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Bregier (1991) Vo := argmin K po = argmin,, [ odP + [ ¢*dQ
Vo 1S convex Ty P=Q




Brenier map

P

Brenier (1991) vy, := argmin E
o 1s convex T'TyP=Q

po = argmin S(p)
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Where do transport maps arise?

e Generative modelling
— Huang et al. (2020), Amos (2023), Chen et al. (2023), etc.

e Multivariate rank and quantile estimation
— Ghosal & Sen (2022), Hallin et al. (2021), Chernozukov et al. (2017)

e Computational biology (predicting trajectories of single-cell genomics)
— Schiebinger et al. (2019), Bunne et al (2021, 2022, 2023)

e (Causal inference
— Gunsilius et al. (2020, 2021)

e Transfer learning and domain adaptation
— Alvarez-Melis and Fusi (2020), Flamary et al. (2015)

e among many others!
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Given i.i.d. samples Xy,...,X,, ~ Pand Y7,...,Y, ~Q

(Question: How to estimate 7{; on the basis of samples?
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Hiitter & Rigollet (2019): Estimator based on wavelets

Deb et al., and Manole et al. (2021): Plug-in estimators

Muzellec et al. (2021): Kernel SoS (tractable; high smoothness regime)
Manole et al. (2021): 1-Nearest-Neighbor estimator (tractable, optimal)

P. & Niles-Weed (2021): Entropic optimal transport (tractable, suboptimal)

How? Crucial lemma: ||T — TOHQLQ(P) S L(S(@) — S(po))



The case for discontinuity

Suppose (A1) and T discontinuous,

T, — TOH2L2(P) S !




The case for discontinuity

Suppose (A1) and T discontinuous,

T, — TOH2L2(P) S !

Vo
P Q




The case for discontinuity

Suppose (A1) and T discontinuous,

T, — TOH2L2(P) S !

.y |
L T




The case for discontinuity

Suppose (A1) and T discontinuous,




The case for discontinuity

Suppose (A1) and T discontinuous,
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Suppose (A1) and T discontinuous,

MrzeHeeet—al—(202H SIS slerhie 56 0
Manele-et-al—2021—-1 —Netehbe - sle—or
P—Nies-Weed {2021 FEntropteop e e



The case for discontinuity

Suppose (A1) and T semi-discrete OT map,



The case for discontinuity

Suppose (A1) and T semi-discrete OT map,

LN\, — TO||%2(p) <n~l/3
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The case for discontinuity

Suppose (A1) and T semi-discrete OT map,

.4J

T, — T()H%?(P) 5 n—1/2

Surprising! Why? @, ~ Q but P, is still far from P!

Rest of this talk: We will show

e Manole et al. (2021): 1-Nearest-Neighbor estimator (suffers from c.o.d.!)
e P.. Divol, & Niles-Weed (2023): Entropic optimal transport (minimax optimal)
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[T = argmin (II,C) s.t. IIe€DS, C RT ™
I
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T e e Runtime: O(n°) (i.e. slow)
e Lstimator only exists in sample
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Discrete OT: compute C;; = || X; — Y;||3 and solve

A

[T =argmin (I[,C) s.t. Il € DS, CR}*"
1
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A

At optimality: on the data, (II.);; = exp(X,'Y; — (¢c)i — (1))
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n

Sinkhorn’s algorithm: Iteratively fit marginals on the data (X;,Y;)? . _;

At optimality: Can extend to functions OFF the data [NW21, MNW19|

p-(w) = elog (£ L7, exp(aTY; — (12),)/2)

(2, i) Tﬂs (y) = elog (% Z?:l exp(X,L-Ty — (955)7/)/5)

(M, )
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Recall that we want to estimate a Brenier map 1y = Vg
Given ¢.(x) = €log (% Z?’:l exp(z'Y; — (lze)j)/e), our estimator is

(2 Y —(he);) /e

T(s,n) (Qf) . — VSBs (Qf) — Z:L:l YL S:Z_l e(xTYk_(st)k)/t? - COHV({Yl, « o e ,Yn})




2D Visualizations

P =N (0, I P = Unif([—-1, 1]° P = Unif(B(0; 1

To(x) = XY 20 +a To(x) = exp(x To(x) = x + 2sign(x )e;




Our estimator: entropic Brenier map

Recall that we want to estimate a Brenier map 1y = Vg
Given ¢.(x) = €log (% Z;”Zl exp(z'Y; — (lze)j)/e), our estimator is

- . ~ n e("l?TYz‘—(i;e)i)/&‘ g
T(s,n) (Qf) . — VSﬁs (Qf) — Zizl YL n_l e(xTYk_(Qﬁs)k>/€ (N COHV({Yl, c o o ,Yn})

