsilon}(x) = \sum_{i=1}^{n} Y_{i} \frac{e^{(x^{\top} Y_{i} - (\hat{\psi}_{\varepsilon})_{i})/\varepsilon}}{\sum_{k=1}^{n} e^{(x^{\top} Y_{k} - (\hat{\psi}_{\varepsilon})_{k})/\varepsilon}}$$

Given
$$\hat{\varphi}_{\varepsilon}(x) = \varepsilon \log \left(\frac{1}{n} \sum_{j=1}^{n} \exp(x^{\top} Y_j - (\hat{\psi}_{\varepsilon})_j) / \varepsilon\right)$$
, our estimator is

$$\hat{T}_{(\varepsilon,n)}(x) := \nabla \hat{\varphi}_{\varepsilon}(x) = \sum_{i=1}^{n} Y_{i} \frac{e^{(x^{\top} Y_{i} - (\hat{\psi}_{\varepsilon})_{i})/\varepsilon}}{\sum_{k=1}^{n} e^{(x^{\top} Y_{k} - (\hat{\psi}_{\varepsilon})_{k})/\varepsilon}} \in \text{conv}(\{Y_{1}, \dots, Y_{n}\})$$

2D Visualizations

$$P = \mathcal{N}(0, I_2)$$

$$T_0(x) = \Sigma^{1/2}x + a$$

$$P = \mathrm{Unif}([-1, 1]^2)$$

$$T_0(x) = \exp(x)$$

$$P = \mathrm{Unif}(B(0;1))$$

$$T_0(x) = x + 2\operatorname{sign}(x_1)e_1$$

Recall that we want to estimate a Brenier map $T_0 = \nabla \varphi_0$

Given
$$\hat{\varphi}_{\varepsilon}(x) = \varepsilon \log \left(\frac{1}{n} \sum_{j=1}^{n} \exp(x^{\top} Y_j - (\hat{\psi}_{\varepsilon})_j)/\varepsilon\right)$$
, our estimator is

$$\hat{T}_{(\varepsilon,n)}(x) := \nabla \hat{\varphi}_{\varepsilon}(x) = \sum_{i=1}^{n} Y_{i} \frac{e^{(x^{\top} Y_{i} - (\hat{\psi}_{\varepsilon})_{i})/\varepsilon}}{\sum_{k=1}^{n} e^{(x^{\top} Y_{k} - (\hat{\psi}_{\varepsilon})_{k})/\varepsilon}} \in \text{conv}(\{Y_{1}, \dots, Y_{n}\})$$

We will show this is minimax optimal in the semi-discrete setting

P satisfies (A1) and Q satisfies (A2)

P satisfies (A1) and Q satisfies (A2)

(A1) P has density
$$0 < p_{\min} \le p(x) \le p_{\max}$$
 with convex support supp $(P) \subseteq B(0; R)$

(A2) For
$$J \in \mathbb{N}$$
, $Q = \sum_{j=1}^{J} q_j \delta_{y_j}$, with $\{y_1, \dots, y_J\} \subseteq B(0; R)$ and $q_j \ge q_{\min} > 0$

P is "nice" and Q is discrete

P is "nice" and Q is discrete

Considered in several works

- Computation: Kitagawa et al. (2019), Genevay et al. (2016), etc
- Statistical aspects: del Barrio et al. (2022), Hundreiser et al (2022), etc
- Entropic semi-discrete OT: Altschuler et al. (2021+), Delalande (2021)

P is "nice" and Q is discrete

P is "nice" and Q is discrete

What is the optimal transport map?

Semi-discrete optimal transport

P is "nice" and Q is discrete

What is the optimal transport map?

Semi-discrete optimal transport

P is "nice" and Q is discrete

What is the optimal transport map?

$$T_0(x) = \nabla \varphi_0(x) = \underset{j \in [J]}{\operatorname{argmax}} \{x^{\top} y_j - (\psi_0)_j\}$$

where $\psi_0 \in \mathbb{R}^J$ represents the boundaries of the *Laguerre cells*

Semi-discrete optimal transport

P is "nice" and Q is discrete

What is the optimal transport map?

$$T_0(x) = \nabla \varphi_0(x) = \underset{j \in [J]}{\operatorname{argmax}} \{ x^{\mathsf{T}} y_j - (\psi_0)_j \}$$

where $\psi_0 \in \mathbb{R}^J$ represents the boundaries of the *Laguerre cells*

Hard to get on the basis of samples!

Theorem 1 (Informal) Suppose (A1) and (A2). Given i.i.d samples $X_1, \ldots, X_n \sim P$ and $Y_1, \ldots, Y_n \sim Q$, the entropic Brenier map is minimax optimal. Moreover, the 1NN estimator suffers from the curse of dimensionality.

