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“Tell me one good thing about those people Eliot helps.”
“Tcan’t”
“I thought not”

“It’s a secret thing,” she said, forced to argue, pleading for the argument to stop right

there.

Without any notion of how merciless he was being, the Senator pressed on. “You're

among friends now—suppose you tell us what this great secret is””

“The secret is that they’re human,” said Sylvia.

—Kurt Vonnegut, God Bless You, Mr. Rosewater (or, Pearls Before Swine)
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ABSTRACT

Optimal transport maps, or Brenier maps, have become widely adopted in data-driven domains
as they provide a canonical transformation between independent datasets. While many existing
methods aim for optimal statistical performance, they often fall short in practical regimes of
interest, such as when the data is high-dimensional or when the sample size is large. In this
thesis, we analyze principled algorithms for estimating optimal transport maps in precisely these
regimes. Our first contribution is the introduction of the entropic Brenier map, an estimator
of the Brenier map based on entropic optimal transport, which harnesses the computational
efficiency of Sinkhorn’s matrix scaling algorithm (Sinkhorn, 1967). We prove the first finite-
sample guarantees for estimating optimal transport maps using this estimator, demonstrate
that it is minimax optimal in the semi-discrete setting, and make further connections to the
statistical estimation of Schrédinger bridge between two distributions. Next, we further derive
new theoretical properties of the entropic Brenier map, such as bounds on the Lipschitz constant
of the map as well as its stability with respect to the target measures; these results also yield new
insights for the unregularized optimal transport map. For our final contribution, we propose a
new optimization framework for functionals defined over a suitable family of optimal transport
maps. As an application, we develop the first gradient-based algorithm for mean-field variational

inference that comes with end-to-end convergence guarantees.

vii



Contents

Dedication iv
Acknowledgments v
Abstract vii
List of Figures xiii
List of Appendices Xiv
1 Introduction 1
1.1 Goingbeyond distances . . . . . . . . . ... 4

1.2 Contributions of thisthesis . . . . . . . . ... ... ... ... ..., 7

1.3 Background . . .. ... 16
1.3.1  Optimal transport for the quadraticcost . . . ... ... ... ... .... 16

1.3.2  Entropic optimal transport for the quadraticcost . . ... ... ... ... 19

1.3.3 Othernotation. . . . . . ... ... . .. 21

I Statistical estimation of optimal transport maps and beyond 23
2 Entropic estimation of optimal transport maps 24
2.1 Introduction . . . . . . ... ... 24
21.1 Contributions . . . .. ... oL 26



2.1.2 Notation . . . . . . . . e e e 27

2.1.3 Remaining background on entropic optimal transport . . . . . ... .. .. 27
2.2 Estimatorandmainresults . . . ... ... ... ... . L L L. 29
2.2.1 One-sample estimates . . . . . . . .. ... ... .. 35
2.2.2 Two-sample estimates . . . . . . ... ... 41
2.3 Adaptive estimation . . . . ... ... L L 43
2.4 Computational aspects . . . . . . ... 44
2.4.1 Estimator complexities from priorwork . . . . ... ... .00 44
2.4.2 Computational complexity of the entropicmap . . ... ... ... .... 46
243 Empirical performance . . . . . .. ... o 50

Minimax estimation of discontinuous optimal transport maps: The semidiscrete

case 54
3.1 Introduction . . ... ... . .. ... 54
3.1.1 Main Contributions . . . . . . ... ... L o 57
3.1.2 Notation . . . .. ... .. e 58
3.1.3 Background on optimal transport . . . .. ... ... L. L0 58
3.2 Statistical performance of the entropic estimator in the semi-discrete setting . . . 62
3.2.1 Proofsketch of Theorem3.8 . . .. . ... ... ... ... ... ..... 66
3.3 Comparing against the INN estimator . . . . . ... .. ... ... ......... 67
3.3.1 Rate optimality of the entropic Breniermap . . .. ... ... ... . ... 67
3.3.2  The 1NN estimator is proveably suboptimal . . ... ... ... ... ... 68
333 Experiments . . . . . .. ... 69
Plug-in estimation of Schrodinger bridges 72
4.1 Introduction . .. .. ... ... 72
4.1.1 Contributions . . . . .. ... L 74

ix



II

5

4.1.2 Related work . . . . . . .., 77

42 Background . .. ... 79
4.2.1 Preliminaries on entropic optimal transport . . . ... ... ... ... .. 79

4.2.2  The Schrodinger Bridge problem and the Fokker-Planck equation . . . . . 82

4.3 Proposed estimator: The Sinkhornbridge . . . . .. .. ... .. ... ... ... 84
4.3.1 From Schrodinger to Sinkhornandback . . . . ... ... ... ... ... 85

43.2 Defining the estimator . . . ... ... ... ... ... .. 87

4.4 Mainresults and proofsketch . . . . ... ... . oo oL 89
44.1 Statistical analysis. . . . . . ... 89

44.2 Completing theresults . . .. ... ... ... ... ... ... ... ..., 92

443 Application: Sampling with the Follmer bridge . . . . . .. ... ... ... 93

4.5 Numerical performance . . . . . . . ... ... oL o 95
4.5.1 Qualitative illustration . . . .. ... ... ... ... ... .. ... ... 95

4.5.2 Quantitative illustrations . . . . . .. ... ... oL o L. 96
Interlude: Theoretical properties of entropic Brenier maps 100

An entropic generalization of Caffarelli’s contraction theorem via covariance

inequalities 101
5.1 Introduction . . . . . . .. . .. 101
5.1.1 Contributions . . . . . ... L 102
5.2 Background . .. ... 103
52.1  Assumptions . . . . . . . ... e e e 103
5.2.2  Optimal transport without regularization . . . . . .. ... ... ... ... 104
5.2.3  Optimal transport with entropic regularization . .. ... ... ... ... 105
5.2.4 Two covariance inequalities . . . . . . ... ... ... L. 107



53 Mainresultand proof . . . ... ... L Lo 107

5.4 A generalization to commuting positive definite matrices . . . .. ... ... ... 112

6 Tight stability bounds for entropic Brenier maps 117
6.1 Introduction . .. .. ... ... 117
6.1.1 Contributions . . . . .. ... L L 120

6.2 Background . .. .. ... 121
6.2.1  Entropic optimal transport and notation . . . .. ... ... ... ... .. 122

6.2.2 Related work in entropic optimal transport . . . . . . ... ... ... ... 125

6.2.3 Key ingredient: A transport inequality for conditional entropic couplings . 126

6.3 Mainresults . . ... ... 127
6.3.1 Proofof Theorem 6.3 . . . . . .. .. ... .. ... .. ... ... ... . 129

6.4 Application: Improved quantitative stability of semi-discrete optimal transport maps 132
II Optimization over the Wasserstein space 137

7 Algorithms for mean-field variational inference via polyhedral optimization in

the Wasserstein space 138
7.1 Introduction . . . . . . ... 138
7.1.1  Main contributions . . . ... ... Lo 140
7.1.2 Relatedwork . . . ... ... 142
7.2 Background on optimal transport . . . .. ... Lo Lo 142
7.3 Polyhedral sets in the Wasserstein space . . . . ... ... ... .. ........ 144
7.3.1 Compatible families of transportmaps . . . . . ... ... ... ... ... 145
7.3.2 Isometry with Euclidean geometry . . . ... .. ... ... ........ 148
7.4 Polyhedral optimization in the Wasserstein space . . . . . .. .. ... ... ... 149
7.4.1 Continuous-time gradientflow . . . . ... ... ... ... ... ..... 149

pal



7.4.2 Time-discretizationmadeeasy . . . . . . ... ... ... ... . ... ... 150

7.4.3  Enriching the family of compatiblemaps . . . . . ... ... .. ... ... 155
7.5 Application to mean-field variational inference . . . . . .. .. ... ... . ... 157
7.5.1 Mean-field variational inference . . . . . .. ... ... L. 159

7.5.2 Regularity of optimal transport maps between well-conditioned product

IMEASUTIES . . . v v v v vt e vt e e e e e e e e e e e 161

7.5.3  Approximating the mean-field solution with compatible maps . . . . . . . 163

7.5.4 Computational guarantees for mean-field VI . . . . . ... ... ... ... 165

7.5.5 Algorithms for mean-field VI . . ... ... ... .. ... .. ....... 169

7.6 Numerical experiments . . . . . . .. ... L L 174
7.6.1 Product Gaussian mixture . . . ... .. ... ... .. L. 175

7.6.2 Non-isotropic Gaussian . . . . . . . . .. .. ... Lo 175

7.6.3  Synthetic Bayesian logistic regression. . . . . ... ... ... ... ... 175

7.7 Extension to mixtures of product measures . . . . ... ... ... ... ... .. 177
Appendices 179
Bibliography 276

xii



List of Figures

2.1

2.2

2.3

31

3.2

3.3

3.4

4.1

4.2

4.3

7.1

7.2

7.3

Visualization of T, and Ty(x) in 2 dimensions. . . . . « « v v v v v v v et 51
Dashed lines are our estimator, solid lines are T'NN, and Ty (x) = exp(x) . . .... 52
Performance of a parallel implementation of our estimator on large data sets. . . . 53

An illustration of a semi-discrete optimal transport map. The support of P, the
whole rectangle, is partitioned into regions, each of which is transported to one of
the atoms of the discrete target measure Q. The resulting map is discontinuous at
the boundaries of eachcell. . . . . . . ... ... Lo o 56

Left: f"g versus leN for ] = 2 and d = 10. Right: Tg versus TlNN for J =10and d = 50. 70

T. versus Tiny for with Yorandomind =50. . . . ... ... oL 71
fg versus leN ford=10 . . . . . . . . 71
Schrodinger bridges on the basis of samples from toy datasets. . . . .. ... ... 96
MSE for estimating the Gaussian drift as (n, 7) vary, averaged over 10 trials. . .. 97
Plotting generated and resampled target dataind =64. . . . . ... ... .. ... 98
KDEs for the optimal product Gaussian mixture and our algorithm. . .. ... .. 174
Our algorithm is robust to the choiceof a. . . . . . ... ... ... ... ... .. 174

Histograms of the first ten marginals computed via our mean-field VI algorithm

vs. Langevin Monte Carlo for a 20-dimensional Bayesian logistic regression example. 176

xiii



List of Appendices

A Supplement to Chapter 2 . . . . . . . . .. 179
B Supplement to Chapter3 . . . . . . . ... L 204
C Supplement to Chapter4 . . . . . . . . . . . ... 226
D Supplement to Chapter 5 . . . . . . . . . . L 241
E Supplement to Chapter 6 . . . . . . . . ... ... 243
F Supplement to Chapter 7 . . . . . . . . . . . . e 248

Xiv



1 INTRODUCTION

Optimal transport theory, first conceptualized by Gaspard Monge (Monge, 1781) and later
formalized by Leonid Kantorovich (Kantorovitch, 1942), has emerged as a powerful tool to address
mathematical, statistical, and computational questions that arise over the space of probability
distributions.

In its basic form, the optimal transport problem is defined as follows: For two probability
measures P, Q over R%, let II(P, Q) be the set of joint measures with left-marginal P and right-
marginal Q, called the set of couplings. For a given cost function ¢ : R¢ x R? — R, Kantorovitch
(1942) proposed to minimize the average cost of displacement between the two marginals, resulting

in the following optimization problem:

W.(P,Q) = inf )//c(x,y) dz(x,y). (1.1)

7ell(P,Q

As an application, Kantorovich considers the case where P and Q are discrete probability measures,
resulting in a standard resource allocation problem in which W, represents the total “work” in
displacing, say, goods from factories to stores. Perhaps most striking is that (1.1) is the first
instance of a linear program. For his contributions, Kantorovich emerged as a pioneer of modern
mathematical programming and was awarded the Nobel Memorial Prize in Economics in 1975.
The impact of Kantorovich’s work extends far beyond problems in resource allocation. For

instance, taking c(x, y) = ||x — y||? (p-powers of the Euclidean norm for p > 1), (1.1) becomes the



p-Wasserstein distance

wp(n.0) = int ] -y antnn) (12)

which metrizes weak convergence over the space of probability measures (with finite p-moments).
This observation has allowed the Wasserstein distance to not only emerge as a powerful theoretical
tool in mathematics and statistics, but due to recent computational advances, a methodological one.

The following scenario is one application of the Wasserstein distance for statistical purposes: A
practitioner has two independent sets of data which they model as coming from two distributions,
i.e,, they have independent and identically distributed samples Xj,..., X, ~Pand Yy,...,Y, ~ Q.
In order to approximate the 2-Wasserstein distance between P and Q from samples, a naive
estimator consists in plugging the empirical measures P, and Q, (with P, = n™* 3| 8§y, and
Op=ntX" _; Oy;) into (1.1). This results in the following linear program over the set of doubly

stochastic matrices, where the rows and columns sum to 1/n:

W7 (P, Qp) = rr%&ln 1y, st Mm,=1i1,, 0'1,=11,, (1.3)
where C;; = ||X; — Y;||? is an n X n cost matrix. To actually compute the estimator—an aspect

of the problem which was not covered in Kantorovich’s original work—the modern statistician
has numerous algorithms at their disposal.! For example, the Hungarian algorithm can optimize
(1.3) with a runtime complexity of roughly O(n®) and a space complexity of O(n?) to store the
cost matrix into memory (Peyré and Cuturi, 2019). So, the practitioner is able to compute their
estimator—but how accurate is it? Under mild assumptions, a line of work demonstrates that
estimating p-Wasserstein distances with empirical measures suffers from what is called the curse

of dimensionality (Chizat et al., 2020; Dudley, 1969; Manole and Niles-Weed, 2024), implying the

Indeed, it was not until later that solvers were developed to solve linear programs (e.g., the simplex method due
to Dantzig (1951)).



following rate of estimation for p = 2 and d > 5:
W (P,Q) = Wy (P, Qu)| < n7/%. (14)

If the right-hand side of (1.4) is to be as small as possible, the practitioner requires a procedure
that leverages as many samples as possible. The Hungarian algorithm, with an O(n?) storage
capacity (and relatively slow runtime), is not amenable to scaling the number of samples past
n < 10* Thus, it appears that the effectiveness of the practitioner’s estimator is stifled due to
computational burden.

To circumvent this issue, Marco Cuturi proposed to incorporate entropic regularization to the
Wasserstein objective in order to solve an approximation to (1.3) in the large n regime, resulting

in the following strongly convex optimization objective

n
. _ 1 T _ 1
Hreanign (C,1I) + eijE:l O;jlog(IL;;), st I, =1,,, I 1,=1,,, (1.5)

where ¢ > 0 denotes the regularization strength (Cuturi, 2013). This formulation is commonly
known as entropic optimal transport, due to the entropy penalization term. To solve (1.5), Cuturi
used a matrix-scaling algorithm due to Richard Sinkhorn (Sinkhorn, 1967). Sinkhorn’s algorithm,
which consists of only a few lines of code, has several benefits: (1) it does not require storing the
cost matrix, which eliminates the O(n?) storage complexity, (2) it can take advantage of GPU-
computation, and (3) it has a runtime of O(n?/¢) (Altschuler et al., 2017), which is significantly
faster than the Hungarian algorithm for n large. Due to the computational prowess of Sinkhorn’s
algorithm, the procedure in (1.5) has emerged as the de facto approach to estimating optimal
transport costs, even with statistical guarantees comparable to (1.4) as long as ¢ = ¢(n) is chosen
in a particular manner (where ¢(n) N\, 0 as n /" o0); see Chizat et al. (2020) for example. Thus,

from both a computational and statistical perspective, the statistician appears satiated in their



task of estimating the optimal transport cost on the basis of samples.

1.1 GOING BEYOND DISTANCES

Over the last few years, modern statistical learning problems have experienced a considerable
shift. The statistician is no longer merely interested in estimating distances between (empirical)
distributions, but also transformations between them. We say that T : R — R lies in the set of
transport maps between P and Q, denoted T € 7 (P, Q), if for X ~ P, T(X) ~ Q. Transport maps
arise in wide array of problems, ranging from machine learning and generative modeling (Arjovsky
et al., 2017; Finlay et al., 2020a; Genevay et al., 2018; Grathwohl et al., 2018; Huang et al., 2021a;
Salimans et al., 2018), computer graphics (Feydy et al., 2017; Solomon et al., 2015; 2016), economics
and statistics (Carlier et al., 2016; Chernozhukov et al., 2017; Gunsilius and Xu, 2021; Torous et al.,
2024), to the applied sciences (Bunne et al., 2022; Moriel et al., 2021; Schiebinger et al., 2019; Yang
et al., 2020). A priori, there are infinitely many possible transport maps between two distributions.
Once more, optimal transport theory can help the practitioner.

Focusing on the squared Euclidean cost, if P and Q have finite second moment, the following
infinite-dimensional but non-convex optimization problem defines an optimal transport map

between the two marginals:

Ty := argmin / lx = T(x)|12 dP(x) . (1.6)
TeT (P,Q)

Unlike (1.1), this formulation may not always have a minimizer.” Brenier (1991) showed that if P
has a density, then there always exists Ty = V¢,, where ¢, is a convex function called a Brenier
potential; and so, (1.6) is the same as (1.2) for p = 2. We will interchangeably refer to Ty as both
the optimal transport map and Brenier map.

Thus, a widely studied analogue to the previous statistical problem is the following: Given

Consider moving a discrete probability measure with one atom to another with two atoms—there is no map.



X, ..., Xy ~Pand Yy,...,Y, ~ Q, how can we estimate the optimal transport map from P to Q
on the basis of samples? Importantly, for these various inference problems, the practitioner wants
to know how to transport an out-of-sample, or new data-point, from the source to the target. In
other words, the statistician wants to compute an estimator T, with good statistical properties

under the following notion of risk:
Ean - TO”%Z(P) . (1.7)

There are two (broad) families of estimators which have been studied thusfar. The first are
plug-in estimators at the level of the Brenier potential ¢, (Divol et al., 2022; Hiitter and Rigollet,
2021; Vacher et al,, 2024). These works make use of the fact that optimal transport maps are
gradients of Brenier potentials, which are known to be minimizers of the following semidual

functional:

®o € argmin/(de+/(p* do, (1.8)

@€L!(P)

where h + h* is the convex conjugate operator. Of course, we cannot optimize over all L!(P) func-
tions (nor all of P or Q), so one can resort to some approximating family wherein the optimization

is tractable. Thus, the practitioner optimizes

Po € argmin/ ¢ dP, + / 0" dQ,, (1.9)

peFo

where Fg can (in principle) be any class of smooth functions where (1.8) can be evaluated (and
recall P, and Q, are the empirical measures). The final estimator for the optimal transport map is
then V@e.

The presence of the conjugate operator appearing in the objective function (1.9) makes this

optimization problem quite difficult. For instance, Hiitter and Rigollet (2021) consider a (large



parametric) family of convex functions with bounded wavelet expansion, i.e., fo = Fw. They

prove that their estimator attains the following (near-)minimax risk

A _2(s-1)
E”VQDW - TO”%,Z(P) glog(n) n 2s+d—4

While their result is elegant from a statistical perspective, their approach is realistically intractable
for any applications where d > 3, as it requires a gridding scheme. What if Fg is something
else? Divol et al. (2022) expand upon their work by considering general function spaces, which
can consist of (large) parametric families, quadratics, Barron spaces, Reproducing Kernel Hilbert
Spaces, and more. While they too prove minimax optimal estimation rates (and recover the
results of Hiitter and Rigollet (2021) in the process), their results are underwhelming from a
computational point of view. Indeed, polynomial-type conjugate oracles (required to optimize the
semidual functional) are unlikely to exist for general function classes. Some families will allow an
efficient gradient-descent-type scheme to compute @g; for instance, optimizing over A — Z? Ajpj
for a fixed, finite collection of smooth, strongly convex functions {¢; }§=1' These estimating classes
are rather restrictive, and the resulting computational complexity is rather infeasible for modern
tasks involving optimal transport.

A second approach to estimating optimal transport maps consists of plug-in estimators at the
level of the densities P and Q, where we perform the estimation through a two-stage process (Deb
et al,, 2021; Manole et al., 2024a). First, we use the data (recall X3,...,X,;, ~P,and Y;,...,Y, ~ Q)
to construct estimators P, and O, of the densities that more sophisticated than empirical measures,
such as kernel density estimators (KDEs). Then, from the estimated densities, one could draw as
many samples as desired (that is, fresh samples X7, ..., X; ~ 13,, and also Y7, ..., Y, ~ Qn) and find
the optimal matching in the sense of (1.3). The resulting map is the final estimator. This approach
comes with several drawbacks, namely that sampling from high-dimensional KDEs is non-trivial,

and that, in order to benefit from the smoothness properties of these estimators, an exorbitant



number of samples must be drawn which exceeds the (n?) storage complexity. So, despite being a
central object in many applications, most existing estimators of optimal transport maps are, while
statistically optimal, nearly impossible to compute when d > 1 or when n > 10°.

Collectively, these observations motivate the following question which drives our thesis:

How do we develop procedures for estimating optimal transport maps which enjoy favorable

computational and statistical guarantees?

1.2 CONTRIBUTIONS OF THIS THESIS

We now provide a chapter-by-chapter summary of this thesis.

STATISTICAL ESTIMATION OF OPTIMAL TRANSPORT MAPS AND BEYOND

CHAPTER 2: ENTROPIC ESTIMATION OF OPTIMAL TRANSPORT MAPS

In this first chapter, we develop and study a tractable, scalable non-parametric estimator of

the optimal transport map based on the entropic optimal transport problem

o1.(r.Q) = min [[ =yl drlxy) + eKLG2IP 9 Q). (1.10)

where KL(-||-) is the Kullback-Leibler divergence, or relative entropy, between 7 and the product
measure; the minimizer is called the optimal entropic coupling, denoted 7.. (Note that (1.10) is the
population analogue to (1.5).)

Our first contribution is an entropic analogue of Brenier’s theorem. We show that our
estimator—the barycentric projection of the optimal entropic coupling, denoted T.(x) = E, [Y|X =
x]—can be characterized as a gradient field of entropic potentials. Moreover, on the basis of sam-

ples, our estimator is easy to compute using Sinkhorn’s algorithm, and extends to out-of-sample



points.

As a result, unlike current approaches for map estimation, which are slow to evaluate when
the dimension or number of samples is large, our approach is parallelizable and extremely efficient
even for massive data sets. Under smoothness assumptions on the optimal map, we show that our
estimator enjoys comparable statistical performance to other estimators in the literature, but with
much lower computational cost.

We showecase the efficacy of our proposed estimator through numerical examples, even ones
not explicitly covered by our assumptions. By virtue of Lepski’s method, we propose a modified
version of our estimator that is adaptive to the smoothness of the underlying optimal transport
map. Our proofs are based on a modified duality principle for entropic optimal transport and on a
method for approximating optimal entropic plans due to Pal (2024).

It is worth mentioning that in the years since we developed this estimator, there has been a
flurry of follow-up works and applications surrounding the entropic Brenier map in both statistical
and theoretical circles. For instance, in the case of ¢ > 0, the community has established various
central limit theorems (Goldfeld et al., 2024a;b; Sadhu et al., 2024; 2025) for the entropic Brenier
map, estimators for different costs or applications (Baptista et al., 2024; Cuturi et al., 2022; Klein
et al,, 2024; Masud et al., 2023; Werenski et al., 2023), conceived more practical estimators (Kassraie
et al., 2024), made use of them in generative modeling (Haviv et al., 2024), and more.