< k

We will show this is minimax optimal in the semi-discrete setting
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P satisfies (A1) and () satisfies (A2)

(A1) P has density 0 < pmin < p(7) < Pmax with convex support supp(P) C B(0; R)

(A2) For J€N, Q =Y7_, q;6,,, with {y1,...,ys} € B(0; R) and ¢; > gumin > 0
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P is “nice” and () is discrete

Considered in several works

e Computation: Kitagawa et al. (2019), Genevay et al. (2016), etc
e Statistical aspects: del Barrio et al. (2022), Hundreiser et al (2022), etc
e Entropic semi-discrete OT: Altschuler et al. (2021+), Delalande (2021)
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Semi-discrete optimal transport

P is “nice” and () is discrete

What is the optimal transport map?

To(x) = Vg(x) = argmax{:ETyj — (o)}
JE[J]

where 1)y € R’ represents
the boundaries of the Laguerre cells

Hard to get on the basis of samples!



EOT gives minimax estimation rates

Theorem 1 (Informal) Suppose (A1) and (A2). Given i.i.d samples X+, ..., X, ~
PandYy,...,Y, ~ @), the entropic Brenier map s minimax optimal. Moreover,

the INN estimator suffers from the curse of dimensionality.



EOT gives minimax estimation rates

Theorem 1 (Informal) Suppose (A1) and (A2). Given i.i.d samples X+, ..., X, ~
PandYy,...,Y, ~ @), the entropic Brenier map s minimax optimal. Moreover,

the INN estimator suffers from the curse of dimensionality.

e Lower bound (Le Cam’s method): inf sup E

1" — TOH%}(P) Z n=1/2 ;
T QeQy




EOT gives minimax estimation rates

Theorem 1 (Informal) Suppose (A1) and (A2). Given i.i.d samples X+, ..., X, ~
PandYy,...,Y, ~ @), the entropic Brenier map s minimax optimal. Moreover,

the INN estimator suffers from the curse of dimensionality.

> n—1/2

e Lower bound (Le Cam’s method): inf sup
T Qe QJ

e Upper bound: ﬂHT TOHLQ(P) <n 12 with e xn=1/2,



EOT gives minimax estimation rates

Theorem 1 (Informal) Suppose (A1) and (A2). Given i.i.d samples X+, ..., X, ~
PandYy,...,Y, ~ @), the entropic Brenier map s minimax optimal. Moreover,

the INN estimator suffers from the curse of dimensionality.

> n—1/2

e Lower bound (Le Cam’s method): inf sup
T Qe QJ

e Upper bound: ﬂHT TOHLQ(P) <n 12 with e xn=1/2,

o INN suffers: there exists P and () such that [E




EOT gives minimax estimation rates
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e Big picture: Our understanding of discontinuous maps is very limited

— Rates in general are entirely unknown

e This work: stepping-stone to understand general discontinuities

— Bridge computational tractability and statistical efficiency

e Can the entropic Brenier map adapt to other forms of structure?

— Empirical results are promising

— Should be possible :)






Numerics on synthetic data
Recall Ty(x) = argmaij[J]{xTyj — (¢0);}; fix J =10 and d = 50

Case 1: data is from a regular grid Case 2: data is randomly generated

10—1 - M

109 -

MSE

| e T, slope=-0.675 e T, slope=-0.551

: 107" - .
10-3 - w1y SlOpe=-0.081 | = Tynn Slope=-0.030

x.ll T T r---"|2 T i """'3 ' T
10 10 10 103



Stability bound

Proposition 3.7. Let u, v, u', V' be four probability measures supported in B(0; R). Then the
entropic maps T*Y and TF =Y satisfy

8R2 HT#—W TEM/—W HL2(H) /(SD;; = QOI;_)V) d,u,—l— /(’(pgl—w’ B ng—w) dv —|—€KL(I/HI/,).
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Sketch: One-sample case

T — T 7 2y Se7'E ( / (279 =779 d(Qn — Q)) + E[KL(@n Q)]

< et (E[Varg (@79 — ¢l 79 + EN(Q.]1Q)]) + E[X*(Qn]|Q)]
< (1+e HEN*(Qn]Q)]
< €

1. Application of Prop 3.7 to the empirical measure (,, and ()

2. Young’s inequality with the fact KL < y?

3. Strong convexity of empirical semidual: Varg(v. — ¥%) < x?(Q'||Q)
4. Finally, a calculation gives E[x*(Q.,||Q) <n~1.




Thanks (part 2)!