• Lower bound (Le Cam's method): $\inf_{\hat{T}} \sup_{Q \in \mathcal{Q}_J} \mathbb{E} \|\hat{T} - T_0\|_{L^2(P)}^2 \gtrsim n^{-1/2}$,

- Lower bound (Le Cam's method): $\inf_{\hat{T}} \sup_{Q \in \mathcal{Q}_J} \mathbb{E} \|\hat{T} T_0\|_{L^2(P)}^2 \gtrsim n^{-1/2}$,
- Upper bound: $\mathbb{E}\|\hat{T}_{\varepsilon,n} T_0\|_{L^2(P)}^2 \lesssim n^{-1/2}$ with $\varepsilon \asymp n^{-1/2}$,

- Lower bound (Le Cam's method): $\inf_{\hat{T}} \sup_{Q \in \mathcal{Q}_J} \mathbb{E} \|\hat{T} T_0\|_{L^2(P)}^2 \gtrsim n^{-1/2}$,
- Upper bound: $\mathbb{E}\|\hat{T}_{\varepsilon,n} T_0\|_{L^2(P)}^2 \lesssim n^{-1/2}$ with $\varepsilon \simeq n^{-1/2}$,
- 1NN suffers: there exists P and Q such that $\mathbb{E}\|\hat{T}_{1nn} T_0\|_{L^2(P)}^2 \gtrsim n^{-1/d}$.

- Lower bound (Le Cam's method): $\inf_{\hat{T}} \sup_{Q \in \mathcal{Q}_J} \mathbb{E} \|\hat{T} T_0\|_{L^2(P)}^2 \gtrsim n^{-1/2}$,
- Upper bound: $\mathbb{E}\|\hat{T}_{\varepsilon,n} T_0\|_{L^2(P)}^2 \lesssim n^{-1/2}$ with $\varepsilon \asymp n^{-1/2}$,
- 1NN suffers: there exists P and Q such that $\mathbb{E}\|\hat{T}_{1nn} T_0\|_{L^2(P)}^2 \gtrsim n^{-1/d}$.

Want to control

statistical error

$$\mathbb{E}\|\hat{T}_{(\varepsilon,n)} - T_0\|_{L^2(P)}^2 \lesssim \|T_{\varepsilon} - T_0\|_{L^2(P)}^2 + \mathbb{E}\|\hat{T}_{(\varepsilon,n)} - T_{\varepsilon}\|_{L^2(P)}^2$$

approximation error

Want to control

statistical error

$$\mathbb{E}\|\hat{T}_{(\varepsilon,n)} - T_0\|_{L^2(P)}^2 \lesssim \|T_{\varepsilon} - T_0\|_{L^2(P)}^2 + \mathbb{E}\|\hat{T}_{(\varepsilon,n)} - T_{\varepsilon}\|_{L^2(P)}^2$$

approximation error

Want to control

statistical error

$$\mathbb{E}\|\hat{T}_{(\varepsilon,n)} - T_0\|_{L^2(P)}^2 \lesssim \|T_{\varepsilon} - T_0\|_{L^2(P)}^2 + \mathbb{E}\|\hat{T}_{(\varepsilon,n)} - T_{\varepsilon}\|_{L^2(P)}^2$$
approximation error

Step 1: [Thm 3.2] We show $||T_{\varepsilon} - T_0||^2_{L^2(P)} \lesssim_J \varepsilon$, and is tight

Want to control

statistical error

$$\mathbb{E}\|\hat{T}_{(\varepsilon,n)} - T_0\|_{L^2(P)}^2 \lesssim \|T_{\varepsilon} - T_0\|_{L^2(P)}^2 + \mathbb{E}\|\hat{T}_{(\varepsilon,n)} - T_{\varepsilon}\|_{L^2(P)}^2$$

$$\lesssim_J \varepsilon + ?$$

Step 1: [Thm 3.2] We show $||T_{\varepsilon} - T_0||^2_{L^2(P)} \lesssim_J \varepsilon$, and is tight

Want to control

statistical error

$$\mathbb{E}\|\hat{T}_{(\varepsilon,n)} - T_0\|_{L^2(P)}^2 \lesssim \|T_{\varepsilon} - T_0\|_{L^2(P)}^2 + \mathbb{E}\|\hat{T}_{(\varepsilon,n)} - T_{\varepsilon}\|_{L^2(P)}^2$$

$$\lesssim_J \varepsilon + ?$$

Step 1: [Thm 3.2] We show $||T_{\varepsilon} - T_0||^2_{L^2(P)} \lesssim_J \varepsilon$, and is tight