This chapter is based off

“Entropic estimation of optimal transport maps”, in submission (2021), with Jonathan

Niles-Weed.



CHAPTER 3: MINIMAX ESTIMATION OF DISCONTINUOUS OPTIMAL TRANSPORT MAPS:

THE SEMI-DISCRETE CASE

The analysis of the previous chapter for estimating optimal transport maps from data (and
essentially all prior work, such as Deb et al. (2021); Divol et al. (2022); Hitter and Rigollet (2021);
Manole et al. (2024a); Vacher et al. (2024)) heavily relies on the assumption that the underlying
optimal transport map is Lipschitz. In particular, this assumption excludes any examples where
the Brenier map may be discontinuous (which is likely the case in real-world scenarios, in view
of the so-called manifold hypothesis (Brown et al., 2022)). As a first step towards developing
estimation procedures for discontinuous maps, we now consider the important special case where
the data distribution Q is a discrete measure supported on a finite number of points in R%. We
revisit the entropic Brenier map estimator from Chapter 2 and demonstrate that it converges
at the minimax-optimal rate of n™'/? in the semidiscrete case, where the rate is independent of
dimension. We stress that other standard map estimation techniques both lack finite-sample
guarantees in this setting and provably suffer from the curse of dimensionality. We confirm these
results in numerical experiments, and provide experiments for other settings, not covered by our
theory, which indicate that the entropic estimator is a promising methodology in the general
discontinuous setting.

The contents of this chapter follow from

“Minimax estimation of discontinuous optimal transport maps: The semi-discrete
case”, in the 40th International Conference on Machine Learning (ICML 2023), with

Vincent Divol and Jonathan Niles-Weed

CHAPTER 4: PLUG-IN ESTIMATION OF SCHRODINGER BRIDGES

In this chapter, we consider another family of transport maps based on dynamic transport.

These methods (such as flow matching (Albergo and Vanden-Eijnden, 2022; Lipman et al., 2022;



Liu et al,, 2022b) and denoising diffusion probabilistic models (Song et al., 2020)) have quickly
emerged as powerful approaches to perform generative modeling on complex, high-dimensional
distributions. Among this class of algorithms is the Schrodinger bridge between two distributions
(Léonard, 2014; Schrodinger, 1932), which is essentially the “optimal” diffusion path between two
probability measures.

We propose and analyze an estimator for the Schrodinger bridge between two probability
distributions. Unlike existing approaches (De Bortoli et al., 2021), our method does not require
iteratively simulating forward and backward diffusions or training neural networks to fit unknown
drifts. Instead, we show that the potentials obtained from solving the static entropic optimal
transport problem between the source and target samples can be modified to yield a natural
plug-in estimator of the time-dependent drift that defines the bridge between two measures.
Under minimal assumptions, we show that our proposal, which we call the Sinkhorn bridge,
provably estimates the Schrodinger bridge with a rate of convergence that depends on the intrinsic
dimensionality of the target measure. Our approach combines results from the areas of sampling,
and theoretical and statistical entropic optimal transport.

This chapter is based on the following article

“Plug-in estimation of Schrodinger bridges”, to appear in SIAM Journal of Mathematics

and Data Science (2025), with Jonathan Niles-Weed.

INTERLUDE: THEORETICAL PROPERTIES OF ENTROPIC BRENIER MAPS

A major contribution of this thesis is the introduction of the entropic transport map, or entropic

Brenier map, from Chapter 2:

x o T(x) = B [Y]X = ],
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where recall 7, is the optimal entropic coupling between two measures P and Q. Unlike the
optimal transport map, the entropic Brenier map always uniquely exists under mild conditions
(e.g., if the marginals have finite second moment), is defined for all x € R?, and is automatically
analytic in the interior of the domain of the source measure.

In this part of the thesis, we ask how we can exploit this newfound regularity of the entropic
Brenier map, and simultaneously address theoretical questions pertaining to its unregularized

counterpart (in the limit ¢ \ 0 regime).

CHAPTER 5: AN ENTROPIC GENERALIZATION OF CAFFARELLI'S CONTRACTION

THEOREM VIA COVARIANCE INEQUALITIES

Many applications of the optimal transport map hinge on its regularity properties, such as its
Lipschitz constant. Though, there are only a few instances when the Lipschitz constant of V¢,
can be precisely gleaned from the source and target measures. One such result is due to Caffarelli

(2000): If P oc exp(=V) and Q « exp(—-W) with V2V < ByI and VW > ayI > 0, then

”qu)O“op < VﬁV/aW~ (1-11)

These types of Lipschitz estimates for transport maps have their use in transferring functional
inequalities. As an example, suppose P satisfies what is known as a Poincaré inequality: there

exists a constant Cp such that for any smooth function f

Varp(f) < CpEx-p||VL(X)|*.

If we write (Vo )4 P = Q, with V¢, uniformly L-Lipschitz, then one can easily show that Q satisfies
a Poincaré inequality with constant Cop < L2Cp.

The usual proof of Caffarelli’s contraction theorem follows PDE-style arguments; see the

11



following survey by Kolesnikov (2011). In this chapter, we provide another (shorter) proof, based

on the entropic Brenier map. We show that, under the usual Caffarelli assumptions stated above,

1920ellop < 5 (\J4Bv ey + Be? — pve). (112

The bound in (1.12) is tight as it is realized by Gaussians. Our proof of this result is a few lines
and relies on two twin covariance inequalities: the Brascamp-Lieb inequality and Cramér—Rao
inequalities. Taking the ¢ ™\ 0 limit, we recover Caffarelli’s seminal result; to our knowledge, this
is the shortest proof of this result. As an application, we prove a generalization of Caffarelli’s
statement a result due to Valdimarsson.

It is worth mentioning that in the years since our result was first made available, there have
been numerous extensions. Conforti (2024) obtains results of a similar flavor to (1.12) but under
weaker assumptions than strong log-concavity (though, they are unable to take the ¢ ™\ 0 limit
in these cases) using techniques from stochastic calculus. More recently, Gozlan and Sylvestre
(2025) have strengthened our technique to encompass more general conditions on the measures
(for instance, they prove global Hélder estimates instead of Lipschitz estimates, or estimates when
P is Cauchy), and a further improvement of our generalization of Valdimarsson’s result.

The content of this chapter is based off the following article

“An entropic generalization of Caffarelli’s contraction theorem via covariance inequal-

ities”, in Comptes Rendues Mathématique (2023), with Sinho Chewi.

CHAPTER 6: TIGHT STABILITY BOUNDS FOR ENTROPIC BRENIER MAPS

We now turn our attention to another long-standing question in the optimal transport com-
munity: for a fixed source measure p, is the mapping y — TO“ Holder continuous with respect

to the 2-Wasserstein distance? In other words, do there exist constants C, f > 0 such that for all

12



probability measures p, v with finite second moments,
1Ty =T 2y < CWY (1) ? (1.13)

Since the inequality Wy (p, v) < ||T(f — Ty llz2(p) always holds, (1.13) would imply that the mapping
U TO” is a bi-Holder embedding of the Wasserstein space into L?(p). We call such an inequality
a stability bound. A result of this type was first proven in the article by Gigli (2011), and has
since received much attention in the optimal transport community (Delalande and Mérigot, 2023;
Letrouit and Mérigot, 2024; Manole et al., 2024a; Mérigot et al., 2020).

The goal of this chapter is two-fold. First, we prove analogous stability results for the embed-
ding given by entropic Brenier maps i.e., u — T!. A second, more ambitious question, is to see if
stability bounds for the entropic Brenier map can yield new results for Brenier maps (much like in
the Caffarelli setting). To this end, a corollary of our main result is the following stability bound

for entropic Brenier maps between p, y, v which are assumed to lie in B(0, R):
ITY =T llz () < (1+42R%/e)Wa(p,v),

Moreover, we give an example which demonstrates that, in generality, this result is tight. Armed

with this result, we then prove the following stability bound for the unregularized Brenier maps
1Ty = T ey < W, (),

where we restrict g, v to be finitely supported in a ball of radius R with lower-bounded weights.

The content of this chapter is based off the following article

“Tight stability for entropic Brenier maps”, in International Mathematics Research

Notices (2025), with Vincent Divol and Jonathan Niles-Weed
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OPTIMIZATION OVER THE WASSERSTEIN SPACE

CHAPTER 7: ALGORITHMS FOR MEAN-FIELD VARIATIONAL INFERENCE VIA

POLYHEDRAL OPTIMIZATION IN THE WASSERSTEIN SPACE

In this final chapter, we study optimization problems that take place over (subsets of) the
Wasserstein space: the metric space of (absolutely continuous) probability measures over R?
endowed with the 2-Wasserstein distance.

First, we develop a theory of finite-dimensional polyhedral subsets over the Wasserstein space
and optimization of functionals over them via first-order methods. As an application of our theory,
we turn to a widely studied infinite-dimensional optimization problem over the space of probability
distributions: mean-field variational inference (MFVI) (Blei et al., 2017; Wainwright and Jordan,
2008). In MFVI, the practitioner seeks to approximate an unnormalized posterior density 7 over

R? by the closest product measure in the sense of the Kullback-Leibler divergence:

* = argmin KL(y||7) .
peP (R)®d

When 7 is strongly log-concave and log-smooth, we provide (1) approximation rates certifying

that 7* is close to the minimizer z} of the KL divergence over a polyhedral set P.,

n)y = argmin KL(u||7) .
,uePo

and (2) an algorithm for minimizing KL(-||7) over #, based on accelerated gradient descent over
R?. As a byproduct of our analysis, we obtain the first end-to-end analysis for gradient-based
algorithms for MFVI. We also discuss the implementation of our algorithm, with code available
here.

These results are from
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https://github.com/APooladian/MFVI

“Algorithms for mean-field variational inference via polyhedral optimization in the
Wasserstein space”, to appear in Foundations of Computational Mathematics (2025+)
and a preliminary abstract was accepted to the Conference on Learning Theory (COLT

2024), with Roger Jiang and Sinho Chewi.

ADDITIONAL CONTRIBUTIONS

I had the (immense!) pleasure of taking part of many other collaborations during my PhD

which, in the interest of preserving my sanity, did not make it into this thesis:

« “Wasserstein flow matching: Generative modeling over families of distributions” in the
Fourty-second International Conference on Machine Learning (ICML 2025), with Doron Haviv,

Dana Pe’er, and Brandon Amos;

« “Conditional simulation via entropic optimal transport: Toward non-parametric estimation
of conditional Brenier maps”, in the 28th International Conference on Artificial Intelligence
and Statistics (AISTATS 2025), with Ricardo Baptista, Michael Brennan, Youssef Marzouk,

and Jonathan Niles-Weed;

« “Estimation of optimal transport maps in general function spaces”, to appear in the Annals

of Statistics (2025), with Vincent Divol and Jonathan Niles-Weed,

« “Progressive entropic optimal transport solvers”, in the 38th Conference on Neural Information
Processing Systems (NeurIPS 2024), with Parnian Kassraie, James Thornton, Jonathan Niles-

Weed, and Marco Cuturi;

+ “Learning costs for structured Monge displacements”, in the 38th Conference on Neural
Information Processing Systems (NeurIPS 2024), with Michal Klein, Pierre Ablin, Eugene

Ndiaye, Jonathan Niles-Weed, and Marco Cuturi;
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« “Neural optimal transport with Lagrangian costs”, in the 40th International Conference on
Uncertainty in Artificial Intelligence (UAI 2024), with Carles Domingo-Enrich, Ricky Tian-Qi

Chen, and Brandon Amos;

+ “Multisample flow matching: Straightening flows with minibatch couplings”, in the 40th
International Conference on Machine Learning (ICML 2023), with Heli Ben-Hamu, Carles

Domingo-Enrich, Brandon Amos, Yaron Lipman, and Ricky Tian-Qi Chen;

« “An explicit expansion of the Kullback-Leibler divergence along its Fisher-Rao gradient

flow”, in Transactions on Machine Learning Research (2023), with Carles Domingo-Enrich;

« “Debiaser beware: Pitfalls of centering regularized transport maps”, in the 39th International

Conference on Machine Learning (ICML 2022), with Jonathan Niles-Weed and Marco Cuturi.

All remaining errors are my own.

1.3 BACKGROUND

We henceforth denote the space of probability measures with finite second moments by P, (R%).
The class of such measures with densities (with respect to Lebesgue measure) are denoted by

Py o (RY). The support of a probability measure y is given by supp ().

1.3.1 OPTIMAL TRANSPORT FOR THE QUADRATIC COST

For P, Q € P,(R%), we define the set of couplings between P and Q by

(P, Q) == {r € PR xRY) | 1(A X RY) = P(A), 7(R? x A) = O(A)}. (1.14)

The optimal transport distance under the squared-Euclidean cost, or the 2-Wasserstein distance,

between P (the source measure) and Q (the target measure) is given by the following optimization
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problem

%sz(P, Q) := inf // %||x—y||2d7r(x, Y) . (1.15)

mell(P,Q)

This optimization problem is commonly known as the Kantorovich formulation of optimal trans-
port (Kantorovitch, 1942). As P, Q are assumed to have finite-second moments, a minimizer to
(1.15) is always guaranteed to exist (Villani, 2009). We call this minimizer the optimal (transport)
coupling between P and Q, and is denoted by 7p. Though, importantly, uniqueness of the minimizer
cannot be asserted from the sole assumption that the marginals have finite-second moments.

It is natural to view view (1.15) as an convex program (albeit infinite-dimensional). Thus, we

can obtain a “dual” optimization problem,

Iw2(P,Q) = sup DLO(f.9), (1.16)
(f.9er

where ¥ = {(f,9) : f € L*(P),g € L'(Q)}, and

DF(f.g) = / fdp+ / 9dQ st f(x)+9(y) < Hlx —yl,

the constraint holds P ® Q almost everywhere. If the marginals have finite-second moments, then
there exists a maximizing pair of Kantorovich potentials (fy, go) to (1.16) (see Villani, 2009).?

We require a final formulation of the 2-Wasserstein distance based on transport maps, which
are vector-valued functions T : RY — R? with T € 7 (P, Q) such that they satisfy the pushforward

property.* The optimal transport map between P and Q is the solution to the following optimization

3These potentials are defined up to a translation: for ¢ € R, (fy + ¢, go — ¢) gives the same objective value in (1.16)
as the original pair (f;, go).
“We say that T € 7 (P, Q) if for X ~ P, then T(X) ~ Q
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problem, called the Monge problem (Monge, 1781)

Ty := argmin / Llx = T(x)[1? dP(x) . (1.17)
TeT (P,Q)

In contrast to the primal Kantorovich formulation of the 2-Wasserstein distance (recall (1.15)): (1)
(1.17) is a non-convex optimization problem and (2) a minimizer Ty may not even be defined for
arbitrary measures with finite second moment, whereas 7, will at least exist (though possibly not
unique).

The following theorem, due to Brenier (1991), unifies the solutions to the Kantorovich primal

and dual problems, and the Monge problem by assuming that the source measure has a density.

Theorem 1.1 (Brenier’s theorem). For P € Py 4(R?) and Q € P(R?), let (fi, go) denote the optimal

Kantorovich potentials which solve (1.16), and define

oo =3l 1P~ fo. o= 317~ g0, (1.18)

to be corresponding Brenier potentials. Then the (P-a.e. unique) optimal transport map T, between
P and Q exists (P-a.e.) and is given by the gradient of a convex function ¢,y. In other words, Ty

minimizes (1.17) and is given by
Ty = V(p(), (119)

Moreover, we can write the optimal plan as dmy(x,y) = dP(x)d(7,(x)} (y)-
If Q also has a density, we can similarly write the optimal transport map from Q to P (or the

inverse optimal transport map) as

(To)™" = Vo, (1.20)
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which holds Q-a.e., and ) is also convex. Analogously, the optimal transport coupling can be expressed

as dmo(x,y) = dQ(y)8( (1)1 ()} (%)

From their definition and (1.16), it can be shown that the (forward) Brenier potential ¢,
minimizes the following version of the Kantorovich dual objective
1172 _1 . PQ
Wy (P,Q) = 5My(P + Q) - ,min S, ()

= %MZ(P+Q)—( min /(de+/<p*dQ),

@€eL!(P)

(1.21)

where ¢* is the convex conjugate operator. In fact, ¢, and ¢/ are convex conjugates of one another

in the sense that

@o(x) = sup {{x,y) —o(y)}, Yo(y) = sup {(x,y) — @o(x)}. (1.22)
Yy x

Thus, when all quantities are well-defined, we can write ViJy = Vo5 = (Vo) " by standard results

in convex analysis.

1.3.2 ENTROPIC OPTIMAL TRANSPORT FOR THE QUADRATIC COST

Let P, Q € P,(R?). For a fixed parameter ¢ > 0, the entropic optimal transport problem between

Pand Qs

OT:(P,Q) == inf // %llx —y||?dr(x,y) + eKL(x||P ® Q), (1.23)

n€ell(P,Q)
where we define the Kullback—Leibler divergence as

dr(x,y)

00 doc)) Y

KL(7||P ® Q) ::/log(
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whenever 7 admits a density with respect to P ® Q, and +co otherwise. Note that when ¢ = 0,
(1.23) reduces to (1.15). The entropic optimal transport problem was introduced to the machine
learning community by Cuturi (2013) as a numerical scheme for approximating the 2-Wasserstein
distance on the basis of samples.

An important consequence of the added regularization is that (1.23) is a strictly convex problem,
and thus always admits a unique minimizer whenever P and Q have finite second moments
(Genevay, 2019). We call this minimizer the optimal entropic plan, written 7, € II(P, Q).

As with the unregularized Kantorovich problem (1.16), a dual formulation of (1.23) exists

OT.(P,Q) = sup D:2(f.g) (1.24)
(f.9eFr

where

DP(f.g) = / fdp+ / gdQ ¢ // (e<f<x>+9<y>—%“"—y”z)/g—1)dp(x) do(y).  (1.25)

Interestingly, as ¢ — 0, we see that DfQ converges to the objective in (1.16), where the limit of
the third term above becomes the hard constraint on the potentials. As with the primal problem,
the assumption that P and Q have finite second moments ensures that there exists a unique
maximizing pair (f;, g.) to (1.24), which we call entropic Kantorovich potentials; see Genevay
(2019); Nutz (2021) for more details on this point. As with the maximizers to (1.16), these functions
are defined up to a constant translation.

The primal and dual optima are intimately connected through the following relationship due

to Csiszar (1975):

fo(x) + ge(y) — 3llx — yl|?
I

dr.(x,y) = exp( ) dP(x)dQ(y) . (1.26)

Finally, we mention that, although f; and g, are only a priori defined almost everywhere on the
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support of P and Q, they can be extended to all of R? (see Mena and Niles-Weed (2019); Nutz and

Wiesel (2021)) via the optimality conditions

L= / e FCa:-Ixu /e 40 () W € R, (1.27)

| = / 9.0 x-uI/ /e gp () vy e R, (1.28)

Since (f;, g.) are only unique up to adding a constant to f. and subtracting the same constant

from g.. Unless specified otherwise, we will always assume the normalization convention

fﬁdp:fgsdQ-

1.3.3 OTHER NOTATION

Basic DEFINITIONS. The square-root of the determinant of a matrix is J(-) := \/F(-) .For x e R?
and r > 0, we write B, (x) for the Euclidean ball of radius r centered at x. We denote the maximum
and minimum of a and b by a vV b and a A b, respectively. We use the symbols ¢ and C to denote
positive constants whose value may change from line to line, and write a < b and a < b if there

exists constants ¢, C > 0 such that a < Cb and ¢b < a < Cb, respectively.

FuncTIiON cLassES.  For a > 0 and a closed set Q, we write h € C*(Q) if there exists an open
set U 2 Q and a function g : U — R such that g|g = h and such that g possesses | «] continuous
derivatives and whose | «|th derivative is (a — | a])-Holder smooth.

We write third total derivative of f at x in the direction y € R? as

d 3
o f (x)
Ef(xy) = ) ————yyy.
i,j,zk‘;l didyoyc”

SPACE OF PROBABILITY MEASURES AND DIVERGENCES. For a function f and a probability measure p,

we write ||f||iz(p) = II-E‘,XNPHf(X)H2 . Similarly, we write Var, (f) := Ex-,[(f(X) —Ex~, [F(X)D?]
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for the variance of f with respect to p.

A probability measure is called o2-subGaussian if for some o2 > 0,
Eexp(AT (Y —EY)) < exp(||A]|?c%/2),  forall A e R?.

If a measure p possesses a density with respect to the Lebesgue measure, we denote its
differential entropy by H(p) = f log(dp) dp.

We will use several divergences throughout this thesis apart from the Kullback-Leibler diver-
gence. For instance, the total variation distance, as well as the y-squared divergence and (squared)

Hellinger distance, between two probability measures P < Q are given by

TV(P,Q) = sup [P(A)-Q(A)l, (1.29)
AeB(RY)
dP 2
X’ (PlQ) = / (1 - d_Q) do, (1.30)

H(P, Q) = ! / (VP - d0)*. (1.31)
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Part 1

Statistical estimation of optimal transport

maps and beyond
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2 ENTROPIC ESTIMATION OF OPTIMAL

TRANSPORT MAPS

2.1 INTRODUCTION

The goal of optimal transport is to find a map between two probability distributions that
minimizes the squared Euclidean transportation cost. This formulation leads to what is known as
the Monge problem (Monge, 1781):

min / lx — T(x)||* dP(x), (2.1)

TeT (P,Q)

where 7 (P, Q) is the family of admissible transport maps from P to Q, i.e., for X ~ P, T(X) ~
Q. Due to their versatility and mathematical simplicity, optimal transport maps have found a
wide range of uses in statistics and machine learning, (Arjovsky et al., 2017; Carlier et al., 2016;
Chernozhukov et al., 2017; Courty et al., 2014; 2017; Finlay et al., 2020a; Huang et al., 2021a;
Makkuva et al., 2020; Onken et al., 2021; Wang et al., 2010), computer graphics (Feydy et al., 2017,
Solomon et al., 2015; 2016), and computational biology (Schiebinger et al., 2019; Yang et al., 2020),
among other fields.

Of course, in these applied works, rarely are P and Q known exactly but rather the practitioner

deals with samples Xi,..., X, ~Pand Y,...,Y, ~ Q = (To)ﬁP, and the goal is to estimate the
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optimal transport map Tj on the basis of the data. Hiitter and Rigollet (2021) first investigated this

question and proposed an estimator T, which achieves

BI|T, = Toll}.p) < %55 log*(m), (2.2)

(P)

if Ty € C% P and Q are compactly supported, and satisty additional technical assumptions.
Moreover, they showed that the rate in (2.2) is minimax optimal up to logarithmic factors. Though
statistically optimal, their estimator is impractical to compute if d > 3, since it relies on a
gridding scheme whose computational cost scales exponentially in the dimension. Recently, Deb
et al. (2021) and Manole et al. (2024a) proposed plugin estimators that also achieve the minimax
estimation rate. Though simpler to compute than the estimator of Hiitter and Rigollet (2021), these
estimators require at least O(n®) time to compute and cannot easily be parallelized, making them
an unfavorable choice when the number of samples is large.

In this chapter, we adopt a different approach by leveraging recent advances in computational

optimal transport based on entropic regularization (Peyré and Cuturi, 2019), which replaces (2.1) by

inf // %llx —yl?dr(x,y) +eKL(z|P ® Q), (2.3)

7ell(P,Q)

where II(P, Q) denotes the set of couplings between P and Q and KL(-||-) denotes the Kullback-
Leibler divergence. This approach, which was popularized by Cuturi (2013), has been instrumental
in the adoption of optimal transport methods in the machine learning community because it leads
to a problem that can be solved by Sinkhorn’s algorithm Sinkhorn (1967), whose time complexity
scales quadratically in the number of samples (Altschuler et al., 2017). Moreover, Sinkhorn’s al-
gorithm is amenable to parallel implementation on GPUs, making it very attractive for large-scale

problems (Altschuler et al., 2019; Feydy et al., 2020; 2019; Genevay et al., 2018).
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2.1.1 CONTRIBUTIONS

The efficiency and popularity of Sinkhorn’s algorithm raise the tantalizing question of whether
it is possible to use this practical technique to develop estimators of optimal transport maps with
convergence guarantees. We develop such a procedure.

Under suitable technical assumptions on P and Q, we show that our estimator T enjoys the
rate

A ) e
ElIT = Tollf,py s n #@=0 logn

if the inverse map T, ' is C* and « € (1, 3]. This rate is worse than that in (2.2), but our empirical
results show that our estimator nevertheless outperforms all other estimators proposed in the
literature in terms of both computational and statistical performance. The estimator we analyze
was originally suggested by Seguy et al. (2018), who also showed consistency of the entropic plan
in the large-n limit if the regularization parameter is taken to zero sufficiently fast. However, to
our knowledge, our work offers the first finite-sample convergence guarantees for this proposal.
Our estimator is defined as the barycentric projection (Ambrosio et al., 2008) of the entropic
optimal coupling between the empirical measures arising from the samples. The barycentric
projection has been leveraged in other works on map estimation as a straightforward way of
obtaining a function from a coupling between two probability measures (Deb et al., 2021). However,
in the context of entropic optimal transport, this operation has a more canonical interpretation in
light of Brenier’s theorem (Brenier, 1991). Brenier’s result says that the optimal transport map
To = Vo can be realized as the gradient of the function which solves the dual problem to (2.1).
We show in Proposition 2.3 that the barycentric projection of the entropic optimal coupling
is the gradient of the function which solves the dual problem to (2.3). In addition to providing
a connection to the classical theory of optimal transport, this observation provides a canonical
extension T to out-of-sample points. Moreover, since Sinkhorn’s algorithm computes solutions to

the dual of (2.3), this interpretation shows that computing T is no more costly than solving (2.3).
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Moreover, we propose a variant of our estimator that is adaptive in the sense that the smoothness
parameter need not be explicitly known to the practitioner.

We analyze T by employing a strategy pioneered by Pal (2024) for understanding the structure
of the optimal entropic coupling. This technique compares the solution to (2.3) to a coupling
whose conditional laws are Gaussian, with mean and covariance characterized by the solution
to (1.17). To leverage this comparison, we employ a duality principle in conjuction with an upper
bound reminiscent of the short-time expansions of the value of (2.3) developed by Conforti and

Tamanini (2021) and Chizat et al. (2020) (see Theorem 2.2).

2.1.2 NOTATION

A constant is a quantity whose value may depend on the smoothness parameters appearing in
assumptions (E1) to (E3), the set Q, and the dimension, but on no other quantities. We denote the
maximum and minimum of a and b by a V b and a A b, respectively. We use the symbols ¢ and C
to denote positive constants whose value may change from line to line, and write a < banda < b
if there exists constants ¢, C > 0 such that a < Cb and c¢b < a < Cb, respectively.

Our proofs based on empirical process theory will consider suprema over uncountable col-
lections of random variables; however, since all the processes in question are separable, these

suprema are still measurable (Giné and Nickl, 2021, Section 2.1).

2.1.3 REMAINING BACKGROUND ON ENTROPIC OPTIMAL TRANSPORT

Throughout this chapter, we make use of the existing notation and conventions from Sec-
tion 1.3.2. However, our proofs rely on a modified version of the duality relation given in (1.24),
in which the supremum is taken over a larger set of functions. Though it is a straightforward
consequence of Fenchel’s inequality, we have not encountered this statement explicitly in the

literature, so we highlight it here.
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Proposition 2.1. Assume P and Q possess finite second moments, and let 7. be the optimal entropic

plan for P and Q. Then

OT.(P,Q) = sup / ndm, —¢ ﬂ eGey) = llx=yll*) /e dP(x)dQ(y) +¢. (2.4)

nell(x,)

Comparing this proposition with (1.24), we see that we can always take n(x,y) = f(x) + g(y),
in which case (2.4) reduces to (1.24). The novelty in Proposition 2.1 therefore arises in showing
that the quantity on the right side of (2.4) is still bounded above by OT,.(P, Q). We give the short
proof of Proposition 2.1 in Appendix A.3.

Several recent works have bridged the regularized and unregularized optimal transport regimes,
with particular interest in the setting where ¢ — 0. Convergence of 7, to 7, was studied by Carlier
et al. (2017) and Léonard (2012), and recent work has quantified the convergence of the plans
(Bernton et al., 2022; Ghosal et al., 2022; Hundrieser et al., 2024a; Klatt et al., 2020) and the potentials
(Altschuler et al., 2022; Masud et al., 2023; Nutz and Wiesel, 2021; Rigollet and Stromme, 2022)
in certain settings. Convergence of OT,(P, Q) to %WZZ (P, Q) has attracted significant research
interest: under mild conditions, Pal (2024) proves a first-order convergence result for general
convex costs (replacing %ll - ]|?), and a second order expansion was subsequently obtained by
Chizat et al. (2020) and Conforti and Tamanini (2021). We also rely on the following bound which

we provide a short proof of in Appendix A.1.

Theorem 2.2. Suppose P and Q have bounded densities with compact support. Then
1 2
OT,(P,Q) - ~WE (P, Q) + elog(27e)?) < = (H(P) + H(Q) + SH(P.Q), (29
where Iy(P, Q) is the integrated Fisher information along Wasserstein geodesics, given by

1
b(P.Q) = / / 1V log P, (0> dPy(x) dr (2.6
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where Py == ((1 — t)id + tTp)yP.

2.2 ESTIMATOR AND MAIN RESULTS

Given the optimal entropic plan 7, between P and Q, we define its barycentric projection to be

T.(x) = / ydr*(y) =B, [Y | X = x]. 27)

A priori, this map is only defined P-almost everywhere, making it unsuitable for evaluation outside
the support of P. In particular, since we will study the barycentric projection obtained from the
optimal entropic plan between empirical measures, this definition does not extend outside the
sample points. However, the duality relations (recall (1.27) and (1.28)) implies that we may define

a version of the conditional density of Y given X = x for all x € R? by

et Ge(W)=5llx=yl*) d0(y)
[ etew)=5v P 4 (y)

dr(y) = et Uraeo=3IxI)) 4o y) =

where (£, g) are the optimal entropic potentials. This furnishes an extension of T, to all of R¢ by

/ ye%(gs(y)—%llx—yllz) dO(y)

T, = .
«(x) [ o341 4o (y)

We call T, the entropic map between P and Q, though we stress that (T;);P # Q in general. This
natural definition is motivated by the following observation, which shows that the entropic map
can also be defined as the map obtained by replacing the optimal potential in Brenier’s theorem

by its entropic counterpart. To this end, write

(@) = (311 I = £ 51 - 17 = g2) (2.8)
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to be entropic Brenier potentials, and observe that

/ ye: ¥ 4O (y)

T.(x) = '
e(x) / ec(XTy=Vers(v) 4O (1)

(2.9)
Proposition 2.3. Let (¢, V.) be optimal entropic Brenier potentials in the sense of (2.8), and let T,
be the entropic map. Then T, = V..

Proof. The dual optimality conditions (1.27) implies

£(x) = —¢log / 9= -vI)/e 4oy )

Taking the gradient of this expression yields

[(=(x = y) [e)elo:=3lx=ulD)/e 40 (y)
/ e(gs(y)—%llx—yllz)/e dQ(y)
[ yetos=ilx=sl/e 4o (y)
=X — —
[ elo=Hlx=vlM/e 40 (y)

Vfi(x) =—¢

x — T,(x).

O

We write P, = = I, 8, and Q, = + X', 8y, for the empirical distributions corresponding
to the samples from P and Q, respectively. Our proposed estimator is T, (, ), the entropic map

between P, and Q,, which can be written explicitly as

1 " Yie%(ge,(n,n)(yi)_%”x_Yi”z)
Te,(n,n) (x) ==

, (2.10)
L3 e Genn (0=

where g, (nn) is the optimal entropic potential corresponding to Q, in the optimal entropic plan
between P, and Q,, which can be obtained as part of the output of Sinkhorn’s algorithm (see Peyré
and Cuturi, 2019). In other words, once the optimal entropic potential is found, the map T (,, ») (x)

can therefore be evaluated in linear time. We discuss these computational aspects thoroughly in
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Section 2.4. As in standard nonparametric estimation (Tsybakov, 2009), the optimal choice of ¢

will be dictated by the smoothness of the target function.

Remark 2.4. We briefly take a moment to discuss the applicability of our estimator in a wider
statistical context. A body of work (e.g., Chernozhukov et al., 2017; Hallin et al., 2021) studies
the estimation of multivariate ranks and quantiles through inverse optimal transport maps. For
this purpose, it is important that estimators of transport maps be invertible. We remark that
the entropic map as defined above has this property since it is strongly monotone, in the sense
that (T,(x) — T.(y)) " (x — y) > 0 (see Rigollet and Stromme, 2022, Proposition 10). However, our
procedure also gives rise to an even simpler estimator for the inverse transport map, namely the
map T := id — Vg,. By interchanging the roles of P and Q in our assumptions, we can provide

both computational and statistical guarantees for this map as well.

To prove quantitative rates of convergence for T, (,,), we make the following regularity

assumptions on P and Q:

(E1) P,Q € P, (Q) for a compact set Q, with densities satisfying p(x), g(x) < M and q(x) >

m > 0 forall x € Q,
(E2) o € C*(Q) and ¢, € C**(Q) for a > 1,
(E3) Ty = Vo, with ul < V2@y(x) < LI for y, L > 0 for all x € Q,

In what follows, all constants may depend on the dimension, the set Q, M, m, p, L, and ||¢g||ce+.
The above assumptions are qualitatively similar to those that have appeared in previous works
on the estimation of optimal transport maps.
(E1) is a standard assumption in the statistical analysis of optimal transport map estimation.
(It is present in the works of, e.g., Deb et al. (2021); Hiitter and Rigollet (2021); Manole et al.
(2024a); Vacher et al. (2024).) All of these works require that P and Q be compactly supported.

Some of the tools we employ extend beyond the compact support setting; for example, Conforti
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and Tamanini (2021) show that the expansion presented in Theorem 2.2 continues to hold for
unbounded measures under suitable moment assumptions. However, our proofs require strong a
priori bounds on the optimal transport map as well as on the entropic coupling for the random
empirical measures P, and Q,, which do not have clear analogues in the non-compact setting.

(E3) is also standard, and in prior work it has often been assumed implicitly as a consequence
of a strengthened form of (E1). Caffarelli’s regularity theory (Caffarelli, 1992) guarantees that if
we assume that the set Q in (E1) is convex and that the density p is also bounded below, then Tj
is continuous; if we further assume that p, g € C#(Q) for any f > 0, then (E3) holds. (E3) can
therefore be viewed as being only slightly stronger than (E1), so long as Q is convex. (E3) plays a
crucial role in this and prior work, since, as was originally noticed by Ambrosio (see Gigli, 2011),
this assumption guarantees stability of the optimal transport map, as a function of the source and
target measures.

Our most unusual assumption is (E2). Prior work analyzes estimators for Ty under the assump-
tion that ¢y € C**1(Q) for > 1, with rates that depend on «a. For technical reasons, our proofs
require a Laplace expansion in the “target space” corresponding to the dual Brenier potential ¢j.
Consequently, we instead assume that ¢ € C**(Q), so that our rates depend on the smoothness
of the inverse map Ty. We elaborate on this point further in the discussions surrounding Lemma 2.9.

Our main result is the following.

Theorem 2.5. Under assumptions (E1) to (E3), the entropic map T = T, (nn) from P, to Q, with

N 1 ,
regularization parameter € < n” @ satisfies

N (a+1)
EIT = Toll3. py S (1+Ip(P,Q))n 7&&1 logn,

(P)

where @ = a A 3.

When d — oo and a — 1, we formally obtain the rate n~(1+o(1)/d By contrast, Hiitter and

—2(140(1))/d

Rigollet (2021) show that, up to logarithmic factors, the rate n is minimax optimal in
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this setting. Theorem 2.5 therefore falls short of the minimax rate by a factor of approximately 2
in the exponent; however, our numerical experiments in Section 2.4 show that T is competitive
with minimax-optimal estimators in practice.

To analyze our estimator, we adopt a two-step approach. We first consider the one-sample
setting and show that the entropic map T, , between P and Q, is close to Tj in expectation. We

prove the following.

Theorem 2.6. Under assumptions (E1) to (E3) there exists a constant &y > 0 such that for e < &,

the entropic map T, , between P and Q, satisfies
E||T,., — T0||iz(p) < £1-d/2 log(n)n_l/z 4 gla+)/2 +€210(P, 0),
with @ = a A 3. Choosing ¢ < N~ @, we get the one-sample estimation rate
ElTen — Toll2e gy < (14 Io(P, Q) 7dem

Remark 2.7. It can happen that I)(P, Q) is infinite, so the bounds of Theorem 2.5 and 2.6 are
sometimes vacuous. However, Chizat et al. (2020) prove that I (P, Q) < C for a positive constant
C when P and Q satisfy (E1) to (E3) for & > 2. Therefore, in this range for @, we obtain the rates

in the theorems above without additional restrictions.

As a corollary to Theorem 2.6, we have the following population-level estimate between T,

and Tp, which is potentially of independent interest.

Corollary 2.8. Assume (E1) to (E3), then
ITe = Toll22p) = IV@e = Vapoll3a py < (P, Q) + £ V72, (2.11)

where @ =3 A a.
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The proof of Theorem 2.6 is technical, and our approach is closely inspired by Pal (2024) and
empirical process theory arguments developed by Genevay et al. (2019) and Mena and Niles-Weed
(2019). We give a summary of our argument here, and carry out the details in the following section.

Following Pal (2024), we define the divergence D[y|x*] := —xTy+¢o(x)+¢; (y), where ¢, solves
the semidual (1.21). Though this quantity is a function of x and y, it is notationally convenient
to write it in a way that highlights its dependence on x* := Ty(x). Indeed, we rely throughout on

the following fact

Lemma 2.9. Under assumptions (E2) and (E3), for any x € supp(P), we have
* 1 3k 3k 3k k * *
Dlyl’] = Z(y =x) Vi (x)(y = x) +o(lly = x"II)  asy — x", (2.12)
as well as the non-asymptotic bound
—lly — "I < Dlylx"] < 5-lly — x°I1’ (213)
—|ly —x X —|ly = x™||°. :
oL Y s Ply =2 Yy

Proof. This follows directly from Taylor’s theorem and the fact that Vo (x*) = T; ' (x*) =x. O

We then define a conditional probability density in terms of this divergence:

X = L ADly] 1 / 1 .
qe(y)—Ze(x)Age . Ze(x) = x| P ED[yIX] dy, (2.14)

£

for A, = (27r¢)%/2. By virtue of (2.12), if @, is sufficiently smooth, then g7 will be approximately
Gaussian with mean x* and covariance eV?g; (x*) ™! = ¢V?@,(x). We quantify this approximation
via Laplace’s method; details appear in Appendix A.2. Using variational arguments, reminiscent
of those employed by Bobkov and Goétze (1999) in the study of transportation inequalities, we
then compare the measure 7, , to the measure g¥ (y) dy dP(x) and compute accurate estimates of

T, » via Laplace’s method.
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A similar but much simpler argument establishes the following bound in the two-sample case.

Theorem 2.10. Let T, (,, ) be the entropic map from P, to Q,, and let T, , be as in Theorem 2.6. Under

assumptions (E1) to (E3), for e < 1, T, (nn) satisfies
E|T; (nn) — Té‘,n”iZ(P) < e log(n)yn V2.

Combining Theorem 2.6 and 2.10 yields our main result.

Proof of Theorem 2.5. We have

E”Ts,(n,n) - TOlliZ(p) < E”Tg,(n,n) - TE,n”iZ(p) + E”TE,H - TO”iz(P)

< e log(n)n V2 4 £ @D2 L 210(P, Q).

Choosing ¢ = n~ @ yields the bound. m]

2.2.1 ONE-SAMPLE ESTIMATES

In this section, we prove Theorem 2.6, which relates Tj to the entropic map between P and Q,:

2(gen(y)—-3lIx-yl1%) d
ye 2 On(y) .
Ton() = L - / ydrt, (y),

1 —Lix_yl12 -
/eg(gf,n(y) 29I 40, (y)
where 7., is the optimal entropic plan for P and Q,. We stress that since T, is based on the
entropic map from P to Q,, the second equality holds for P-almost every x.

Our main tool is the following inequality, which allows us to compare 7, , to the measure
constructed from the conditional densities g¥. The proof relies crucially on Proposition 2.1 and on

the second order-expansion provided in Theorem 2.2.
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Proposition 2.11. Assume (E1) to (E3), and let a € [Le, 1] fore < 1. Then

sup // BT (y = To(x) — allA(0)[2) dman(x,y)

h Q—R4

_ // ()T GTo )=l _ 1) () dy dp(x)}

< ely(P, Q) + @ V/2 4 742 log(n)n_l/2 ,

where the supremum is taken over all h € L*(P).

Proof. Given h € L*(P), write
Jn(xy) = h(x)T(y - To(x)) = allh(x)|1*.

Choosing 7(x,y) = e(jn(x,y) +log(q* (y)/q(y))) + ||x — y||*/2 and applying Proposition 2.1 with

the measures P and Q,, we obtain

x( )eillx—yll2
sup /jhdﬂg,n+/logqy—d7r€,n(x,y)

h:Q—Rd ( )

// Jn(xy) qg((y)) dQ,(y) dP(x) +1 < e ' OT(P, Q) -

llx=ylI?

We first expand ff log M

) dm.»(x,y), where we use the fact that 7., has marginals P

and Qy:

// q; (y)e=""91 (y)€2f”x ylP? dm.n(x, y)

= // [fo(x) +g0(y) + ¢elog (Zg(ylc)Ag) - elog(q(y))} dre . (x, y)
=3[ 5wape+ [ o) d0uw) - log(a)
- / log(Z.(x)) dP(x) — / log(q(y)) dQn(y),
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where (f;, go) solve (1.16). Replacing Q, by Q yields

2 llx=yll®
[ 108 ) = 3w 2.0) - togn) - [ togtzix ap

CH(Q) + / (go/e — log(@))(dQ, — dQ).

A change of variables (see Pal, 2024, Lemma 3(iv)) implies

H(Q) —H(P)

T = [ 1o s (9 P,

where we recall that x* = Ty(x). Substituting this identity into the preceding expression yields

2 llx=yl?
] 108 T ) = W P.Q) - og(A) - (H(Q) + H(P)
+ [ (/e Tog(g)) (40, - Q)
- [1oez (Vg aP).

We therefore obtain

sup / Jndmen — // ejh(x’y)q(;—(y) dQ,(y) dP(x) + 1

h:Q—R4 (y)

(OT.(P.Qu) = S WE(P, Q) + £log(A) + S(H(Q) +H(P)) + s,

where A; := /(go/g—log(q))(dQ—dQn)+/ log(Z.(x)J(V?¢;(x*))) dP(x). Applying Theorem 2.2,

we may further bound

sup / Jpdmen — ﬂ ejh(x’y)qg—(y) dOn(y)dP(x) +1 < %IO + A1+ Ay,
q

h:Q—Rd (y)

where A, := ¢ 1(OT, (P, Q,) — OT:(P, Q)). Now we turn our attention to the second term on the
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left side. Since

i =Y 4000 dp(x) = Oy g (y) dy d
//e q(y) Qy) dP(x) [/supp(Q)e :(9) dy AP ()
< // D (y) dy dP(x),

we have

sup / Jndmen — //(ejh(x’y) - 1)q; (y) dydP(x) < fIO + A1+ Ay + A3,
h:Q—R4 8

where

As = sup ﬂ ejh(x’y)qi‘f(—(y)) dP(x)(dQ, — dQ)(y)

h:Q—Rd q\y
and where we have used the fact that ¢} (y) is a probability density.

It therefore remains only to show that
E[A1 + Ay + As] < @ V/2 4 ¢=42105(n)n™1/2.
First, a Laplace expansion (Corollary A.3) implies

EA, = / log(Z.(x)] (V25 (")) dP(x) < @12

Second, known results on the finite-sample convergence of the Sinkhorn divergence (Corol-
lary A.10) yield
EA, < (67 + 6742 log(n)n_l/z,

It therefore remains to bound As, which an empirical process theory argument (Proposition A.5)

shows

EA, < e~4/2p71/2
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aslong asa € [Le 1].

We obtain that
E[A1 + Ay + As] < ¥ V2 4 (e 4 64 log(n)n™/2 + 7420712
and since ¢ < 1, we obtain the bound
E[A; + Ay + N3] < e @D/2 4 257172 log(n),

as desired. m]

To exploit Proposition 2.11, we show that we can choose a function h for which the left side of

the above expression scales like || T, — Tol| iz )

We first establish three lemmas, whose proofs are deferred.

Lemma 2.12. Fix x € supp(P), and write §* = / yq; (y) dy. There exists a positive constant C,

independent of x, such that for all ¢ € (0,1) and ||v]|; < 1,

/ T =T/ g () dy < 2.

In probabilistic language, Lemma 2.12 implies that if Y* is a random variable with density g},
then e71/2(Y* — EY®) is subgaussian (Vershynin, 2018). By applying standard moment bounds for

subgaussian random variables, we then arrive at the following result.

Lemma 2.13. There exists a positive constant C such that ifa > Ce, then for any h : R* — R? we

have

// )T TN ~allh@I” g (1) 4y dP(x) < / et T =TI 4p( )

Finally, we show by an application of Laplace’s method that 7* is close to Ty(x).
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Lemma 2.14. Assume (E1) to (E3). For all x € supp(P),
17" = To(0)|I” < 2.

With these lemmas in hand, we can complete the proof.

Proof of Theorem 2.6. We may assume ¢ < 1. Since e’ — 1 < 2t for t € [0, 1], Lemma 2.14 implies

that as long as ¢ is sufficiently small, for ¢ < ¢,

eilT-ToI* _ g < gla=DAL o (@-D)/2

where the last inequality holds for @ > 1 and ¢ < 1. Combining this fact with Lemma 2.13, we

obtain that for any h : R? > RY and a > Cg,

// (T GToN =l _ 1) (y) dy dP(x) < £@D/2.