Want to control

$$\mathbb{E}\|\hat{T}_{(\varepsilon,n)} - T_0\|_{L^2(P)}^2 \lesssim \|T_{\varepsilon} - T_0\|_{L^2(P)}^2 + \mathbb{E}\|\hat{T}_{(\varepsilon,n)} - T_{\varepsilon}\|_{L^2(P)}^2$$
$$\lesssim_J \varepsilon + \varepsilon^{-1} n^{-1}$$

Step 1: [Thm 3.2] We show $||T_{\varepsilon} - T_0||^2_{L^2(P)} \lesssim_J \varepsilon$, and is tight

Want to control

$$\mathbb{E}\|\hat{T}_{(\varepsilon,n)} - T_0\|_{L^2(P)}^2 \lesssim \|T_{\varepsilon} - T_0\|_{L^2(P)}^2 + \mathbb{E}\|\hat{T}_{(\varepsilon,n)} - T_{\varepsilon}\|_{L^2(P)}^2$$
$$\lesssim_J \varepsilon + \varepsilon^{-1} n^{-1} \quad \text{(then optimize in } \varepsilon!)$$

Step 1: [Thm 3.2] We show $||T_{\varepsilon} - T_0||^2_{L^2(P)} \lesssim_J \varepsilon$, and is tight

Want to control

$$\mathbb{E}\|\hat{T}_{(\varepsilon,n)} - T_0\|_{L^2(P)}^2 \lesssim \|T_{\varepsilon} - T_0\|_{L^2(P)}^2 + \mathbb{E}\|\hat{T}_{(\varepsilon,n)} - T_{\varepsilon}\|_{L^2(P)}^2$$

$$\lesssim_J \varepsilon + \varepsilon^{-1} n^{-1} \quad \text{(then optimize in } \varepsilon!)$$

$$\lesssim_J n^{-1/2}.$$

Step 1: [Thm 3.2] We show $||T_{\varepsilon} - T_0||^2_{L^2(P)} \lesssim_J \varepsilon$, and is tight

- Lower bound (Le Cam's method): $\inf_{\hat{T}} \sup_{Q \in \mathcal{Q}_J} \mathbb{E} \|\hat{T} T_0\|_{L^2(P)}^2 \gtrsim n^{-1/2}$,
- Upper bound: $\mathbb{E}\|\hat{T}_{\varepsilon,n} T_0\|_{L^2(P)}^2 \lesssim n^{-1/2}$ with $\varepsilon \asymp n^{-1/2}$,
- 1NN suffers: there exists P and Q such that $\mathbb{E}\|\hat{T}_{1nn} T_0\|_{L^2(P)}^2 \gtrsim n^{-1/d}$.

- Big picture: Our understanding of discontinuous maps is very limited
 - Rates in general are entirely unknown

- Big picture: Our understanding of discontinuous maps is very limited
 - Rates in general are entirely unknown
- This work: stepping-stone to understand general discontinuities
 - Bridge computational tractability and statistical efficiency

- Big picture: Our understanding of discontinuous maps is very limited
 - Rates in general are entirely unknown
- This work: stepping-stone to understand general discontinuities
 - Bridge computational tractability and statistical efficiency
- Can the entropic Brenier map adapt to other forms of structure?
 - Empirical results are promising
 - Should be possible

- Big picture: Our understanding of discontinuous maps is very limited
 - Rates in general are entirely unknown
- This work: stepping-stone to understand general discontinuities
 - Bridge computational tractability and statistical efficiency
- Can the entropic Brenier map adapt to other forms of structure?
 - Empirical results are promising
 - Should be possible:)

Thanks!

Numerics on synthetic data

Recall
$$T_0(x) = \operatorname{argmax}_{j \in [J]} \{ x^{\top} y_j - (\psi_0)_j \}; \text{ fix } J = 10 \text{ and } d = 50$$

Case 1: data is from a regular grid

Case 2: data is randomly generated

Stability bound

Proposition 3.7. Let μ, ν, μ', ν' be four probability measures supported in B(0; R). Then the entropic maps $T_{\varepsilon}^{\mu \to \nu}$ and $T_{\varepsilon}^{\mu' \to \nu'}$ satisfy

$$\frac{\varepsilon}{8R^2} \|T_{\varepsilon}^{\mu \to \nu} - T_{\varepsilon}^{\mu' \to \nu'}\|_{L^2(\mu)}^2 \le \int (\varphi_{\varepsilon}^{\mu' \to \nu'} - \varphi_{\varepsilon}^{\mu \to \nu}) \,\mathrm{d}\mu + \int (\psi_{\varepsilon}^{\mu' \to \nu'} - \psi_{\varepsilon}^{\mu \to \nu}) \,\mathrm{d}\nu + \varepsilon K L(\nu \| \nu').$$

$$\mathbb{E}\|T_{\varepsilon}^{P\to Q_n} - T_{\varepsilon}^{P\to Q}\|_{L^2(P)}^2 \lesssim \varepsilon^{-1} \mathbb{E}\left(\int (\psi_{\varepsilon}^{P\to Q} - \psi_{\varepsilon}^{P\to Q_n}) d(Q_n - Q)\right) + \mathbb{E}[\mathrm{KL}(Q_n \| Q)]$$