For a sufficiently small constant ¢, the interval [Ce, 1] is non-empty for ¢ < &), so combining

this fact with Proposition 2.11 yields that for a € [Ce¢, 1] and € < &,

E sup // (h(x) " (y = To(x)) = allh(X)||?) den(x,y) < ely + V2 4 72 1og(nyn~V/2.
h:Q—R4

(2.15)

If we pick h(x) = % Ten(x) — To(x)), the integral on the left side equals

22 ((n,noc) = Do) T (4= o) = 5 ITen() = oI | den9) (216)

By definition, T, ,(x) = f ydr;,(y), so disintegrating 7., (x, y) and recalling that the first marginal
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of ., is P yields

[YﬁaurJMmf@—n&»—gmﬁm—n&mﬂd&Axw

1 1
= [ 1T = HOIPAP() = ST = Tl
Combining this with (2.15) and (2.16) and picking a = Ce yields
E”T&n _ TO”%Z(P) < EZIO + 6(0?+1)/2 + gl—d/z log(n)n—l/Z ’

as desired. m|

2.2.2 TWwWO-SAMPLE ESTIMATES

We now turn our attention to the two-sample case. Let 7, () be the optimal entropic plan
between P, and O, and (f; (nn), ge,(nn)) the corresponding entropic potentials. We aim to show
that

E”Tg,(n,n) - Te,n”iZ(P) < (5_1 + E_d/z) 10g(n)n_1/2 .

As in Section 2.2.1, we proceed via duality arguments, but our task is considerably simplified

by the fact that the measure Q, remains fixed in passing from T; (,, ) to T, ,. Let us write

e+ Ge.nm (W)= Ilx=ylI*)

y(x, ) = et Getnm (400 o (=3 e=yl)

% Z?:l e%(gs,(n,n) (Yl)_% ”x_YIHZ)

for the P, ® Q, density of , (,,), where the second equality holds P, ® Q, almost everywhere
and furnishes an extension of y to all x € R%.
We employ the following analogue of Proposition 2.11, which does not require the full force

of assumptions (E1) to (E3).
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Proposition 2.15. The support of P and Q lies in Q, then

Bl s [fxwpdrnan - [[ @ -y dp aguw)

X:OXQ-R
< (67 + 77 log(n)n_l/z,
where the supremum is taken over all y € L' (7).
The proof of Theorem 2.10 is now straightforward.

Proof. As in the proof of Theorem 2.6, consider

x(x%,y) = h(x)T(y = T () () = allR(x)|I?

for h and a to be specified. By definition of T; (, ), we have

/ h(x)T(y - TS,(n,n) (x))}/(x’ y) dQn(y) = h(x)T (/ yY(x’ y) dQn(y) - Te,(n,n) (x))

1 lr'lzl Y'ie%(gs,(n,n)(yi)_c(xsyi))

— h(x)'l' (E

% Z?:] e%(gf,(n,n) (Yi)_c(x,Yi))

- Te,(n,n) (x)) =0

for all x € RY. Moreover, since Q is compact, by the Cauchy-Schwarz inequality, there exists a

constant C such that

|h(x) T (y = T iy ()] < ClIA)] Yy € Q.

Hoeffding’s inequality therefore implies that if a > C?/2, then this choice of y satisfies

ﬂ(ex(x,y) —1y(x,y) dOn(y) dP(x) < 0.

Choosing h(x) = i(T&n (x) = T (nn)(x)), we conclude as in the proof of Theorem 2.6 that for

42



1 _ _ _ _ _
2Bl Ten = T 3oy (7 47 log(myn ™% 5 &= log(m)n™"12,

and picking a to be a sufficiently large constant yields the claim. O

2.3 ADAPTIVE ESTIMATION

In Theorems 2.5 and 2.6, the optimal choice of the regularization parameter ¢ depends on n, d,
and a. Although the number of samples and dimension are obviously known to the practitioner,
the smoothness of the transport map is often not known a priori. However, Lepski’s method (see
Birgé, 2001) can be used to obtain a data-driven method of choosing ¢, which gives rise to an
estimator that adapts to the unknown smoothness parameter a.

For notational convenience, for any > 1, let s := @ + 1 be the smoothness of the conjugate
Brenier potential ¢;. We assume that s € [2 + 1, 4] for some 1 > 0 sufficiently small and fixed. Let

S be the following discrete subset
S ={2+1=8Smn =91 < S < ++ < SN = Smax = 4},
where s; — sj_1 < (logn)~!, and set
& = (nflogn) /2 -y (s) = (&)° = (n/logn) /2@, (2.17)

To calibrate our choice of ¢, we rely on sample splitting. Let D := {(X;, ¥;) }!; denote our initial
dataset, and let D" denote an independent copy of D. Denote by P; and Q;, the empirical measures

arising from D’. Our choice of smoothness parameter is given by the following rule:

§=max{se S : ||, - :@S,||§2(P',z) < Kin(s), Vs <55 €S}, (2.18)
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for a positive constant K. The following theorem shows that choosing ¢ = & gives rise to an

adaptive estimator.

Theorem 2.16. Suppose (E1) to (E3) holds, with X1, ...,X, ~ P and Yy,...,Y, ~ Q, resulting in
D = {(X;, Y,')}l.LS{ZJ and a hold-out set D'. Suppose $ is chosen according to (2.18) for K sufficiently
large, with ¢ = ¢; chosen as in (2.17). The resulting estimator :IA}S exhibits a risk in L?(P) that matches

Theorem 2.5 up to log factors.

The proof of Theorem 2.16 uses standard ideas and is deferred to Appendix A.5.

2.4 COMPUTATIONAL ASPECTS

Our reason for studying the entropic map as an optimal transport map estimator arises from its
strong computational benefits, which are a consequence of the efficiency of Sinkhorn’s algorithm
for entropic optimal transport (see Peyré and Cuturi, 2019). In this section, we compare the
computational complexity of the entropic map to the estimators of Hiitter and Rigollet (2021),
Deb et al. (2021), and Manole et al. (2024a) in the two-sample setting. Finally, we perform several
experiments that demonstrate the computational advantages of our procedure. Throughout this

section, we use O to hide poly-logarithmic factors in the sample size n.

2.4.1 ESTIMATOR COMPLEXITIES FROM PRIOR WORK

We first describe the wavelet-based estimator proposed by Hiitter and Rigollet (2021). Recall
that this estimator is minimax optimal for all & > 1. The implementation of this estimator requires
various discretization and approximation schemes. The authors of that work use a numerical
implementation of the Daubechies wavelets to approximate the optimal Brenier potential, and
then compute its convex conjugate by means of a discrete Legendre transform on a discrete grid.

The gradient of the resulting potential is then obtained using finite differences, and this is extended
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to data outside the grid by linear interpolation. Though computing this estimator takes time that
scales only linearly in the sample size n, the main bottleneck of this approach from a computational
standpoint is the computation of the Legendre transform on the grid, which requires at least cN¢
operations, where N denotes the resolution of the grid. Since this resolution needs to be chosen
fine enough to be negligible, the exponential dependence in d makes this approach prohibitively
expensive in most applications.

Another estimator recently analyzed in the literature by Manole et al. (2024a) is the “1-Nearest
Neighbor” estimator, which we denote by YA“(lnN;\I, which achieves the minimax rate when Tj is

bi-Lipschitz (i.e., « = 1 and (E3) is satisfied) over a compact domain Q. The estimator takes the form

n
TN () = ) (nit) 1y, (x)Y;, (2.19)
ij=1

where 1 is the indicator function for a set, and (V;)[_, are the Voronoi regions generated by (X;) |,
ie.,

Vi={xeQ: x-Xl < [lx- Xl Vj# i},

and 7 is the optimal coupling that solves (1.15) when the measures are the empirical measures
P, and Q,. Solving for 7 can be done through the Hungarian algorithm, and has time complexity
O(n®). However, unlike the wavelet estimator described above, computing this estimator does
not require constructing a grid whose size scales exponentially with dimension.

For the o > 1 case, both Manole et al. (2024a) and Deb et al. (2021) propose estimators based on
density estimation. For these approaches, the idea is to construct nonparametric density estimates
of the measures P and Q, resample points from these densities, and finally perform the appropriate
matching using the Hungarian algorithm once again. Though tractable in low dimensions, this
approach is limited by the difficulty of sampling from nonparametric density estimates, which
typically requires time scaling exponentially in the dimension d.

In short, prior estimators proposed in the literature either have runtime scaling exponentially
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in d (in the case of the wavelet estimator or estimators based on nonparametric density estimation)
or cubicly in n (in the case of the 1NN estimator). By contrast, in the following section, we show

that our estimator can be computed in nearly O(n?) time.

2.4.2 COMPUTATIONAL COMPLEXITY OF THE ENTROPIC MAP

We now turn to the computational analysis of our estimator, which has the closed-form

representation
" Yie%(gf,(n,n) (Y) =3 lx=YilI*)
1=

Tg,(n,n) (x) = (2-20)

o, et Ge.nm (YD) =3 Ix=Y;lI%)
The computational burden of our estimator falls on computing the optimal entropic potential
evaluated at the data g, () (Y;). Indeed, once we have this potential, it is clear that the remainder
of (2.20) can be computed in O(n) time.

The leading approach to compute optimal entropic potentials in practice is Sinkhorn’s al-
gorithm (Peyré and Cuturi, 2019; Sinkhorn, 1967), an alternating minimization algorithm that
computes approximations of the entropic potentials by iteratively updating f and g so that they
satisfy one of the two dual optimality conditions given in (1.27) and (1.28). Explicitly, defining

£ =0, Sinkhorn’s algorithm performs the updates

1 (k) 1 2
(k) = —¢log — (P X) -3 1IX=yll*)
) = ~elog ) e

1 . Lg®(v;)-1||x=Y;||>)
FED () = —elog = 3 e @F OD=FI=Y1P)

until termination. Since it is only necessary to compute f*) and g'*) on the support of P, and Q,,
respectively, each iteration can be implemented in O(n?) time.

Note that this update rule guarantees that

./ et (P + D W=5lx=I") gp (x) = 1
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for all y at each iteration. By contrast, the other optimality condition (1.27) is not satisfied at each

iteration, though Sinkhorn (1967) showed that
/ e TP @O W3l 4o (1) = 1

as k — oo, and therefore that the iterates of Sinkhorn’s algorithm converge to optimal entropic
potentials.

To analyze the running time of our estimator, we will leverage recent analyses of the conver-
gence rate of Sinkhorn’s algorithm (Altschuler et al., 2017; Cuturi, 2013; Dvurechensky et al., 2018)
to explicitly quantify the error incurred by terminating after a finite number of steps. For k > 0,

we consider the entropic map estimator obtained after k iterates of Sinkhorn’s algorithm:

n oy er(@®(Y)-5llx=Yill*)
T(k)(x): i=1 ll :
¥ et (0© (= lx-Yill?)

(2.21)

Despite the fact that ¢'¥) is not an entropic potential for the original problem, the following

theorem shows that TF) is nevertheless an acceptable estimator if k is sufficiently large.
Theorem 2.17. Suppose assumptions (E1) to (E3) hold, and we choose ¢ as in Theorem 2.5. Then for

any k 2 n’/(@* @) Jog p,

k) _ 12 - )
E|lT Toll7> (1+1(P,Q))n logn,

@) S

where @ = 3 A a. In particular, an estimator achieving the same rate as the estimator in Theorem 2.5

can be computed in O (n?*7/(@+@+1)y = p2+oa(1) tjmpe

47



Proof. We begin by decomposing the error and applying Theorem 2.6:

E”T(k) - TO"]%Z(P) < EHT(k) - Tg,n”izgg +E||Ten — TO”IZﬂ(P)

SEITY = T,ll2, ) + €7 log(mn ™% + £ D2 1+ &1y (P, Q).
We proceed almost exactly as in Theorem 2.10, and consider
x(ey) = h0)T (5= TP ) - allb(),

for h : R — RY and a to be specified. For x € R%, y € supp(Q,), define

exp (19 () - 3lx — yI?))
L3 exp (Hg® (%) = Hix = YiP)

v(xy) = (2.22)

By construction, f 7(x,4) dQ,(y) = 1 for all x € R%, and T® (x) = / yy(x,y) dQ,(y). There-

fore, for any h : R? — RY,
[ 107 (5= 10 ) 7659 d0u) =0
for all x € RY. Moreover, since Q is compact, there exists a constant C such that
h(x)T(y = T® ()] < Clla(x)]| VxyeQ.
Hoeffding’s inequality therefore implies that for a sufficiently large, this choice of y satisfies

/ (X~ 1)7(x,y) dQ, dP(x) < 0.
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Now, define a probability measure P with the same support as P, by setting

dP(x) / L0 (0498 ()~ le-yl?)
S0 _ [ et d0,(y), 2.23
= - 4, (y) .23
and let
1 n
(k+1) _ - -1/ (K)yy _ 1 _v2
FE ) = —elog = Y exp (7 (g () = 3llx - YY) (2.24)

i=1
We claim that y(x,y) = exp(%(f(k”) (x) +9%® (y) - %Hx —yl|?) is the P®Q, density of the optimal
entropic plan between P and Q,. We have already observed that f y(x,y)dO,(y) = 1 for all

x € R? by construction, so it suffices to note that for all y € supp(Q,),

i . e (9P )=3llx=yll*) N
/y(x,y) dP(x):/ / - dP(x)
e

(g™ (y)-3llx—y’lI?) dO,(y")

ef_l(f(k) (x)+g"® ()= Ix-yl1?) .
:/ f - dP(x)
e

PO+ O - 3I-YID 40, (i)

_ / ¢ V49 W)= 4p. (x) = 1

Therefore (f*V, g0 satisfy (1.28), so  is indeed the P ® Q,, density of the optimal entropic plan
between the two measures.

Applying Proposition A.4, we obtain for any ¢ < 1

E sup // BT (y =T ) - allh@)IP drey < 75+ 0gmn ™2, (225)

h:R4d—R4

a

where & := TV(P, P,). Choosing h(x) = zl (Tg,n(x) -1 (x)), we conclude as in Theorem 2.10,

resulting in

EIT® =T, 013, p) < €716+ &2 log(m)n™"/?.
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All together, we have
E|T™® - TOHEZ(P) <15+ e log(n)n_l/2 +e@D/2 4L 210(P, Q).

The first term will be negligible if § < &°.

By definition, P is the first marginal of the joint distribution with density

et FP @+ () =3llx-yl*)
with respect to P, ® Q,. By Altschuler et al. (2017, Theorem 2), if k satisfies
k 2 6 ?log(n - max ei”xi_yfnz) > 6 % 'logn,
l’]

then TV (P, P,) < 8. Choosing § = ¢* = n=3/(4+@*+1) yields the claim. O

Remark 2.18. A surprising feature of Theorem 2.17 is that the necessary number of iterations
decreases with the dimension d. This reflects the fact that when d is large, the optimal choice of ¢
is also larger, and it is well established both theoretically and empirically that the performance of

Sinkhorn’s algorithm improves considerably as ¢ increases (Altschuler et al., 2017; Cuturi, 2013).

2.4.3 EMPIRICAL PERFORMANCE

We test two implementations of Sinkhorn’s algorithm, one from the Python Optimal Transport
(POT) library (Flamary et al., 2021), and an implementation that uses the KeOps library optimized
for GPUs. Both implementations employ log-domain stabilization to avoid numerical overflow
issues arising from the small choice of «.

For simplicity, we employ the same experimental setup as Hiitter and Rigollet (2021). We

generate i.i.d. samples from a source distribution P, which we always take to be [-1, l]d, and from
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(a) To(x) = exp(x) coordinate-wise (b) Ty(x) = 3x?sign(x) coordinate-wise

Figure 2.1: Visualization of T. and Ty(x) in 2 dimensions.

a target distribution Q = (Ty)yP, where we define Tj : R? — R? to be an optimal transport map
obtained by applying a monotone scalar function coordinate-wise.'

In Figure 2.1, we visualize the output of our estimator in d = 2. The figures depict the effect of
evaluating the estimator TE and the true map T on additional test points X7, ..., X drawn i.i.d.

from P.

2.4.3.1 COMPARISON TO A TRACTABLE MINIMAX ESTIMATOR

Among the previously discussed estimators, the 1-Nearest Neighbor estimator analyzed in
Manole et al. (2024a) is the most tractable, and the only one remotely comparable to our method.
As discussed in Section 2.4.1, this approach uses the Hungarian algorithm which has a runtime
of O(n®). However, since it is not parallelizable, we compare its performance to the non-parallel
CPU implementation of Sinkhorn’s algorithm from the POT library.

We perform a simple experiment comparing our approach to theirs: let P = [—1,1]¢ and let

To(x) = exp(x), acting coordinate-wise. We vary d and n, and track runtime performance of

!Note that any component-wise monotone function is the gradient of a convex function.
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both estimators, as well as the Mean Squared Error (MSE) of the map estimate?, averaged over

20 runs. For our estimator, we choose ¢ as suggested by Theorem 2.5. We observe that in d = 2,

10° 4

10° 4

oo aoaaQ
e nn

BB 00NN

o o

Runtime (s)

Mean Squared Error

--- d=2 -
—_—a= e 1072
—-—- d=5 ~~
—_=s NG BT e
1024 -—=-g=20 N~ ! 1 E-
— d=10
10t 102 103 10t 102 103
n samples n samples
(a) MSE comparison (b) Runtime comparison

Figure 2.2: Dashed lines are our estimator, solid lines are TINN and Ty(x) = exp(x)

the MSE of the two estimators are comparable, though our error deteriorates for large n, which
reflects our slightly sub-optimal estimation rate. However, as d increases to moderate dimensions,
our estimator consistently outperforms T"™N in both MSE and runtime with the choice of ¢ in
Theorem 2.5. For both estimators, the CPU runtime begins to become significant (on the order of

seconds) when n exceeds 1500.

2.4.3.2 PARALLEL ESTIMATION ON MASSIVE DATA SETS

Figure 2.2 makes clear that computation of both estimators slows for n > 10® when imple-
mented on a CPU. However, Sinkhorn’s algorithm can be easily parallelized. Unlike the 1-Nearest
Neighbor estimator—and all other transport map estimators of which we are aware—our proposal
therefore runs extremely efficiently on GPUs. We again average performance over 20 runs, and

choose ¢ as in the previous example, with T again as the exponential map (coordinate-wise). We

2We calculate MSE by performing Monte Carlo integration over the space [~1, 1]%.
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see in Figure 2.3 that even when n = 10* and d = 10, it takes roughly a third of a second to perform

the optimization.

6x 107
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Figure 2.3: Performance of a parallel implementation of our estimator on large data sets.
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3 MINIMAX ESTIMATION OF
DISCONTINUOUS OPTIMAL TRANSPORT

MAPS: THE SEMIDISCRETE CASE

3.1 INTRODUCTION

In this chapter, we revisit the task of estimating optimal transport maps, i.e., minimizers of the

following non-convex, infinite-dimensional optimization problem'

Voo = argmin [ [lx = 70| (),
TeT (P,Q)

on the basis of fixed data Xi,...,X;, ~Pand Yy,...,Y, ~ Q.
Recall that the first finite-sample analysis of this problem was performed by Hiitter and Rigollet
(2021), who proposed an estimator for V¢, under the assumption that ¢y is s+ 1-times continuously

differentiable, for s > 1. They showed that a wavelet-based estimator ¢y satisfies

N __25
E|[Véw — Vooll?. p) < 0542 log*(n),

197(P, Q) is the set of transport maps from P to Q.
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and that this rate is minimax optimal up to logarithmic factors. Their analysis requires that
P and Q have bounded densities with compact support Q C R?, and that ¢, be both strongly
convex and smooth. Implementing the estimator ¢w is computationally challenging even in
moderate dimensions, and is practically infeasible for d > 3. Follow up works (Deb et al., 2021;
Divol et al., 2022; Manole et al., 2024a; Pooladian and Niles-Weed, 2021; Vacher et al., 2024) have
proposed alternative estimators which improve upon @w either in computational efficiency or in
the generality in which they apply. Though these subsequent works go significantly beyond the
setting considered by Hiitter and Rigollet (2021), none have eliminated the crucial assumption
that ¢ is smooth, i.e., that the transport map V¢, is Lipschitz.

There are two estimators proposed in this line of work that are particularly practical and worth
highlighting. Manole et al. (2024a) study the 1-Nearest Neighbor estimator Tixy. This estimator is
obtained by solving the empirical optimal transport problem between the samples, which is then
extended to a function defined on R¢ using a projection scheme; see Section 3.3 for more details.
Given n samples from the source and target measures in R, Tyxy has a runtime of O (n®) via the

Hungarian Algorithm (see Peyré and Cuturi, 2019, Chapter 3), and, for d > 5, achieves the rate

e

E”TlNN - V(pOHEZ(p) sn (3-1)

whenever the optimal Brenier potential ¢, is smooth and strongly convex, and under mild regularity
conditions on P. Recall that in the previous chapter, we conducted a statistical analysis of an
estimator originally proposed by Seguy et al. (2018) based on entropic optimal transport. The
efficiency of Sinkhorn’s algorithm for large-scale problems (Cuturi, 2013; Peyré and Cuturi, 2019)
makes this estimator attractive from a computational perspective, and we also gave statistical
guarantees, though these fall short of being minimax-optimal.

Despite this progress, none of the aforementioned results can be applied in situations where

Vo, is not Lipschitz. And in practice, even requiring the continuity of the transport map can be

55



far too stringent. It is indeed too much to hope for that an underlying data distribution (e.g. over
the space of images) has one single connected component; this is supported by recent work
that stipulates that the underlying data distribution is the union of disjoint manifolds of varying
intrinsic dimension (Brown et al., 2022). In such a setting, the transport map V¢, will not be
continuous, demonstrating the need of considering the problem of the statistical estimation of
discontinuous transport maps to get closer to real-world situations.

As a first step, we choose to focus on the case where the target distribution Q = Z§=1 q;dy, is
discrete while the source measure P has full support, often called the semi-discrete setting in the
optimal transport literature. In this setting, the optimal transport map V¢, is constant over regions
known as Laguerre cells (each cell corresponding to a different atom of the discrete measure),
while displaying discontinuities on their boundaries (see Section 3.1.3 for more details). Figure 3.1
provides such an example. Semi-discrete optimal transport therefore provides a natural class of

discontinuous transport maps. We focus on this setting for two reasons. First, it has garnered a

Figure 3.1: An illustration of a semi-discrete optimal transport map. The support of P, the whole rectangle,
is partitioned into regions, each of which is transported to one of the atoms of the discrete target measure
Q. The resulting map is discontinuous at the boundaries of each cell.

lot of attention in recent years, in both computational and theoretical circles (see, e.g., Altschuler

et al.,, 2022; Chen et al., 2022a; Mérigot et al., 2021), due in particular to its connection with the
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quantization problem (Graf and Luschgy, 2007). Second, the semi-discrete setting is intriguing
from a statistical perspective: existing results show that statistical estimation problems involving
semi-discrete optimal transport can escape the curse of dimensionality (del Barrio et al., 2022a; del
Barrio and Loubes, 2019; Forrow et al., 2019; Hundrieser et al., 2024b). For example, Hundrieser
et al. (2024b, Theorem 3.2) show that if P, and Q, are empirical measures consisting of i.i.d. samples

from P and Q, then the semi-discrete assumption implies
E[W; (P, Q) = Wy (P, Q)| < n7/%.

These results offer the tantalizing possibility that semi-discrete transport maps can be estimated
at the rate n~'/2, in sharp contrast to the dimension-dependent rates obtained in bounds such
as (3.1). However, the optimal rates of estimation for semi-discrete transport maps are not known,

and no estimators with finite-sample convergence guarantees exist.

3.1.1 MAIN CONTRIBUTIONS

We show that the computationally efficient estimator T, from Chapter 2 provably estimates
discontinuous semi-discrete optimal transport maps at the optimal rate. More precisely, our

contributions are the following:

1. For Q discrete and P with full support on a compact, convex set, we show that T, achieves
the following dimension-independent convergence rate to the optimal transport map (see
Theorem 3.2)

ENT: = Vooll22p < 077, (3.2)

(P)

when the regularization parameter ¢ < n~'/2. We further show (Proposition 3.13) that this

rate is minimax optimal.
2. As aby-product of our analysis, we give new parametric rates of convergence to the entropic
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Brenier map T, a result which improves exponentially on prior work in the dependence on

¢ (see Theorem 3.8 and Remark 3.9).

3. Our proof technique requires several new results, including a novel stability bound for the
entropic Brenier maps (Proposition 3.10), and a new stability result for the entropic dual

Brenier potentials in the semi-discrete case (Proposition 3.12).

4. We show that, unlike T}, the 1-Nearest-Neighbor estimator is provably suboptimal in the
semi-discrete setting (see Proposition 3.14) by exhibiting a discrete measure Q such that the

risk suffers from the curse of dimensionality:

EllTinn — V@o”iz(})) >n e

5. In Section 3.3, we verify our theoretical findings on synthetic experiments. We also show by
simulation that the entropic estimator appears to perform well even outside the semi-discrete
setting, suggesting it as a promising choice for estimating other types of discontinuous

maps.

3.1.2 NOTATION

The Euclidean ball centered at a with radius r > 0 is written as B(a;r). The symbols C
and ¢ denote positive constants whose value may change from line to line. Write a < b and
a < b if there exist constants ¢, C > 0 such that a < Cb and cb < a < Cb, respectively. For an
integer N € N, we let [N] = {1,..., N}. For a function f and a probability measure p, we write
||f||iz(p) = Ex~,||f(X)]|*. Similarly, we write Var,(f) = Ex-,[(f(X) — Ex~, [£(X)])?] for the

variance of f with respect to p.

3.1.3 BACKGROUND ON OPTIMAL TRANSPORT
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3.1.3.1 SEMI-DISCRETE OPTIMAL TRANSPORT

In optimal transport, the semi-discrete setting refers to the case where P has as density with re-
spect to the Lebesgue measure on R, and Q is a discrete measure supported on finitely many points.
The following theorem characterizes the optimal transport map in this situation, which exhibits a

particular structure compared to the general results in the previous section. Let [J] := {1,...,J}.

Proposition 3.1 (Aurenhammer et al., 1998). IfP € P,.(Q) and Q is a discrete measure supported

on the points ys, ..., yj, then the optimal transport map Vo is given by

Voo(x) = argr[rjl]ax {(x vy —o(y))}, (3.3)
j€

where 1 is the convex dual to ¢y in the sense of (1.22).

Here, the optimal dual Brenier potential i/ can be identified with a vector in R/, defined by

the number of atoms, and the optimal Brenier potential is consequently given by
¢o = max{(x,y;) = Yo(y;)} .
JjelJl

Although ¢, is not differentiable, only subdifferentiable, we still use the gradient notation as Ve,
is well-defined P-almost everywhere.

The map Vg, partitions the space into J convex polytopes L; := Vo, ({y;}) called Laguerre
cells; recall Figure 3.1. From this definition, it is clear that for a given x € L;, x = Vgo(x) = y; is
the optimal transport mapping. The difficulty in finding this map lies in determining the cells Lj,
or equivalently the dual variables 1, (y;).

When we want to place emphasis on the underlying measures, we will write ¢y = (pg_@,

¢0 = (I)J_)Q and T() = TOP_)Q
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3.1.3.2 REMINDERS FOR ENTROPIC OPTIMAL TRANSPORT

We include some brief reminders for entropic optimal transport. For two measures P and Q
with finite second moment, recall that the primal entropic optimal transport problem is

OT.(P,Q) := min // %Hx —y||*dz(x,y) + eKL(7||P ® Q), (3.4)

7€l (P,0)

where KL(y||v) = f log % du when p € P(Q) is absolutely continuous with respect to v € P(Q),
and ¢ > 0 is a positive number.
Equation (3.4) admits the following semi-dual formulation, which is now an unconstrained

optimization problem (Genevay, 2019; Marino and Gerolin, 2020)

omP,Q):%M2<P>+%MZ<Q>—3;§( [oars [ yac

(3.5)
e // (el D=0V W)/e _ 1) dP(x) dO(y) |

where (¢, ) € L1(P) X L1(Q). When P and Q have finite second moments, (3.4) admits a unique
minimizer, 7, and we have the existence of minimizers to (3.5), which we denote as (¢, ;). We
call 7, the entropic optimal plan and (¢., ) are called entropic Brenier potentials. The following

optimality relation further relates these primal and dual solutions (Csiszar, 1975):
dr,(x,y) = (=0 )=Ye(W))/e 4p(x) do(y) .

If (X,Y) ~ m,, we may define the conditional probability 7} of Y given that X = x, with density

dr

dQE (y) oc exp (({(x,y) = ¥e(y)) /e) - (3.6)

The barycentric projection of the optimal entropic coupling 7., or entropic Brenier map, is a central

object of study in several works (see e.g., del Barrio et al. (2022b); Goldfeld et al. (2024a); Pooladian
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and Niles-Weed (2021); Rigollet and Stromme (2022)), defined as

I(x) = / ydri(y) = Vou(x). (3.7)

where 7¥ is as in (3.6). Note that this quantity is well defined for all x € R? as long as the source

and target measures have compact support; in particular, it applies to both discrete and continuous

measures. The second equality follows from (1.27) and the dominated convergence theorem. As
P—Q

in the unregularized case, we will write ¢, = (prQ, V=1, “andT, = TSP_)Q when we want to

emphasize on the dependency with respect to the underlying measures.

3.1.3.3 RELATED WORK

Characterizing the convergence of entropic objects (e.g. potentials, cost, plans) to their un-
regularized counterparts in the ¢ — 0 regime has been a topic of several works in recent years.
Convergence of the costs OT, to W;? with precise rates was investigated by Chizat et al. (2020);
Conforti and Tamanini (2021); Pal (2024). The works of Bernton et al. (2022); Carlier et al. (2017);
Ghosal et al. (2022); Léonard (2012) study the convergence of the minimizers 7, to 7y under varying
assumptions. Convergence of the potentials in a very general setting was established by Nutz and
Wiesel (2021), though without a rate of convergence in . In the semi-discrete case, this gap was
closed by Altschuler et al. (2022) followed closely by Delalande (2022), which gave non-asymptotic
rates. The Sinkhorn Divergence, a non-negative, symmetric version of OT,, was introduced by
Genevay et al. (2018), was statistically analysed by Goldfeld et al. (2024a) and also del Barrio
et al. (2022b); Gonzalez-Sanz et al. (2022), and was connected to the entropic Brenier map by
Pooladian et al. (2022). The recent work by Rigollet and Stromme (2022) proved parametric rates
of estimation between the empirical entropic Brenier map and its population counterpart, though
with an exponentially poor dependence on the regularization parameter (see Remark 3.9). Entropic

optimal transport has also come into contact with the area of deep generative modeling through
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the following works by De Bortoli et al. (2021); Finlay et al. (2020a), among others.

3.2 STATISTICAL PERFORMANCE OF THE ENTROPIC ESTIMATOR IN
THE SEMI-DISCRETE SETTING

Let P, and Q, be the empirical measures associated with two n-samples from P and Q. We

make the following regularity assumptions on P, already introduced by Delalande (2022).

(S1) The measure P has a compact convex support Q C B(0;R), with a density p satisfying

0 < Pmin < P < Pmax < o0 for positive constants pmin, Pmax and R.

For example, P can be the uniform distribution over Q, or a truncated Gaussian distribution.

Furthermore, we will need the following assumption on Q.

(S2) The discrete probability measure Q = Z;zl q;dy, is such that g; > gmin > 0 and y; € B(0;R)
forall j € []].

The goal of this section is to prove the following theorem:

Theorem 3.2. Let P satisfy (1) and let Q satisfy ($2). Let T, = TEP”_)Q” be the entropic Brenier map

defined from the finite-samples. Then, for e < n™"/? and n large enough,
BIT, - TollZp < n2 (3.5)

Remark 3.3. We remark that the hidden constants in Theorem 3.8 and related results depend on
J, Pmins Pmax> gmin and R.

Remark 3.4 (Fixing the support via rounding). At present, the entropic map need not necessarily
map exactly to one of {yi,...,y;}. In fact, T. : R? - conv({Yi,...,Y,}), where conv(A) is the

convex hull for some set A. In turn, the support of the entropic map does not in general match that

62



of Q. However, this can be readily fixed with a rounding scheme. We can replace our estimator by
T, which is obtained by mapping the output of T to its nearest neighbor in the support of Q—this
projection step is easy to compute, given that we essentially know the support of Q via samples.
By viewing this as a projection onto an appropriate set (namely, the set of transport maps with

codomain equal to the support of Q), and applying the triangle inequality, it holds that

EIT, - Toll%,p < 2EIT - T

[
(P) I2(P)

but T, matches the support of Q.

Let T, = TEP ~% denote the entropic Brenier map associated to P and Q. Our proof relies on the

following bias-variance decomposition:

E”Te - TOlliz(p) < E”t - TE”?}(})) + ”Te - TOlliz(p)-

Following the next two results (Theorem 3.5 and Theorem 3.8) and the preceding decomposition,

the proof of Theorem 3.2 is merely a balancing act in the regularization parameter «.

Theorem 3.5. Let P satisfy (81) and let Q satisfy (S2). Then, for ¢ small enough,
||T€ - TO”%Z(P) SE. (3'9)

The proof of Theorem 3.5 relies on the following qualitative picture: if a point x belongs to
some Laguerre cell L;, and is far away from the boundary of L;, then the entropic optimal plan
7, will send almost all of its mass towards the point y; = Ty(x), sending an exponentially small
amount of mass to the other points y;. Such a picture is correct as long as x is at distance at least
¢ from the boundary of the Laguerre cell L;, incurring a total error of order ¢. A rigorous proof of
Theorem 3.5 can be found in Appendix B.2.

Note that this rate is slower than the rate appearing in Corollary 2.8 in the continuous-to-
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continuous case. The following example shows that the dependency in ¢ is optimal in Theorem 3.5,
indicating that the presence of discontinuities necessarily affects the approximation properties of

the entropic Brenier map.

Example 3.6. Let P be a probability measure on R having a symmetric bounded density p
continuous at 0, and let Q = %(5_1 + 81). Following Altschuler et al. (2022, Section 3), one can

check that the entropic Brenier map in this setting is the following scaled sigmoidal function
T.(x) = tanh(2x/¢),
whereas the optimal transport map Ty(x) = sign(x). Then, performing a computation

1T, = TollZ = 2 /0 (1 - tanh(2x/e))p(x) dx
= g/w(l — tanh(u))?*p(ue/2) du
0

= ep(0)(log(4) = 1) +o(e),

where in the last step we invoked the dominated convergence theorem, and computed the limiting

integral.

Remark 3.7. Assumption (S1) can be relaxed for Theorem 3.5 to hold. More precisely, it can be
replaced by Assumptions 2.2 and 2.9 of Altschuler et al. (2022), that hold for unbounded measures

such as the normal distribution.

Finally, we present the sample-complexity result:

Theorem 3.8. Let P satisfy (S1) and let Q satisfy (82). Then, for 0 < ¢ < 1 such thatlog(1/¢) <
n/log(n)

E|lT, - Ll py s e7'n7" (3.10)
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Remark 3.9. Rigollet and Stromme (2022) show that if P and Q are merely compactly supported

with supp(P), supp(Q) € B(0; R), then
BIIT = Tl = o™, (311)

where ¢ > 0 is some absolute positive constant. Thus, under the additional structural assumptions
of the semi-discrete formulation, we are able to significantly improve the rate of convergence

between the empirical and population entropic Brenier maps.

The proof of Theorem 3.8 relies on a novel stability result, reminiscent of Manole et al. (2024a,

Theorem 6), which is of independent interest. We provide the proof in Appendix B.3.

Proposition 3.10. Let yi, v, 1/, v’ be four probability measures supported in B(0; R). Then the entropic

maps T and T/ ~" satisfy

€ — '—v’ 'y’ — T - ’
sl T T gy < / (pf ™" =g dpr+ / (™" =y dv e+ KLOVIY)

Remark 3.11. The right side of the bound in Proposition 3.10 is equal to
Se(pv) = Se(p', V) + / 7AW -+ / g 7" d(v = v) + eKL(v|V),

where ff,_w/ = %H 1% - (pf/_w, and gf/_)vl = %ll )% - l//fl_)v,. Proposition 3.10 is therefore the
entropic analogue of the stability bounds of Manole et al. (2024a, Theorem 6) and Ghosal and
Sen (2022, Lemma 5.1). Unlike those results, Proposition 3.10 allows both the source and target

measure to be modified, and does not require any smoothness assumptions.
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3.2.1 PROOF SKETCH OF THEOREM 3.8

To prove Theorem 3.8, we first consider the one-sample setting, where we assume that we
only have access to samples Y, ..., Y, ~ Q, but we have full access to P. We then consider the
one-sample entropic estimator TSP 0 We apply Proposition 3.10 with y =y == P, v := Q,, and
V' = Q, yielding (see Corollary B.3 for details)

&

BT T, < B( [ (-9 40, - 0 +eKL@i10)).

Let y2(P||Q) denote the y?-divergence between probability measure. Young’s inequality (see

Lemma B.15) and the inequality KL(Q,||/Q) < x*(Qx||Q) yield the following bound:

P—Q,

— Rz E[V £ — Ye E 2 n
BTy < O BV ) B QIO

+8R’E[x*(Qxl10)] .

To complete our proof sketch, we use a new stability result on the entropic dual Brenier

potentials, catered for the semi-discrete setting.

Proposition 3.12. Let y be a measure that satisfies (S1). Let v, v’ be two discrete probability measures

supported on {ys, ..., y;}, withv' > Av for some A > 0. Then, for0 < e <1,
Var, (07" — =y < S 2y 3.12
arv(’#e — Ve ) = ﬁ){ (V ”V)’ ( . )

where C depends on R, pmin and pmax.

Moreover, a computation provided in Lemma B.16 shows that E[ y2(Q,||Q)] = J%, which is
enough to conclude the proof of the one-sample case, see Appendix B.5 for details.

The two-sample setting is tackled using similar reasoning, where we ultimately prove in
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Section B.6 that the risk E||T, — Tgp_)Q" HEZ(P) is upper bounded by

8R? - -
R / (P9 — gP =%y d(P, — P).

&

Such a quantity can again be related to the estimation of the dual potentials lﬁf ~% and gbf”_)Q”.

Using the same reasoning as before, we expect a parametric rate of convergence for this term as
well. Merging the two results completes the proof of Theorem 3.8. We refer to Appendix B.6 for
tull details.

3.3 COMPARING AGAINST THE 1NN ESTIMATOR

3.3.1 RATE OPTIMALITY OF THE ENTROPIC BRENIER MAP

The upper bound of Theorem 3.8 shows that our estimator achieves the n=!/2 rate. In fact, the

following simple proposition tells us that this rate is optimal in the semi-discrete case.

Proposition 3.13. Let P be the uniform distribution on [—1/2,1/2]¢ and for any J > 2, let Q;
denote the space of of probability measures with at most J atoms, supported on [—1/2,1/2]%. Define

the minimax rate of estimation

. ~ P—
Rn(Q)) = inf sup Eor[IT = )21, 5]
T Qeqy

Then, it holds that R,(Q;) > n~"/?/64.

Proof. Let e be a vector of the canonical basis of R?, scaled by 1/2. Fix 0 < r < 1/2 and let

Qp = %5_3 + %56 and Q; = (% —r)d_. + (% +r)d,. A computation gives ||T0P_)Q0 - T(f)_)Ql ||iZ(P) =r.
Therefore, by Le Cam’s lemma (see, e.g., Wainwright, 2019, Chapter 15),
r
Ra(@yp) 2 =(1=TV(Q} O})). (3.13)
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Let H2(Qy, Q1) denote the (squared) Hellinger distance between measures. We have

TV(Q5, 01)* < H*(Qg., 07) < nH*(Qo, Q1) -

Furthermore, a computation gives

H*(Qo, Q1) = (\/;— \E)z + (\/;— \/g)z =2—-(V1+2r+v1-2r) < 4r’

We obtain the conclusion by picking r = n~'/2/4. o

3.3.2 THE 1NN ESTIMATOR IS PROVEABLY SUBOPTIMAL

The 1-Nearest-Neighbor estimator, henceforth denoted Tixy, was proposed by Manole et al.
(2024a) as a computational surrogate for estimating optimal transport maps in the low smoothness
regime. Written succinctly, their estimator is Tinn () = i1 1y, (x) Yz (i), where (V;)!_, are Voronoi

regions i.e.,
Vi={x e RY ¢ e = Xl < llx = Xell, Y k # i},

and 7 is the optimal transport plan between the empirical measures P, and Q,, which amounts to
a permutation. Computing the closest X; to a new sample x has runtime O(nlog(n)), though the
complexity of this estimator is determined by computing the plan #, which takes O(n®) time via,
e.g., the Hungarian Algorithm (see Peyré and Cuturi, 2019, Chapter 3).

When ¢, is smooth and strongly convex, Manole et al. (2024a) showed that, for d > 5,

E||Tinn — V(pOHiz(P) < n2,

In contrast to the rate optimality of the entropic Brenier map, we now show that Tiny is
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proveably suboptimal in the semi-discrete setting. Not only does it fail to recover the minimax
rate obtained by the entropic Brenier map, but its performance in fact degrades in comparison to

the smooth case. A proof appears in Appendix B.7.

Proposition 3.14. There exist a measure P satisfying (81) and a discrete measure Q satisfying (S2)

such that ford > 3

l/d.

A~ P _
E||Tinw — T, _)Q||iz zn

(P)

3.3.3 EXPERIMENTS

We briefly verify our theoretical findings on synthetic experiments. To create the following
plots, we draw two sets of n i.i.d. points from P, (Xj,...,X,) and (X],...,X/), and create target
points ¥; = To(X]), where Tj is known to us in advance in order to generate the data. Our estimators
are computed on the data (Xi,...,X},) and (Yi,...,Y,), and we evaluate the Mean-Squared error
criterion

MSE(T) = IIT = TollZ 5,

of a given map estimator T using Monte Carlo integration, using 50000 newly sampled points
from P. We plot the means across 10 repeated trials, accompanied by their standard deviations.
3.3.3.1 SEMI-DISCRETE EXAMPLE #1

First consider P = Unif([0, 1]¢) and create atoms {y;, .. ., y;} by partitioning the points along

the first coordinate for all j € [J]:

(4)[1] = “‘]ﬁ (y)[2] = - = (y)[d] = 05.
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Figure 3.2: Left: fg versus f}NN for J =2 and d = 10. Right: fg versus ﬁNN for ] = 10 and d = 50.

We choose uniform g; = 1/] for j € [J]. In this case, it is easy to see that the optimal transport
map Ty(x) is uniquely defined by the first coordinate of x;. Figure 3.2 illustrates the rate-optimal
performance of the entropic Brenier map, and the proveably suboptimal performance of the

1-Nearest-Neighbor estimator.

3.3.3.2 SEMI-DISCRETE EXAMPLE #2

We now consider a synthetic experiment with far less symmetry. Let P = Unif([0, 1]¢), and
fix ] € N. We randomly generate y, ..., Y; € [0, l]d, and also randomly generate ¥, € R/, and
consider the optimal transport map Ty(x) = argmin {xTy; — (Y);}. We define Q = (Ty)yP,
leading to the same setup as before, but with a less structured optimal transport map. We consider
J =5and d = 50, and repeat the procedure of the preceding section to generate our data, and the
resulting estimator. Figure 3.3 contains plots the MSE as a function of n, where again we see a

log-linear slope of around —0.5, which agrees with our theory.

3.3.3.3 DISCONTINUOUS EXAMPLE

We turn our attention to a discontinuous transport map, where for x € R?, all the coordinates

are fixed except for the first one

To(x) = 2sign(x[1]) ® x[2] ® - - - @ x[d] .
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Figure 3.3: T; versus Tynn for with ¢/ random in d = 50

We choose P = Unif([—1, 1]¢) to exhibit a discontinuity in the data. Focusing on d = 10, we see in
Figure 3.4 that the entropic map estimator avoids the curse of dimensionality and enjoys a faster

convergence rate, with better constants.
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Figure 3.4: TE versus "f]NN ford =10
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4 PLUG-IN ESTIMATION OF SCHRODINGER

BRIDGES

4.1 INTRODUCTION

Modern statistical learning tasks often involve not merely the comparison of two unknown
probability distributions but also the estimation of transformations from one distribution to
another. Estimating such transformations is necessary when we want to generate new samples,
infer trajectories, or track the evolution of particles in a dynamical system. In these applications,
we want to know not only how “close” two distributions are, but also how to “go” between them.

Optimal transport theory defines objects that are well suited for both of these tasks (Santam-
brogio, 2015; Villani, 2009). The 2-Wasserstein distance is a popular tool for comparing probability
distributions for data analysis in statistics (Carlier et al., 2016; Chernozhukov et al., 2017; Ghosal
and Sen, 2022), machine learning (Salimans et al., 2018), and the applied sciences (Bunne et al.,
2023b; Manole et al., 2024b). Recall that under suitable conditions, the two probability measures
that we want to compare (say, ¢ and v) induce an optimal transport map: the uniquely defined
vector-valued function which acts as a transport map between p and v such that the distance trav-
eled is minimal in the L? sense (Brenier, 1991). Despite being a central object in many applications,
the optimal transport map is difficult to compute and suffers from poor statistical estimation guar-

antees in high dimensions; see Divol et al. (2022); Hiitter and Rigollet (2021); Manole et al. (2024a).
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These drawbacks of the optimal transport map suggest that other approaches for defining
a transport between two measures may often be more appropriate. For example, flow based
or iterative approaches have recently begun to dominate in computational applications—these
methods sacrifice the L2-optimality of the optimal transport map to place greater emphasis on
the tractability of the resulting transport. The work of Chen et al. (2018) proposed continuous
normalizing flows (CNFs), which use neural networks to model the vector field in an ordinary
differential equation (ODE). This machinery was exploited by several groups simultaneously
(Albergo and Vanden-Eijnden, 2022; Lipman et al.,, 2022; Liu et al., 2022b) for the purpose of
developing tractable constructions of vector fields that satisfy the continuity equation (recall
Section 4.2.1.1), and whose flow maps therefore yield valid transports between source and target
measures.

An increasingly popular alternative method for iterative transport is based on the Fokker-
Planck equation (see Section 4.2.1 for a definition). This formulation incorporates a diffusion term,
and the resulting dynamics follow a stochastic differential equation (SDE). Though there exist many
stochastic dynamics that give rise to valid transports, a canonical role is played by the Schriodinger
bridge (SB). Just as the optimal transport map minimizes the L? distance in transporting between
two distributions, the SB minimizes the relative entropy of the diffusion process, and therefore
has an interpretation as the “simplest” stochastic process bridging the two distributions—indeed,
the SB originates as a Gedankenexperiment (or “thought experiment”) of Erwin Schrédinger in
modeling the large deviations of diffusing gasses (Schrodinger, 1932). There are many equivalent
formulations of the SB problem (see Section 4.2.2), though for the purposes of transport, its most
important property is that it gives rise to a pair of SDEs that interpolate between two measures p

and v:

dX; = b} (X;) dt + VedB;, Xo~ LX) ~ v, (4.1)

dY, = df (Y dt + VedB,, Yo~1Yi ~p, (4.2)
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where ¢ > 0 plays the role of thermal noise." Concretely, (4.1) indicates that samples from v can
be obtained by drawing samples from p and simulating an SDE with drift b¥, and (4.2) shows how
this process can be performed in reverse. Though these dynamics are of obvious use in generating
samples, the difficulty lies in obtaining estimators for the drifts.