1. Application of Prop 3.7 to the empirical measure Q_n and Q

$$\mathbb{E}\|T_{\varepsilon}^{P\to Q_n} - T_{\varepsilon}^{P\to Q}\|_{L^2(P)}^2 \lesssim \varepsilon^{-1} \mathbb{E}\left(\int (\psi_{\varepsilon}^{P\to Q} - \psi_{\varepsilon}^{P\to Q_n}) \,\mathrm{d}(Q_n - Q)\right) + \mathbb{E}[\mathrm{KL}(Q_n \| Q)]$$
$$\lesssim \varepsilon^{-1} \left(\mathbb{E}[\mathrm{Var}_Q(\psi_{\varepsilon}^{P\to Q} - \psi_{\varepsilon}^{P\to Q_n})] + \mathbb{E}[\chi^2(Q_n \| Q)]\right) + \mathbb{E}[\chi^2(Q_n \| Q)]$$

- 1. Application of Prop 3.7 to the empirical measure Q_n and Q
- 2. Young's inequality with the fact $KL \leq \chi^2$

$$\mathbb{E}\|T_{\varepsilon}^{P\to Q_{n}} - T_{\varepsilon}^{P\to Q}\|_{L^{2}(P)}^{2} \lesssim \varepsilon^{-1} \mathbb{E}\left(\int (\psi_{\varepsilon}^{P\to Q} - \psi_{\varepsilon}^{P\to Q_{n}}) d(Q_{n} - Q)\right) + \mathbb{E}[\mathrm{KL}(Q_{n}\|Q)]$$

$$\lesssim \varepsilon^{-1} \left(\mathbb{E}[\mathrm{Var}_{Q}(\psi_{\varepsilon}^{P\to Q} - \psi_{\varepsilon}^{P\to Q_{n}})] + \mathbb{E}[\chi^{2}(Q_{n}\|Q)]\right) + \mathbb{E}[\chi^{2}(Q_{n}\|Q)]$$

$$\lesssim (1 + \varepsilon^{-1}) \mathbb{E}[\chi^{2}(Q_{n}\|Q)]$$

- 1. Application of Prop 3.7 to the empirical measure Q_n and Q
- 2. Young's inequality with the fact $KL \leq \chi^2$
- 3. Strong convexity of empirical semidual: $\operatorname{Var}_Q(\psi_{\varepsilon} \psi_{\varepsilon}') \lesssim \chi^2(Q'||Q)$

$$\mathbb{E}\|T_{\varepsilon}^{P\to Q_{n}} - T_{\varepsilon}^{P\to Q}\|_{L^{2}(P)}^{2} \lesssim \varepsilon^{-1} \mathbb{E}\left(\int (\psi_{\varepsilon}^{P\to Q} - \psi_{\varepsilon}^{P\to Q_{n}}) d(Q_{n} - Q)\right) + \mathbb{E}[\mathrm{KL}(Q_{n}\|Q)]$$

$$\lesssim \varepsilon^{-1} \left(\mathbb{E}[\mathrm{Var}_{Q}(\psi_{\varepsilon}^{P\to Q} - \psi_{\varepsilon}^{P\to Q_{n}})] + \mathbb{E}[\chi^{2}(Q_{n}\|Q)]\right) + \mathbb{E}[\chi^{2}(Q_{n}\|Q)]$$

$$\lesssim (1 + \varepsilon^{-1}) \mathbb{E}[\chi^{2}(Q_{n}\|Q)]$$

$$\lesssim \varepsilon^{-1} n^{-1}.$$

- 1. Application of Prop 3.7 to the empirical measure Q_n and Q
- 2. Young's inequality with the fact $KL \leq \chi^2$
- 3. Strong convexity of empirical semidual: $\operatorname{Var}_Q(\psi_{\varepsilon} \psi_{\varepsilon}') \lesssim \chi^2(Q'||Q)$
- 4. Finally, a calculation gives $\mathbb{E}[\chi^2(Q_n||Q) \lesssim n^{-1}]$.

Thanks (part 2)!