Nearly a century later, Schrodinger’s thought experiment has been brought to reality, having
found applications in the generation of new images, protein structures, and more (Kawakita et al.,
2022; Lee et al., 2024; Liu et al., 2022a; Nusken et al., 2022; Shi et al., 2022; Thornton et al., 2022).
The foundation for these advances is the work of De Bortoli et al. (2021), who propose to train
two neural networks to act as the forward and backward drifts, which are iteratively updated to
ensure that each diffusion yields samples from the appropriate distribution. This is reminiscent of
the iterative proportion fitting procedure of Fortet (1940), and can be interpreted as a version of
Sinkhorn’s matrix-scaling algorithm (Cuturi, 2013; Sinkhorn, 1967) on path space.

While the framework of De Bortoli et al. (2021) is popular from a computational perspective, it
is worth emphasizing that this method is relatively costly, as it necessitates the undesirable task
of simulating an SDE at each training iteration. Moreover, despite the recent surge in applications,
current methods do not come with statistical guarantees to quantify their performance. In short,
existing work leaves open the problem of developing tractable, statistically rigorous estimators

for the Schrodinger bridge.

4.1.1 CONTRIBUTIONS

We propose and analyze a computationally efficient estimator of the Schrodinger bridge which
we call the Sinkhorn Bridge. Our main insight is that it is possible to estimate the time-dependent
drifts in (4.1) and (4.2) by solving a single, static entropic optimal transport problem between
samples from the source and target measures. Our approach is to compute the potentials ( f ,9)

obtained by running Sinkhorn’s algorithm on the data Xj,..., X;, ~ pand Y3,...,Y, ~ v and plug

'We assume throughout our work that the reference process is Brownian motion with volatility ¢; see Section 4.2.2.
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these estimates into a simple formula for the drifts. For example, in the forward case, our estimator

reads

Yy exp((d) — g llz - Yj||2>/s))

b(z) = (1-1)7-
By s P T 27

See Section 4.3.1 for a detailed motivation for the choice of b;. Once the estimated potential § is
obtained from a single use of Sinkhorn’s algorithm on the source and target data at the beginning
of the procedure, computing by (z) for any z € R? and any t € (0, 1) is trivial.

We show that the solution to a discretized SDE implemented with the estimated drift b; closely
tracks the law of the solution to (4.1) on the whole interval [0, 7], for any 7 € [0, 1). Indeed,
writing P?o,r] for the law of the process solving (4.1) on [0, 7] and IS[O,T] for the law of the process
obtained by initializing from a fresh sample X, ~ p and solving a discrete-time SDE with drift by,
we prove bounds on the risk

E[TVZ(Plo), P )]

that imply that, for fixed ¢ > 0 and 7 € [0, 1), the Schrédinger bridge can be estimated at the
parametric rate. Moreover, though it is well known that such bounds must diverge as ¢ — 0 or
T — 1, we demonstrate that the rate of growth depends on the intrinsic dimension k of the target
measure rather than the ambient dimension d. When k < d, this gives strong justification for the
use of the Sinkhorn Bridge estimator in high-dimensional problems.

To give a particular example in a special case, our results provide novel estimation rates for
the Follmer bridge, an object which has also garnered interest in the machine learning community
(Chen et al., 2024; Huang, 2024; Vargas et al., 2023). In this setting, the source measure is a Dirac
mass, and we suppose the target measure v is supported on a ball of radius R contained within a

k-dimensional smooth submanifold of R?. Taking the volatility level to be unity, we show that the
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Follmer bridge up to time 7 € [0, 1) can be estimated in total variation with precision ery using n

samples and N SDE-discretization steps, where

n=R(1-1)" %, N<dRY(1-1) .

As advertised, for fixed 7 € [0, 1), these bounds imply parametric scaling on the number of samples
(which matches similar findings in the entropic optimal transport literature, see, e.g., Stromme
(2024)) and exhibit a “curse of dimensionality” only with respect to the intrinsic dimension of
the target, k. As our main theorem shows, these phenomena are not unique to the Follmer
bridge, and hold for arbitrary volatility levels and general source measures. Moreover, by tuning
T appropriately, we show how these estimation results yield guarantees for sampling from the
target measure v, see Section 4.4.3. These guarantees also suffer only from a “curse of intrinsic
dimensionality.” Since the drifts arising from the Féllmer bridge can be viewed as the score of
a kernel density estimator of v with a Gaussian kernel (see (4.26)), this benign dependence on
the ambient dimension is a significant improvement over guarantees recently obtained for such
estimators in the context of denoising diffusion probabilistic models (Wibisono et al., 2024). Our
improved rates are due to the intimate connection between the SB problem and entropic optimal
transport in which intrinsic dimensionality plays a crucial role (Groppe and Hundrieser, 2024;
Stromme, 2024). We expound on this connection in the main text.

We are not the first to notice the simple connection between the static entropic potentials and
the SB drift. Finlay et al. (2020a) first proposed to exploit this connection to simulate the SB by
learning static potentials via a neural network-based implementation of Sinkhorn’s algorithm;
however, due to some notational inaccuracies and implementation errors, the resulting procedure
was not scalable. This work shows the theoretical soundness of their approach, with a much

simpler, tractable algorithm and with rigorous statistical guarantees.
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4.1.1.1 NOTATION

We denote the space of probability measures over R? with finite second moment by P (R?).
We write B(x,R) C R to indicate the (Euclidean) ball of radius R > 0 centered at x € R%. We
denote the maximum of a and b by aV b. We write a < b (resp. a < b) if there exists constants C > 0
(resp. ¢, C > 0 such that a < Cb (resp. cb < a < Cb). We let path := C([0, 1], R%) be the space of
paths with X; : path — R¢ given by the canonical mapping X;(h) = h; for any h € path and any
t € [0,1]. For a path measure P € #(path) and any ¢ € [0, 1], we write P, := (X;)4P € P (RY)
for the ¢ marginal of P;. Similarly, for s, t € [0, 1], we can define the joint probability measure
Py = (Xs, X;)4P. We write Po ) for the restriction of the P to C([0,t], R%). Since path is a Polish
space, we can define regular conditional probabilities for the law of a path given its value at time
t, which we denote P|;. For any s > 0, we write A := (Zns)_d/ 2 for the normalizing constant of

the density of the Gaussian distribution N (0, sI).

4.1.2 RELATED WORK

ON SCHRODINGER BRIDGES. Connections between entropic optimal transport and the Schrédinger
bridge (SB) problem are well studied; see the comprehensive survey by Léonard (2014). We were
also inspired by the works of Ripani (2019), Gentil et al. (2020), as well as Chen et al. (2016; 2021b)
(which cover these topics from the perspective of optimal control), and the more recent article by
Kato (2024) (which revisits the large-deviation perspective of this problem). The special case of
the Follmer bridge and its variants has been a topic of recent study in theoretical communities
(Eldan et al., 2020; Mikulincer and Shenfeld, 2024).

Interest in computational methods for SBs has been explosive in over the last few years,
see Bunne et al. (2023a); Chen et al. (2024); De Bortoli et al. (2021); Shi et al. (2024; 2022); Tong
et al. (2023); Vargas et al. (2023); Yim et al. (2023) for recent developments in deep learning.

The works by Bernton et al. (2019); Pavon et al. (2021); Vargas et al. (2021) use more traditional
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statistical methods to estimate the SB, with various goals in mind. For example, Bernton et al.
(2019) propose a sampling scheme based on trajectory refinements using a approximate dynamic
programming approach. Pavon et al. (2021) and Vargas et al. (2021) propose methods to compute
the (intermediate) density directly based on maximum likelihood-type estimators: Pavon et al.
(2021) directly model the densities of interest and devise a scheme to update the weights; Vargas
et al. (2021) use Gaussian processes to model the forward and backward drifts, and update them

via a maximum-likelihood type loss.

ON ENTROPIC OPTIMAL TRANSPORT. Our work is closely related to the growing literature on
statistical entropic optimal transport, specifically on the developments surrounding the entropic
transport map. This object was introduced by Pooladian and Niles-Weed (2021) as a computation-
ally friendly estimator for optimal transport maps in the regime ¢ — 0; see also Pooladian et al.
(2023) for minimax estimation rates in the semi-discrete regime. When ¢ is fixed, the theoretical
properties of the entropic maps have been analyzed (Chewi and Pooladian, 2023; Chiarini et al.,
2022; Conforti, 2024; Conforti et al., 2023; Divol et al., 2025) as well as their statistical properties (del
Barrio et al., 2022b; Goldfeld et al., 2024a;b; Gonzalez-Sanz et al., 2022; Rigollet and Stromme,
2022; Werenski et al.,, 2023). Ghosal et al. (2022); Nutz and Wiesel (2021) study the stability of
entropic potentials and plans in a qualitative sense under minimal regularity assumptions. Most
recently, Stromme (2024) and Groppe and Hundrieser (2024) established the connections between
statistical entropic optimal transport and intrinsic dimensionality (for both maps and costs). Daniels
et al. (2021) investigates sampling using entropic optimal transport couplings combined with neu-
ral networks. Closely related are the works by Chizat et al. (2022) and Lavenant et al. (2024), which
highlight the use of entropic optimal transport for trajectory inference. A more flexible alternative
to the entropic transport map was recently developed by Kassraie et al. (2024), who proposed a
transport that progressively displaces the source measure to the target measure by computing a

new entropic transport map at each step to approximate the McCann interpolation (McCann, 1997).
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4.2 BACKGROUND

4.2.1 PRELIMINARIES ON ENTROPIC OPTIMAL TRANSPORT

We require a slightly different change in notation this chapter. Recall the primal and dual

entropic optimal transport problems are

OT = inf lx—yll*d KL 43

un = ot ] -yl dntay) + oKLl ) (132)
= swp DL(f.9 (43b)
(f.9)eF

where ¥ = L'(y) x L'(v) and

D (f,9) = / fdu+ / gdv—e // (Age(f(x)J'g(y)_%”x_yHZ)/E—1)dy(x) dv(y), (4.4)

where A, = (27¢)~%/2. Solutions to both problems are guaranteed to exist when y, v € P, (R?).
The minimizer to (4.3a) is called the optimal entropic plan, written 7* € II(y, v), and the dual
optimizers the optimal entropic (Kantorovich) potentials, written (f*, g*).>

Csiszar (1975) showed that the primal and dual optima are intimately connected through the
following relationship:®

() +g*(y) — 5llx —yll?
£

dr*(x,y) = A exp( ) du(x) dv(y) . (4.5)

Though f* and g* are a priori defined almost everywhere on the support of y and v, they can be

extended to all of R? (see Mena and Niles-Weed (2019); Nutz and Wiesel (2021)) via the optimality

2Though 7* and the other objects discussed in this section depend on ¢, we will omit this dependence for the sake
of readability, though we will track the dependence on ¢ in our bounds.

3The normalization factor A, is not typically used in the computational optimal transport literature, but it simplifies
some formulas in what follows. Since the procedure we propose is invariant under translation of the optimal entropic
potentials, this normalization factor does not affect either our algorithm or its analysis.
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conditions

F*(x) = —elog (Ag/e(g*(y)—llx—y||2/2)/edv(y))’ g*(y) = —¢log (Ag/e(f*(x)—llx—yllz/z)/sdﬂ(x)).

At times, it will be convenient to work with entropic Brenier potentials, defined as
. 2 2
(% v*) =Gl - IP= 31117 - g) .

Note that the gradients of the entropic Brenier potentials* are related to barycentric projections of

the optimal entropic coupling
Vo*(x) =E[YIX =x],  V§*(y) =Ex~[X]Y =y].

For a proof of this fact, see Pooladian and Niles-Weed (2021, Proposition 2). By analogy with the
unregularized optimal transport problem, these are called entropic Brenier maps. The following

relationships can also be readily verified:
Vip*(x) = e 'Covpx [Y|X = x], Vi*(y) = e 'Covpx [X|Y = 4] . (4.7)

4.2.1.1 A DYNAMIC FORMULATION VIA THE CONTINUITY EQUATION

Entropic optimal transport can also be understood from a dynamical perspective. Let (p;);e[o,1]
be a family of measures in P5(R%), and let (vt)ref0,1] be a family of vector fields. We say that the

pair satisfies the continuity equation, written (ps, v;) € €, if pg = y, p1 = v, and, for t € [0, 1],

8tpt +V- (U[pt) =0. (48)

“Passing the gradient under the integral is permitted via dominated convergence under suitable tail conditions on
pand v.
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Solutions to (4.8) are understood to hold in the weak sense (that is, with respect to suitably smooth
test functions).

The continuity equation can be viewed as the analogue of the marginal constraints being
satisfied (i.e., the set II(y, v) above): it represents both the conservation of mass and the requisite
end-point constraints for the path (p;);c[o1]. With this, we can cite a clean expression of the
dynamic formulation of the entropic optimal transport problem (see Conforti and Tamanini (2021)

or Chizat et al. (2020)) if u and v are absolutely continuous and have finite entropy:

‘ 1 &2
OTe(p,v) + Co(e, p,v) = inf / /(—llvt(X)ll2 + —IIVlog pe(x)[I%) dp: (x) dt, (4.9)
(pt,Ut)EG 0 2 8

where Cy(¢, i, v) = elog(Ag)+5(H (u)+H (v)) is an additive constant, with H (i) = / log(dy) du,
similarly for H (v).

The case ¢ = 0 reduces to the celebrated Benamou-Brenier formulation of optimal trans-
port (Benamou and Brenier, 2000).

4.2.1.2 A STOCHASTIC FORMULATION VIA THE FOKKER-PLANCK EQUATION

We now revisit the dynamic formulation of entropic optimal transport, this time based on the
Fokker—Planck equation. This equation is said to be satisfied by a pair (p;, b;) € § if po = 1, p1 = v,

and, for t € [0,1],
£
atpt + V . (btpt) = EApt .
Then, under the same conditions as above,

1

1

OT. () + Culer = inf [ [ 1o dpro (4.10)
t:0t) J0
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where Ci (¢, ) = elog(A;) + eH (u). The equivalence between the objective functions (4.9) and
(4.10), as well as the continuity equation and Fokker—Planck equations, is classical. For com-
pleteness, we provide details of these computations in Appendix C.1. A key property of this
equivalence is the following relationship which relates the optimizers of (4.9), written (p}, v}

and (4.10), written (p}, b}):
* *x, € *
by =ou/ + EVlogpt .
We stress that the minimizer p} is the same for both (4.9) and (4.10).

4.2.2 THE SCHRODINGER BRIDGE PROBLEM AND THE FOKKER-PLANCK EQUATION

We will now briefly develop the required machinery to understand the Schrodinger bridge
problem. We will largely following the expositions of Gentil et al. (2020); Léonard (2012; 2014);
Ripani (2019).

For ¢ > 0, we let R € P (path) denote the law of the reversible Brownian motion on R? with
volatility e, with the Lebesgue measure as the initial distribution.” We write the joint distribution
of the initial and final positions under R by Ry; (dx, dy) = A, exp(—%llx —y||?/e) dx dy.

With the above, we arrive at Schrodinger’s bridge problem over path measures:

min ¢e¢KL(P||R) st. Po=u,Pi=v, 4.11
min_ eKL(P|R) 0= H,Ps (4.11)

where p1,v € P;(R%) and are absolutely continuous with finite entropy. Let P* be the unique

solution to (4.11), which exists as the problem is strictly convex. Léonard (2014) shows that there

>The problem below remains well posed even though R is not a probability measure; see Léonard (2014) for
complete discussions.
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exist two non-negative functions f*, g* : RY — R, such that
P* = *(Xo)g* (X1)R, (4.12)

where Law(Xp) = p and Law(X7) = v.
A further connection can be made: if we apply the chain-rule for the KL divergence by

conditioning on times ¢ = 0, 1, the objective function (4.11) decomposes into
e KL(P|[R) = eKL(Py1|[Ro1) + € EpKL(P)o1|R}o1) -

Under the assumption that y and v have finite entropy, it can be shown that the first term on
the right-hand side is equivalent to the objective for the entropic optimal transport problem
in (4.3a). Moreover, the second term vanishes if we choose the measure P so that the conditional
measure P|; is the same as Rjg;, i.e.,, a Brownian bridge. Therefore, the objective function in
(4.11) is minimized when P}, = 7* and when P writes as a mixture of Brownian bridges with the

distribution of initial and final points given by 7*:

P* = // R(lX() = X(),X1 = Xl)ﬂ*(dX(), dxl) . (413)

Much of the discussion above assumed that y and v are absolutely continuous with finite
entropy; indeed, the manipulations in this section as well as in Section 4.2.1.1 and 4.2.1.2 are not
justified if this condition fails. Though the finite entropy conditioned is adopted liberally in the
literature on Schrédinger bridges, in this work we will have to consider bridges between measures
that may not be absolutely continuous (for example, empirical measures). Noting that the entropic
optimal transport problem (4.3a) has a unique solution for any y, v € P,(R?), we leverage this fact
to use (4.13) as the definition of the Schrodinger bridge between two probability measures: for any

pair of probability distributions y, v € P;(R?), their Schrédinger bridge is the mixture of Brownian
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bridges given by (4.13), where 7* is the solution to the entropic optimal transport problem (4.3a).

4.3 PROPOSED ESTIMATOR: THE SINKHORN BRIDGE

Our goal is to efficiently estimate the Schrédinger bridge (SB) on the basis of samples. Let P*

denote the SB between p and v, and define the the time-marginal flow of the bridge by
p; = P}, te[0,1]. (4.14)

This choice of notation is deliberate: when p and v have finite entropy, the t-marginals of P*
for t € [0, 1] solve the dynamic formulations (4.9) and (4.10) (Léonard, 2014, Proposition 4.1).
In the existing literature, p} is sometimes called the the entropic interpolation between p and v.
See Gentil et al. (2020); Léonard (2012; 2014); Ripani (2019) for interesting properties of entropic
interpolations (for example, their relation to functional inequalities). Our goal is to provide an
estimator P such that E[TVZ(IA)[O)T], P?O,r])] is small for all 7 < 1. In particular, this marginals of
our estimator P are estimators p; of py forallt € [0,1).6

We call our estimator the Sinkhorn bridge, and we outline its construction below. Our main
observation involves revisiting some finer properties of entropic interpolations as a function of

the static entropic potentials. Once everything is concretely expressed, a natural plug-in estimator

will arise which is amenable to both computational and statistical considerations.

SFor reasons that will be apparent in the next section, time 7 = 1 must be excluded from the analysis.
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4.3.1 FROM SCHRODINGER TO SINKHORN AND BACK

We outline two crucial observations from which our estimator naturally arises. First, we note

that p} can be explicitly expressed as the following density (Léonard, 2014, Theorem 3.4)

pr(dz) = He—ne[exp(g*/e)v](2)Hee [exp(f*/e)p] (2) dz, (4.15)

where Hj is the heat semigroup, which acts on a measure Q via

0 > H,[0](2) = A, / e 5 O (dx)

This expression for the marginal of distribution p} follows directly from (4.13):

pi(2) = [[ RelelXs =X, = xi)x (0 )
= / N(z|ty + (1 — t)x, t(1 — t)e)r* (dx, dy)
* * 1

= [ B ey 4 (1 -, 10 DO

= [ DN Gl (1= Dentdy) [ N el tea(o)

= Hi—[exp(g*/e)v](2)H:[exp(f*/e)ul (2)
where throughout we use N (z|m, o%) to denote the Gaussian density with mean m and covariance
oI, and the fourth equality follows from computing the explicit density of the product of two
Gaussians.

Also, Léonard (2014, Proposition 4.1) shows that when p and v have finite entropy, the optimal

drift in (4.10) is given by
by (z) = eV1og H(1-r[exp(g*/e)v] (2) ,
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whence the pair (p}, b)) satisfies the Fokker—Planck equation. This fact implies that if X; solves
dXt = b;(Xt) dt + \/ZdBt s X() ~H, (416)

then p; = Law(X;). In fact, more is true: the SDE (4.16) give rise to a path measure, which exactly
agrees with the Schrodinger bridge. Though Léonard (2014) derives these facts for p and v with
finite entropy, we show in Proposition 4.1, below, that they hold in more generality.

Further developing the expression for b}, we obtain

*(yv_ L 2
. /ye(g (y) Z(I—t) ”Z y” )/5 dV(y)

/ RO s IR RI av(y)

bt (z) = (1- 17" = (1= (-2 + Vgl (2)) . (417)

Thus, our final expression for the SDE that yields the Schrodinger bridge is
dXt = (—(1 - t)_lXt + (1 - t)_1V(pr_t(Xt)) dt + \/EdBt . (418)

Once again, we emphasize that our choice of notation here is deliberate: the drift is expressed as a
function of a particular entropic Brenier map, namely, the entropic Brenier map between p} and v
with regularization parameter (1 — t)e.

We summarize this collection of crucial properties in the following proposition; see Ap-
pendix C.2 for proofs. We note that this result avoids the finite entropy requirements of analogous

results in the literature (Léonard, 2014; Shi et al., 2024).

Proposition 4.1. Let 7 be a probability measure of the form

7r(dxo, dx1) = A exp((f (x0) +g(x1) = 3llx0 = x111%) /€)po (dxo) pa (dx1) , (4.19)

for any measurable f and g and any probability measures i, j1; € P2(R?). Let M the path measure
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given by a mixture of Brownian bridges with respect to (4.19) as in (4.13), with t-marginals m; for

€ [0, 1]. The following hold:
1. The path measure M is Markov;

2. The marginal m; is given by
m;(dz) = H(1-p)e[exp(g/e) ] (2)Hie[exp(f/€) po] (2)dz;
3. M is the law of the solution to the SDE

dX; = eVlog H(i—y[exp(g/e) ] (X;) dt + VedB;, Xy~ o

4. The drift above can be expressed as b;(z) = (1—t)"1(z—V;_:(2)), where Vo,_, is the entropic

Brenier map between m; and p with regularization strength (1 — t)e, where

p(dxi) = g1 (dxy) exp(g(x1) /e + log He[e/*1io] (x1)) .

If (4.19) is the optimal entropic coupling between py and yy, then p = 1.

4.3.2 DEFINING THE ESTIMATOR

In light of (4.17), it is easy to define an estimator on the basis of samples. Let X, ..., X;;, ~ pand
Yy, ..., Y, ~v,and let g, := m™' 37, Sy, and similarly v, := n™! ;’:1 Jy;. Let (f, g) € R™xXR" be
the optimal entropic potentials associated with OT, (i, v,,), which can be computed efficiently via

Sinkhorn’s algorithm (Cuturi, 2013; Peyré and Cuturi, 2019) with a runtime of O(mn/¢) (Altschuler
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et al., 2017). A natural plug-in estimator for the optimal drift is thus

l;t(z) = eVlog Hii—p).[exp(g/e)val
T eol6 il VPV
" exp((G) - iz - IP)/e)

(1= =2+ V14(2))

(1-1)"! (—z + (4.20)

Further discussions on the numerical aspects of our estimator are deferred to Section 4.5. Since we

want to estimate the path given by P*, our estimator is given by the solution to the following SDE:
dX; = (=(1 = kn) ™ Xy + (1 = kn) "' V1, (Xiy)) di + Ve dBy, (4.21)

for t € [kn, (k + 1)n], where 5 € (0, 1) is some step-size, and k is the iteration number. Though it
is convenient to write the drift in terms of a time-varying entropic Brenier map, (4.20) shows that
for all t € (0, 1), our estimator is a simple function of the potential 4 obtained from a single call to

Sinkhorn’s algorithm.

Remark 4.2. To the best of our knowledge, the idea of using static potentials to estimate the SB drift
was first explored by Finlay et al. (2020a). However, their proposal had some inconsistencies. For
example, they assume a finite entropy condition on the source and target measures, and perform
a standard Gaussian convolution on R¢ instead of our proposed convolution Hi-nelexp(g/e)val.
The former leads to a computationally intractable estimator, whereas, as we have shown above,

the former has a simple form that is trivial to compute.

Remark 4.3. An alternative approach to computing the Schrédinger bridge is due to Stromme (2023):
Given n samples from the source and target measure, one can efficiently compute the in-sample
entropic optimal coupling 7 on the basis of samples via Sinkhorn’s algorithm. Resampling a pair
(X’,Y’) ~ 7 and computing the Brownian bridge between X" and Y’ yields an approximate sample

from the Schrédinger bridge. We remark that the computational complexity of our approach is
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significantly lower than that of Stromme (2023). While both methods use Sinkhorn’s algorithm
to compute an entropic optimal coupling between the source and target measures, Stromme’s
estimator necessitates n fresh samples from p and v to obtain a single approximate sample from
the SB. By contrast, having used our method to estimate the drifts, fresh samples from p can be

used to generate unlimited approximate samples from the SB.

4.4 MAIN RESULTS AND PROOF SKETCH

We now present the proof sketches to our main result. We first present a sketch focusing
purely on the statistical error incurred by our estimator, and later, using standard tools (Chen
et al., 2022b; Lee et al.,, 2023), we incorporate the additional time-discretization error. All omitted

proofs in this section are deferred to Appendix C.3.

4.4.1 STATISTICAL ANALYSIS

We restrict our analysis to the one-sample estimation task, as it is the closest to real-world
applications where the source measure is typically known (e.g., the standard Gaussian) and the
practitioner is given finitely many samples from a distribution of interest (e.g., images). Thus, we
assume full access to y and access to v through i.i.d. data, and let ( f g) correspond to the optimal
entropic potentials solving OT,(x, v,,), which give rise to an optimal entropic plan 7,. Formally,
this corresponds to the m — oo limit of the setting described in Section 4.3.2; the estimator for the
drift (4.20) is unchanged.

Let P be the Markov measure associated with the mixture of Brownian bridges defined with

respect to m,. By Proposition 4.1, the t-marginals are given by

Pr(2) = Hir-ne[exp(g/e)val (2)Heclexp(f/€)p] (2), (4.22)
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and the one-sample empirical drift is equal to

bi(z) = eV log H(1—p)c[exp(g/e)val (2) .
Thus, P is the law of the following process with Xp ~
dX; = b;(X;) dt + Ve dB; . (4.23)

Note that this agrees with our estimator in (4.21), but without discretization. This process is not
technically implementable, but forms an important theoretical tool in our analysis.

Our main result of this section is the following theorem.

Theorem 4.4 (One-sample estimation; no discretization). Suppose both i, v € Po(R?), and v is
supported on a k-dimensional smooth submanifold of R whose support is contained in a ball of
radius R > 0. Let P (resp. P) be the path measure corresponding to (4.23) (resp. (4.17)). Then it holds

that, for any t € [0,1),

ek/2-1 R2ek )

E[TVz(f’[o,r],P* ) < ( v + (1 - 7)k+2p

[0.7]

As mentioned in the introduction, the parametric rates will not be surprising given the proof
sketch below, which incorporates ideas from entropic optimal transport. The rates diverge
exponentially in k as 7 — 1; this is a consequence of the fact that the estimated drift b; enforces
that the samples exactly collapse onto the training data at terminal time, which is far from the
true target measure.

The proof of Theorem 4.4 uses key ideas from Stromme (2024): We introduce the following

entropic plan

(%, y) = Acexp((f(x) +g"(v) — 3llx — ylI*) /&) p(dx) v (dy), (4.24)
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where g* is the optimal entropic potential for the population measures (i, v), and where we call

f :R% — R a rounded potential, defined as

n

fx) = —elog(a, 17 )" expl(g" (1)) - Sllx = 1%)/2)).
=1
Note that f can be viewed as the Sinkhorn update involving the potential g* and measure v,, and
that 7, € I'(y, 7,), where 7, is a rescaled version of v,. We again exploit Proposition 4.1. Consider
the path measure associated to the mixture of Brownian bridges with respect to 7,, denoted P

(with ¢t-marginals p;), which corresponds to an SDE with drift

bi(z) = eV1og Hi_[exp(g*/e)vn] (2)
S, Y exp((g* (%)) + 7o lz - el (4.25)
1 exp((g* (V) + 55 llz = vil19) /o) |

= (1=t (2 +

Introducing the path measure Py, into the bound via triangle inequality and then applying

Pinsker’s inequality, we arrive at

E[TV?(Pjos), Pyl S E[TV?(Plog), Pros)] +E[TVZ(Pog), Pl )]

< E[KL(PjolIPjo.r)] + E[KL(PY, ; IP[o))]

We analyse the two terms separately, each term involving proof techniques developed by Stromme
(2024). We summarize the results in the following propositions, which yield the proof of Theo-

rem 4.4.

Proposition 4.5. Assume the conditions of Theorem 4.4, then for any t € [0,1)

- _ 1 _ _
E[KL(Pyo IPo.1)] < —E[OTe( va) = OTe(pv)] < ¢ (k2 p=1/2
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Proposition 4.6. Assume the conditions of Theorem 4.4, then

RZ -k
f (1-o)k2,

E[KL(P}, 4 /IPo.q)] <

4.4.2 COMPLETING THE RESULTS

We now incorporate the discretization error. Letting P denote the path measure induced by

the dynamics of (4.21), we use the triangle inequality to introduce the path measure P:

E[TVZ(P1o), Py )] S BITVZ(Pjo), Proe)] + EITV? (Pro.p, Py )] -

The second term is precisely the statistical error, controlled by Theorem 4.4. For the first term, we
employ a now-standard discretization argument (see e.g., Chen et al. (2022b)) which bounds the
total variation error as a function of the step-size parameter 1 and the Lipschitz constant of the

empirical drift, which can be easily bounded in our setting.

Proposition 4.7. Suppose j1, v € Po(R?). Denoting L, for the Lipschitz constant of b, (recall (4.20))

fort € [0,1) and n the step-size of the SDE discretization, it holds that
E[TV?(P(os), Plos1)] < (e+1)Lidn.
In particular, if supp(v) € B(0;R), then
E[TV?(Po., Plos)] S (e+1)(1 - 1) %dp(1VRY (1 - 1) %7?).

We now aggregate the statistical and approximation error into one final result.

Theorem 4.8. Suppose 1, v € Po(RY) with supp(v) € B(0,R) C M, where M is a k-dimensional

submanifold of R%. Given n i.i.d. samples from v, the one-sample Sinkhorn bridge P estimates the
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Schrodinger bridge P* with the following error

(g—k/2—1 R2ek

E[TVZ(P,.1, P* < +
[ ( [O,T] )] \/ﬁ (1 —T)k+2n

[0,7] ) +(e+1)(1- T)_zdly(l VRY(1-1)"%7?).

Assuming R > 1 and € = 1, the Schrodinger bridge can be estimated in total variation distance to
accuracy ety with n samples and N Euler—-Maruyama steps, where
R? dR*

-4
n< ———Veény, NS——mm—.
(1—1)k+2ed, v (1- 1')46%\,

Note that our error rates improve as ¢ — oo; since this is also the regime in which Sinkhorn’s
algorithm terminates rapidly, it is natural to suppose that ¢ should be large in practice. This is
misleading, however: as ¢ grows, the Schrodinger bridge becomes less and less informative,” and
the marginal p¥ only resembles v when 7 becomes very close to 1. We elaborate on the use of the

SB for sampling in the following section.

4.4.3 APPLICATION: SAMPLING WITH THE FOLLMER BRIDGE

Theorem 4.8 does not immediately imply guarantees for sampling from the target distribution
v. Obtaining such guarantees requires arguing that simulating the Sinkhorn bridge on a suitable
interval [0, 7] for 7 close to 1 yields samples close to the true density (without completely collapsing
onto the training data). We provide such a guarantee in this section, for the special case of the
Follmer bridge. We adopt this setting only for concreteness; similar arguments apply more broadly.
The Follmer bridge is a special case of the Schrodinger bridge due to Hans Follmer (Follmer,

1985). In this setting, u = 8, for any a € R¢, and our estimator takes a particularly simple form:

" Y exp(GGIYiIIP - 5751z = YilI%) /¢)
j=14J 2114J 2(1-1) J )’ (4.26)

(z)=(1-t)""-z+
f ( T exp(GIYII2 - 55511z = YilI%) /e)

"In other words, the transport path is more and more volatile.
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Note that in this special case, calculating the drift does not require the use of Sinkhorn’s algorithm,
and the drift, in fact, corresponds to the score of a kernel density estimator applied to v,. We
provide a calculation of these facts in Appendix C.4 for completeness.

We then have the following guarantee.

Corollary 4.9. Consider the assumptions of Theorem 4.8, further suppose that u = &, and ¢ = 1 and
that the second moment of v is bounded by d. Suppose we use n samples from v to estimate the Follmer

drift, and simulate the resulting SDE using N Euler—Maruyama iterations until timet = 1 — e\zyz/d,

with
2 jk+2 4 35
c2k+4 2 vV ~ 8 2
W, TV W, TV

Then the density given by the Sinkhorn bridge at time t iterations will be eTv-close in total variation

to a measure which is ew,-close to v in the 2-Wasserstein distance.

Note that the choice ¢ = 1 was merely out of convenience. If instead the practitioner was
willing to pay the computational price of solving Sinkhorn’s algorithm for small ¢ and large n,
then the number of requisite iterations N would decrease. Finally, notice that the number of
samples scales exponentially in the intrinsic dimension k < d instead of the ambient dimension d.
This is, of course, unavoidable, but improves upon recent work that uses kernel density estimators

to prove a similar result for denoising diffusion probabilistic models (Wibisono et al., 2024).

Remark 4.10. Recently, Huang (2024) also proposed (4.26) to estimate the Follmer drift. They
provide no statistical estimation guarantees of the drift, nor any sampling guarantees; their
contributions are largely empirical, demonstrating that the proposed estimator is tractable for
high-dimensional tasks. The work of Huang et al. (2021b) also proposes an estimator for the
Follmer bridge based on having partial access to the log-density ratio of the target distribution

(without the normalizing constant).
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Algorithm 1: Sinkhorn bridges
Input: Data {X;}", ~ p, {1/']}7:1 ~ v, parameters ¢ > 0,7 € (0,1),and N > 1
Compute: Sinkhorn potentials (f, g§) € R™" xR"*; // Using POT or OTT
Initialize: x(¥) = x ~ y1, k = 0, stepsize n = 7/N
while k < N -1do

k—k+1
end

return x(N )

4.5 NUMERICAL PERFORMANCE

Our approach is summarized in Algorithm 1, and open-source code for replicating our experi-
ments is available at https://github.com/APooladian/SinkhornBridge.®

For a fixed regularization parameter ¢ > 0, the runtime of computing ( f, g) on the basis of
samples has complexity O(mn/(&d1)), Wwhere o] is a required tolerance parameter that measures
how closely the the marginal constraints are satisfied (Altschuler et al., 2022; Cuturi, 2013; Peyré
and Cuturi, 2019). Once these are computed, the evaluation of I;k,7 is O(n), with the remaining
runtime being the number of iteration steps, denoted by N. In all our experiments, we take m = n,
thus the total runtime complexity of the algorithm is a fixed cost of O(n?/(£81), followed by

O(nN) for each new sample to be generated (which can be parallelized).

45.1 QUALITATIVE ILLUSTRATION

As a first illustration, we consider standard two-dimensional datasets from the machine
learning literature. For all examples, we use n = 2000 training points from both the source and
target measure, and run Sinkhorn’s algorithm with ¢ = 0.1. For generation, we set 7 = 0.9, and
consider N = 50 Euler—-Maruyama steps. Figure 4.1 contains the resulting simulations, starting

from out-of-sample points. We see reasonable performance in each case.

80ur estimator is implemented in both the POT and OTT-JAX frameworks.
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Figure 4.1: Schrodinger bridges on the basis of samples from toy datasets.

45.2 QUANTITATIVE ILLUSTRATIONS

We quantitatively assess the performance of our estimator using synthetic examples from the

deep learning literature (Bunne et al., 2023a; Gushchin et al., 2023).

THE GAUSSIAN cASE  We first demonstrate that we are indeed learning the drift and that the
claimed rates are empirically justified. As a first step, we consider the simple case where y =
N(a, A) and v = N (b, B) for two positive-definite d X d matrices A and B and arbitrary vectors
a,b € R%. In this regime, the optimal drift b* and p* has been computed in closed-form by Bunne
et al. (2023a); see equations (25)-(29) in their work.

To verify that we are indeed learning the drift, we first draw n samples from y and v, and
compute our estimator, b, for any 7 € [0,1). We then evaluate the mean-squared error

MSE(TI, T) = ”br - b:”iZ(p;) s

by a Monte Carlo approximation, with nyc = 10000. For simplicity, with d = 3, we choose A = I

and randomly generate a positive-definite matrix B, and center the Gaussians. We fix ¢ = 1 and

vary n used to define our estimator, and perform the simulation ten times to generate error bars
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Figure 4.2: MSE for estimating the Gaussian drift as (n, ) vary, averaged over 10 trials.

across various choices of 7 € [0, 1); see Figure 4.2.
It is clear from the plot that the constant associated to the rate of estimation gets worse as
t — 1, but the overall rate of convergence appears unchanged, which hovers around n™! for all

choices of 7 shown in the plot, as expected from e.g., Proposition 4.5.

MULTIMODAL MEASURES WITH CLOSED-FORM DRIFT The next setting is due to Gushchin et al.
(2023); they devised a drift that defines the Schrodinger bridge between a Gaussian and a more
complicated measure with multiple modes. This explicit drift allowed them to benchmark multiple
neural network based methods for estimating the Schrodinger bridge for non-trivial couplings
(e.g., beyond the Gaussian to Gaussian setting). We briefly remark that the approaches discussed
in their work fall under the “continuous estimation" paradigm, where researchers assume they can
endlessly sample from the distributions when training (using new samples per training iteration).

We consider the same pre-fixed drift as found in their publicly available code, which transports
the standard Gaussian to a distribution with four modes. We consider the case d = 64 and € = 1, as

these hyperparameters are most extensively studied in their work, where they provide the most
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.‘ Generated
1 ]
N Method BW-UVP
R Ours 0.41 + 0.03
© MLE-SB 0.56
—1 EgNOT 0.85
FB-SDE-A 0.65
—2 - .('). Table 4.1: Comparison to neural network ap-
-1 d=1 1 proaches in BW-UVP for d = 64.

Figure 4.3: Plotting generated and resampled
target data in d = 64.

details on the other models. We use n = 4096 training samples from the source and target data
they construct (which is significantly less than the total number of samples required for any of
the neural network based models) and perform our estimation procedure, and we take N = 100
discretization steps (which is half as many as most of the works they consider) to simulate to time
7 = 0.99. To best illustrate the four mixture components, Figure 4.3 contains a scatter plot of the
first and fifteenth dimension, containing fresh target samples and our generated samples.

We compare to the ground-truth samples using the unexplained variance percentage (UVP)

based on the Bures-Wasserstein distance (Bures, 1969):

BWZ (Ny’ NV)

BW-UVP =100————,
g V(1) 0.5 - Var(v)

where N, = N(E,[X],Cov,(X)), and same for N,. While seemingly ad hoc, the BW-UVP
is widely used in the machine learning literature as a means of quantifying the quality of the
generated samples (see e.g., Daniels et al. (2021)). We compute the BW-UVP with 10* generated
samples from the target and our approach, averaged over 5 trials, and used the results of Gushchin

et al. (2023) for the remaining methods (MLE-SB is by Vargas et al. (2021), EgNOT is by Mokrov et al.

9For us, these quantities are computed on the basis of samples.
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(2023), and FB-SDE-A is by Chen et al. (2021a)). We see that the Sinkhorn bridge has significantly
lower BW-UVP compared to the other approaches while requiring less compute resources and

training data.
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Part 11

Interlude: Theoretical properties of

entropic Brenier maps
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5 AN ENTROPIC GENERALIZATION OF
CAFFARELLI'S CONTRACTION THEOREM

VIA COVARIANCE INEQUALITIES

5.1 INTRODUCTION

The following seminal result is due to Caffarelli (2000).

Theorem 5.1 (Caffarelli’s contraction theorem). Let P = exp(—V) and Q = exp(—W) have smooth

densities on RY, with V2V < Byl and V*W > awlI > 0. Then, the optimal transport map Ve, from P

to Q is v/ v /aw-Lipschitz.

Here, @) : R? — R is a convex function, known as a Brenier potential. The optimal transport
map V¢, : RY — R? pushes forward P to Q, in the sense that if X is a random variable with law P,
then V¢, (X) is a random variable with law Q. See Section 1.3.1 and the textbook by Villani (2021)
for background on optimal transport.

Caffarelli’s contraction theorem can be used to transfer functional inequalities, such as
a Poincaré inequality, from the standard Gaussian measure on R? to other probability mea-
sures (Bakry et al., 2014). Towards this end, recent works have also constructed and studied

alternative Lipschitz transport maps (e.g. Kim and Milman (2012); Mikulincer and Shenfeld (2023;
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2024); Neeman (2022)), but still the properties of the original optimal transport map remain of
fundamental interest, with many questions unresolved (Colombo et al., 2017; Valdimarsson, 2007).

Indeed, besides the application to functional inequalities, the structural properties of optimal
transport maps play a fundamental role in theoretical and methodological advances in optimal
transport, such as the control of the curvature of the Wasserstein space through the notion of
extendible geodesics (Ahidar-Coutrix et al., 2020; Le Gouic et al., 2022), the stability of Wasserstein
barycenters (Chewi et al., 2020), and the statistical estimation of optimal transport maps (Hiitter
and Rigollet, 2021).

In applied domains, however, the inauspicious computational and statistical burden of solving
the original optimal transport problem has instead led practitioners to consider entropically
regularized optimal transport, as pioneered by Cuturi (2013). In addition to its practical merits,
entropic optimal transport enjoys a rich mathematical theory, rooted in its connection to the
classical Schrodinger bridge problem (Léonard, 2014), which has led to powerful applications to
high-dimensional probability (Fathi et al., 2020; Gentil et al., 2020; Ledoux, 2018). As such, it is

natural to study the properties of the entropic analogue of the optimal transport map.

5.1.1 CONTRIBUTIONS

In this chapter, we prove a generalization of Caffarelli’s contraction theorem to the setting of
entropic optimal transport. Namely, we study the Hessian of the entropic Brenier potential which
admits a representation as a covariance matrix (Lemma 5.4). By applying two well-known inequal-
ities for covariance matrices (the Brascamp-Lieb inequality and the Cramér—Rao inequality), we
quickly deduce a sharp upper bound on the operator norm of the Hessian which holds for any
value ¢ > 0 of the regularization parameter.

As a byproduct of our analysis, by sending ¢ ~\, 0 and appealing to recent convergence
results for the entropic Brenier potentials (Nutz and Wiesel, 2021), we obtain the shortest proof of

Caffarelli’s contraction theorem to date. Notably, our argument allows us to sidestep the regularity
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of the optimal transport map, which is a key obstacle in Caffarelli’s original proof.

Recently, Fathi et al. (2020) gave a proof of Caffarelli’s theorem using a surprising equivalence
between Theorem 5.1 and a statement about Wasserstein projections, which was discovered
through the theory of weak optimal transport (Gozlan and Juillet, 2020). In order to verify the
latter, their proof also used ideas from entropic optimal transport. In comparison, we note that our
argument is more direct and also allows us to handle the case of non-zero regularization (¢ > 0).

To further demonstrate the applicability of our technique, in Section 5.4 we prove a generaliza-
tion of Caffarelli’s result: if V2V < A™! and V*W > B!, where A and B are arbitrary commuting
positive definite matrices, then the Hessian of the Brenier potential from P to Q is pointwise upper
bounded (in the PSD ordering) by A~'/2B'/2. This result implies a remarkable extremal property
of optimal transport maps between Gaussian measures, namely: the optimal transport map from
N (0, A) to N (0, B) maximizes the Hessian of the Brenier potential at any point among all possible

measures P and Q satisfying our assumptions. To the best of our knowledge, this result is new.

5.2 BACKGROUND

5.2.1 ASSUMPTIONS

Henceforth, we say that the pair (P, Q) satisfies our regularity conditions if:

1. P has full support on R and Q is supported on a convex subset of R?. Let Qp denote the

interior of the support of Q, so that Qg is a convex open set.

2. P and Q admit positive Lebesgue densities on R and Qp, which we can therefore be written
exp(—V) and exp(—W) respectively for functions V, W : R¢ — R U {co}. We abuse notation

and identify the measures with their densities, thus writing P = exp(—V') and Q = exp(-W).

3. We assume that V and W are twice continuously differentiable on R and Qg respectively.

103



Some of these assumptions can be eventually relaxed, but they suffice for the purposes of this
work. Throughout the rest of the paper and for the sake of simplicity, these regularity assumptions

are assumed to hold for the probability measures under consideration.

5.2.2 OPTIMAL TRANSPORT WITHOUT REGULARIZATION

Let P and Q be probability measures with finite second moment. The optimal transport problem

is the optimization problem

minimize f/% lx —y||? dz(x, y) (5.1)

rell(P,Q)

where II(P, Q) is the set of joint probability measures with marginals P and Q. The following

fundamental result characterizes the optimal solution to (5.1).

Theorem 5.2 (Brenier’s theorem). Suppose that P admits a density with respect to Lebesgue measure.
Then, there exists a proper, convex, lower semicontinuous function ¢y : R — R U {co} such that the
optimal transport plan in (5.1) can be written o = (id, V)4 P. The function ¢y is called the Brenier
potential, and the mapping V¢, is called the optimal transport map from P to Q. Moreover, the
optimal transport map V¢, is unique up to P-almost everywhere equality.

The Brenier potential ¢, is obtained as the solution to the dual problem

maximize /(g —¢)dP+ / (g - ¢%) dO, (5.2)

(pel‘o

where ©* is the convex conjugate to ¢, and Iy is the set of proper, convex, lower semicontinuous
0

functions on R,

We refer to Villani (2021) for further background.

104



5.2.3 OPTIMAL TRANSPORT WITH ENTROPIC REGULARIZATION

Entropic optimal transport is the problem that arises when we add the Kullback-Liebler (KL)

divergence, denoted KL(- || -), as a regularizer to (5.1):

minimize // % lx =yl dz(x,y) + eKL(z||P ® Q). (5.3)

n€ll(P,Q)

The following statement characterizes the solution to (5.3) (Csiszar, 1975; Nutz and Wiesel, 2021;

Peyré and Cuturi, 2019).

Theorem 5.3 (Entropic optimal transport). Let P and Q be probability measures on R¢ and fix

€ > 0. Then there exists a unique solution i, € II(P, Q) to (5.3). Moreover, 7. has the form

fe(x) +9:(y) = 3 llx = ylI?
£

e (dx. dy) = exp ) P 0y, (5.4

where (f, g.) are maximizers for the dual problem

maximize / fdP+ / gdQ —¢ // e 49— llx—ylI*) /e dP(x)dQ(y) +¢. (5.5)
(f.9)eL'(P)xL (Q)

The constraint that 7, has marginals P and Q implies the following dual optimality conditions

for (f, g.) (see Mena and Niles-Weed (2019); Nutz and Wiesel (2021)):

£(x) = —¢log / @SR/ G40y (x € RY), (5.6)

) = ~elog [ O HINedpi) (g e R, (57)

In particular, f; and g, are smooth. In this work, it is more convenient to work with the entropic
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Brenier potentials, defined as

(o) = Gl IIP=fi 5117 = g0) - (5:8)

Since (f;, g.) are only unique up to adding a constant to f; and subtracting the same constant from
ge, we fix the normalization convention f fedP = f g. dQ. Under this condition, it was shown
by Nutz and Wiesel (2021) that we have convergence to the Brenier potential ¢, — ¢ as € \ 0.

Adopting this new notation, with P = exp(—V) and Q = exp(—W), we can rewrite the entropic

optimal plan as

(20 pe ) )
&

7 (dx, dy) = exp Vi(x) - W(y)) dxdy.

The entropic Brenier potentials were first introduced to develop a computationally tractable
estimator of the optimal transport map V¢, (Pooladian et al., 2022; Pooladian and Niles-Weed,
2021; Seguy et al., 2018). Indeed, this is motivated by the following observation, which acts as an

Y]

entropic version of Brenier’s theorem. Write 7, X=X for the conditional distribution of Y given

X = x for (X,Y) ~ m,, and similarly define ”§(|Y:y. Then, by Pooladian and Niles-Weed (2021,

Proposition 2), Ve, is the barycentric projection

Vo (x) = / ydr! ¥ (y). (5.9)

. . : : Y|X= X|Y=
For clarity of exposition, we abuse notation and abbreviate 7, IX=x by x} and 7, Y=y by 7 when
there is no danger of confusion.

The following lemma is a straightforward computation using (5.4), (5.6), and (5.7).

Lemma 5.4. It holds that

Vipe(x) =¢! Covy-xx(Y), and Vie(y) = et Covy_ v (X).

106



In particular, both ¢, and . are convex. Moreover, under our regularity conditions,

Vylog(1/m)(y) = €™ V2Ye(y) + VW (1),

Vilog(1/n))(x) = e Vi, (x) + V2V (x).

5.2.4 TWO COVARIANCE INEQUALITIES

In our proofs, we make use of the following key inequalities.

Lemma 5.5. Let P = exp(—V) be a probability measure on R% and assume that V is twice continu-

ously differentiable on the interior of its domain. Then, the following hold.

1. (Brascamp-Lieb inequality) If in addition we assume that P is strictly log-concave, then it holds

that Covy-p(X) < Ex-p[(VEV(X))'].
2. (Cramér—Rao inequality) Covyx.p(X) > (EXNP[VZV(X)])_I.

The Brascamp-Lieb inequality is classical, and we refer readers to Bakry et al. (2014); Bobkov
and Ledoux (2000); Cordero-Erausquin (2017) for several proofs. To make our exposition more

self-contained, we provide a proof of the Cramér-Rao inequality in the appendix.

5.3 MAIN RESULT AND PROOF

We now state and prove our main theorem.
Theorem 5.6. Let P = exp(—V) and Q = exp(—W).

1. Suppose that (P, Q) satisfy our regularity assumptions, as well as

ViV < By, and VW > awl > 0.
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Then, for every ¢ > 0 and all x € RY, the Hessian of the entropic Brenier potential satisfies

1
VEpu(x) = 5 (4Bv e + 2% — efv) .
2. Suppose that (Q, P) satisfy our regularity assumptions, as well as
V3V = ayl > 0, and ~ VPW < Byl .

Then, for every ¢ > 0 and all x € Qp := int(supp(P)), the Hessian of the entropic Brenier

potential satisfies

1
Vipe(x) = 3 (\/4av/ﬁw +e2al —cay) 1.
Observe that as ¢ N\ 0, we formally expect the following bounds on the Brenier potential:

Vav/BwI < Vo(x) < /Bv/aw]I.

In particular, this recovers Caffarelli’s contraction theorem (Theorem 5.1). We make this intuition
rigorous below by appealing to convergence results for the entropic potentials as the regularization

parameter ¢ tends to zero.

Proof of Theorem 5.6. Upper bound. Fix x € RY. Recall from Lemma 5.4 that

Vipe(x) =¢! Covy-nx(Y).
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By an application of the Brascamp-Lieb inequality, this results in the upper bound

V2ps(x) = £ Covynx(Y)
< e By [ (7 VE(Y) + VEW(Y)) ]

< Bynr [ (V2 (Y) + eaw) '],

where in the last inequality we also used the lower bound on the spectrum of V2W. Next, using

Lemma 5.4 and the Cramér—Rao inequality (Lemma 5.5), we obtain the lower bound

Vi (Y) = ¢! Covy_ v (X)

> e By, [e7 V20e(X) + V2V(X)]) ™

~rY

> (Ex.nr [V20.(X) + epvI] )_1 ,
where we used the upper bound on the spectrum of V2V. Combining these inequalities,
2 2 -1 -
Vepe(x) < EYN,Tg[((EXN”g [V @:(X) +gﬁvl]) +£0(WI) ] .

Now, define the quantity

Le == sup Amax(V2@e(x)) .

xeRd

Then, we have shown

Amax (V20e (%)) < ((Le + efy) ™! + eaw) .
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Taking the supremum over x € R?,
Lo < ((Le+ efy) ! + gaw)_l .

Solving the inequality yields

L. < % (\/4,BV/0(W + 627 —efy) . (5.10)

Lower bound. The lower bound argument is symmetric, but we give the details for complete-

ness. Using Lemma 5.4 and the Cramér—Rao inequality (Lemma 5.5),

Vz(l)e(x) =g COVY~7T§‘(Y)
> ¢ (Byonr [ VE(Y) + VPW(Y)])

> (Byr [V2Ye(Y) + epwlI]) .
Applying Lemma 5.4 and the Brascamp-Lieb inequality (Lemma 5.5),

Vz[ﬁe(y) = COVX~7r§’ (X)
< T By [ (€7 V2 (X) + VAV (X))

=< EX~7ISY [(Vz(pE(X) + é’avl)_l] .
Combining the two inequalities and setting

— i . 2
te = xlen(gp Amln(v QDE(X)) s
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we deduce that
l: > ((fg + gav)_l + gﬁw)_l )

On the other hand, from Lemma 5.4, we know that £, > 0. Solving the inequality then yields

1
> > (\/40(V/ﬁw +e2a, — cay) .

Next, we rigorously deduce Caffarelli’s contraction theorem from Theorem 5.6.

Proof of Caffarelli’s contraction (Theorem 5.1). For every ¢ > 0, by Theorem 5.6, we have proven
that V2¢, < LI, with L, as in (5.10). Equivalently, this can be reformulated as saying that %”lz -

(VB [aw+5) III*
2

is convex. Fix some § > 0; in particular, for ¢ sufficiently small, — @, is convex.
Upon passing to a sequence & \, 0, existing results on the convergence of entropic optimal
transport potentials show that ¢,, — ¢, in L' (P) (see Nutz and Wiesel (2021)). Passing to a further

(VBv/aw+d) IIII°
2

subsequence, we obtain ¢, — ¢, (P-almost surely). It follows that — (o is convex
for every § > 0 (see the remark after Rockafellar (1997, Theorem 25.7)), and thus for § = 0 as

well. m]

Remark 5.7. Our main theorem provides both upper and lower bounds for V2¢,. In the case when
¢ = 0, the lower bound follows from the upper bound. Indeed, if ¢ is the Brenier potential for
the optimal transport from P to Q, then the convex conjugate ¢; is the Brenier potential for the
optimal transport from Q to P. By applying Caffarelli’s contraction theorem to ¢; and appealing
to convex duality, it yields a lower bound on V2¢,. However, we are not aware of a method of

deducing the lower bound from the upper bound for positive values of e.
Remark 5.8. In Appendix D.2, by inspecting the Gaussian case, we show that Theorem 5.6 is sharp

for every ¢ > 0.
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An inspection of the proof of the upper bound in Theorem 5.6 reveals the following more

general pair of inequalities.

Proposition 5.9. Let (P, Q) be probability measures satisfying our regularity conditions. Then, for

all x € R4 andy € Qo,

V20 (x) < Byor [(V2e(Y) + e VPW(Y)) '],

VAe(y) = (Bx_po [V2e(X) +e VEV(X)]) .

In the next section, we use these inequalities to prove a generalization of Caffarelli’s theorem.

5.4 A GENERALIZATION TO COMMUTING POSITIVE DEFINITE
MATRICES

In the next result, we replace the main assumptions of Caffarelli’s contraction theorem, namely

V2V < Byl and V?W > aywI, by the conditions
ViV < A7} and VW > B!, (5.11)

where A and B are commuting positive definite matrices. Recall that the Hessian of the Brenier
potential between the Gaussian distributions A (0, A) and (0, B) is the matrix A~'/2B'/2 (Gelbrich,
1990). In light of this observation, the following theorem is sharp for every pair of commuting
positive definite (A, B), and shows that the Brenier potential between Gaussians achieves the

largest possible Hessian among all source and target measures obeying the constraint (5.11).

Theorem 5.10. Let (P, Q) satisfy our regularity conditions as well as the condition (5.11). Then, the
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Hessian of the Brenier potential satisfies the uniform bound: for all x € RY, it holds that
Vig(x) < AV/?BY2.

As in Theorem 5.6, the proof technique also yields a lower bound on V?¢, under appropriate

assumptions. We omit this result because it is straightforward.

Proof. Let C, be the smallest constant C > 0 such that V¢, (x) < A"Y/2B'/2 4 CI for all x € R%. In

light of Theorem 5.6, C; is well-defined and finite. Equivalently,

C:=sup sup (e, [VZpe(x) — ATV2B12) e>.

x€R4 ecRY, ||e||=1

Let (x, e) achieve the above supremum. (If the supremum is not attained, then the rest of the proof
goes through with minor modifications.)

Using our assumptions and Proposition 5.9, we obtain
Co = (e [V2pe(x) = A7V2B2) ) < (e, | ((ATV2BV2 4 CuT o+ 2A™) 4 eB7!) = A712BY2 o).

From our assumptions and Theorem 5.6, we know that the spectrum of M, := A"Y/2B'/2 4+ C,I is

bounded away from zero and infinity as € \, 0, which justifies the Taylor expansion

(M +eA ™) 4B )7 = (M1 — eMIIATIMI L+ 6B+ 0(62))

=M, +eA™! — eM,B M, + O(¢) .
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Hence,

Ce < (e, [ME +eA = eM.BTIM, + O(gz) _A—1/231/2] e)
<Cet+e(e [AT = MB 'M]e)+0(e)

=Ce+e(e, [C.ATPB2 4+ C2B 7! e) + O(%).

This shows that lim,\ o C; = 0 (otherwise (C;),., would have a strictly positive cluster point
which would contradict the above inequality for small enough ¢ > 0).
By combining this fact with convergence of the entropic Brenier potentials as in the proof of

Theorem 5.1, we deduce the result. O

Next, we show how our theorem recovers and extends a result of Valdimarsson (Valdimarsson,

2007). Valdimarsson proves that if:
« A, B, and G are positive definite matrices;

« A < G and B commutes with G;

P = N(0,BG™!) % y where * denotes convolution and y is an arbitrary probability measure

on R?; and

Q = exp(-W) with V2W > B~1/2A-1B71/2,

then the Brenier potential satisfies V2¢p, < G. This result was then used to derive new forms of
the Brascamp-Lieb inequality.!
To prove this result, we first check that convolution with any probability measure only makes

the density more log-smooth.

IThis is a different Brascamp-Lieb inequality than the one in Lemma 5.5.
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Lemma 5.11. Let P o exp(—?) be a probability measure, where V : R — R is twice continuously
differentiable. Let P := P« 1t = exp(=V) where y is any probability measure on R. Suppose that for

some positive definite matrix A~', we have V2V < A~'. Then, V>V < A~" as well.

Proof. An elementary computation shows that if we define the probability measure

exp(=V(y = x)) ()
Jexp(=V(y - x)) p(dx")

vy(dx) =
then
V2V (y) = Ex~y, [V2V(y = X)| = Covxy, (VV(y - X)),

from which the result follows. O

From the lemma, we deduce that under Valdimarsson’s assumptions, for P = exp(-V), we
have V2V < B~1G. Also, VAW > B 1/2A"1B~1/2 » B1G~1, By Theorem 5.10, the Brenier potential
@ satisfies V2p, < G. However, it is seen that our argument yields much more. For example,
rather than requiring P to be a convolution with a Gaussian measure, we can allow P to be a

convolution with any measure exp(—‘7) satisfying V2V < B™'G.

Remark 5.12. It is natural to ask whether Theorem 5.10 can be obtained by first applying Caffarelli’s
contraction theorem to show that the optimal transport map Ty between the measures (A™!/ )P
and (B~ ?)4Q is 1-Lipschitz, and then considering the mapping Ty (x) := BY/2Ty(A™/2x). Although
Ty is indeed a valid transport mapping from P to Q, under our assumptions VT is not guaranteed
to be symmetric, so it does not make sense to ask whether or not VT < A-12B1/2,

In Valdimarsson’s application to Brascamp-Lieb inequalities, it is crucial that the transport
map Tj is chosen so that VT is a symmetric positive definite matrix. Symmetry of VIj implies
that Ty is the gradient V¢, of a function ¢, : R? — R, and positive definiteness implies that ¢ is

convex. By Brenier’s theorem, the unique gradient of a convex function that pushes forward P to
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Q is the optimal transport map. Thus, it is crucial that we consider the optimal transport map
here; in particular, alternative maps such as the ones by Kim and Milman (2012); Mikulincer and

Shenfeld (2024) cannot be applied.
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6 TIGHT STABILITY BOUNDS FOR ENTROPIC

BRENIER MAPS

6.1 INTRODUCTION

The theory of optimal transport defines a geometry over probability measures via the 2-
Wasserstein distance: for a source measure p and a target measure p with finite second moments,

their Wasserstein distance is given by

WE(p.p) = min min [ lx= T dp(). (6.1)

where the constraint Typ = y means that for X ~ p, T(X) ~ p, i.e, T is a transport map. The
minimizer to (6.1), when it exists, is called an optimal transport map, which we denote by T(fl .
A seminal result by Brenier (1991) states that a unique optimal transport map between p and p
exists whenever p has a density, and moreover T” Vq)o, where (po is some convex function. We
will henceforth refer to optimal transport maps as Brenier maps, and the corresponding convex
functions that generate them as Brenier potentials.

A long-standing question in the optimal transport community is the following: is the mapping

p +— T Hélder continuous with respect to the 2-Wasserstein distance? In other words, do there
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exist constants C, f > 0 such that for all probability measures y, v with finite second moments,
IT! = Tl < CWE (1 v) 2 (6.2)

Since the inequality W (p, v) < ||T0“ — Ty llz2(p) always holds, (6.2) would imply that the mapping
U TO” is a bi-Holder embedding of the Wasserstein space into L?(p). We call such an inequality
a stability bound.

The unique structure of the one-dimensional optimal transport problem shows that when p, f,
and v are probability measures on R, the bound (6.2) holds with C = = 1—that is, the mapping
U T(f is an isometry (see, e.g., Panaretos and Zemel, 2020, Chapter 2). On the other hand, Andoni
et al. (2015) showed that if d > 3, then (6.2) cannot hold uniformly over all probability measures p
and v on R? with finite second moment. In fact, their main statement is significantly stronger and
rules out the possibility of embedding the Wasserstein space into any L? space, even in a very
weak sense. Nevertheless, as we describe further below, a stability bound such as (6.2) can hold if
further conditions are imposed on y and v, for instance, if they are compactly supported.

An early investigation in this direction is due to Gigli (2011), who showed that even when u
and v are compactly supported, the exponent in (6.2) cannot be better than f = % However, in
the same paper, the author reports a simple proof due to Ambrosio that shows that if one of the
Brenier maps, say T, is A-Lipschitz, then = % is achievable, with C = 2VAR, where R is the
diameter of the support of p; see also Mérigot et al. (2020, Theorem 2.3) for a precise statement
and proof of this result. More recently, Manole et al. (2024a) showed that if T is A-Lipschitz and
its inverse is 1/A-Lipschitz, then = 1 is achievable, with constant C = \/m

Though these positive results are encouraging, requiring a priori smoothness bounds on one
of the two Brenier potentials excludes many cases of practical interest, for instance, the case of
discontinuous Brenier maps. Such maps arise commonly in applications of optimal transport

to machine learning, where it is natural to consider probability measures that lie on a union
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of manifolds of different intrinsic dimension (Brown et al., 2022). There has therefore been
significant recent interest in obtaining stability bounds without such assumptions; see Berman
(2021); Delalande and Mérigot (2023); Mérigot et al. (2020). The results of Delalande and Mérigot
(2023) are the most recent. They show that if p has a (uniformly upper and lower bounded) density

supported on a convex set X, with y and v also supported on a compact set Y, then

6
1Ty = Ty ll12(p) < Caxy W, (V).

In fact, the authors prove this bound for the W; distance. Their proof technique relies on applica-
tions of the Brascamp-Lieb and Prekopa—-Leindler inequalities.

In this chapter, we study analogous stability bounds for entropic Brenier maps. As entropic
optimal transport is a natural smoothed analogue to the optimal transport problem, and it is
reasonable to hope that techniques developed for entropic optimal transport can give insights
into the structure of the unregularized problem.

Despite the importance of entropic Brenier maps, much less is known about their stability
properties. The first result in this area is due to Carlier et al. (2024), who showed that if p, 1, and v

are compactly supported, then

where C; is a constant that grows exponentially as ¢ tends to zero.

This striking result reveals that entropic Brenier maps automatically enjoy better stability
properties than unregularized Brenier maps when ¢ > 0. However, if (6.3) is to be used to extract
either practical bounds for entropic Brenier maps or insights about unregularized Brenier maps in

the ¢ — 0 limit, it is crucial to obtain sharp bounds on the constant C,.
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6.1.1 CONTRIBUTIONS

The goal of this chapter is to improve the Lipschitz constant for the embedding i +— T/ as a
function of e. Our main theorem is technical, but it readily implies results in the following three
scenarios of interest.

First, if the source and target measures are merely supported in the Euclidean ball of radius R,

then
T = T N2 < (1+2R*/e)Wa(p, v),

see Corollary 6.5. We stress that none of the measures here require densities, and so, a priori,
Brenier maps may not exist, while their entropic counterparts do. Moreover, up to universal
constants, we show that this bound is tight; see Remark 6.6. This is an exponential improvement
on the bounds provided by Carlier et al. (2024).

As in the unregularized case, the preceding bounds can be improved under smoothness
assumptions on the entropic Brenier potentials. Such assumptions are arguably more reasonable
than in the unregularized case, since it is sometimes possible to obtain a priori smoothness bounds
for entropic Brenier potentials via elementary tools (see, e.g., Chewi and Pooladian, 2023). If one
of the entropic Brenier maps, say T, is A-Lipschitz, we show that the previous bound can be

improved to
1T = T llz2py < (1+2VRA/e)Wa(p,v),

Going further, if the backward entropic Brenier map S! (see Section 6.2 for a precise definition) is

1/A-Lipschitz, then the bound becomes independent of the regularization parameter:

IT = T2y < (1+2A/A)Walp, v) .
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See Corollary 6.7 for these last two results. In particular, up to constants, this result is analogous
to the stability bound established by Manole et al. (2024a).

As a novel application, we turn to the semi-discrete setting of optimal transport, where y and v
are both supported on finitely many atoms and p has a sufficiently well-behaved density. In this

setting, we partially close the gap left by Gigli and others, where we prove that
1T = T ey < W, (), (6.4)

where 1, v satisfy appropriate regularity conditions, as does the source measure p, and the sup-
pressed constant depends on these regularity assumptions. While our results do not allow for
arbitrary discrete measures, they hold for a wide class of discrete measures and do not require
the support of the atoms to be the same. The proof starts from the following application of the

triangle inequality
1Ty = T 2oy < Ty = T 2oy + 1Ty = T N1z (p) + CeWa(pv) -

Under appropriate assumptions on p and the two discrete measures y and v, we are able to control
the first two terms using existing techniques, and the third term can be controlled via Corollary 6.5.
Balancing the resulting terms as a function of ¢, we obtain the final bound that appears in (6.4).
Our identification of the sharp constant C, is crucial to obtaining the result. See Section 6.4 for

more details.

6.2 BACKGROUND
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6.2.1 ENTROPIC OPTIMAL TRANSPORT AND NOTATION

For two probability measures p, v € P, the entropic optimal transport objective (Cuturi, 2013)

is defined as

OT.(p,v) = Herg(i/rjlv) // %Hx —z||*dn(x,z) + eKL(7|[p® V), (6.5)

for some ¢ > 0, and KL(7||p ® v) is the Kullback-Leibler divergence, defined as

dr
KL(7T||p®V) = /lOg (W) drz

when 7 is absolutely continuous with respect to p ® v, and +co otherwise. Note that due to the
regularization term, the problem is strictly convex with a unique minimizer 7}, the optimal entropic
(transport) coupling.!

The entropic optimal transport problem also admits a dual formulation (see, e.g., Genevay,

2019):

OT:(p,v) = %Mg(p +v) — min / pdp + / ®[p] dv, (6.6)
@€L'(p)

where ®; is the following operator
Vz e RY, @ [p](2) = glog/ el x2=00/e 45 (x)

which should be thought of as the entropic analogue to the convex conjugate operator. Indeed,
notice that as ¢ — 0, ®?[¢](z) converges to the p-essential supremum of the function x

(x,z) — ¢(x). We write the minimizer to (6.6) as ¢/, from which we obtain the minimizing pair of

ISince p is fixed throughout, we use the superscript v (respectively, 1) to indicate objects that correspond to the
entropic optimal transport problem between p and v (respectively, p and p).
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entropic Brenier potentials

OSAENOX AUSIENCATAR/9R

where @/ is defined analogously to ®. Again, this pair is unique up to constant shifts.
Moreover, by the dual optimality conditions, we can define versions of the entropic Brenier
potentials taking values in the extended reals, for all x € R? and z € R?, respectively. Thus, we

freely write

pr(x) = Elog/ el xV @/ qy(2)  (x € RY)
(6.7)
Y (z) = elog / el D=0 D/eq5(x)  (z e RY).

See Mena and Niles-Weed (2019); Nutz and Wiesel (2021) for more details. Note that ¢! : R —

R U {+00} (resp. /) is a convex function which is analytic on the interior of its domain dom(¢;)

(resp. dom(y7))),

An important feature of the entropic optimal transport problem is that the optimal solutions

to (6.5) and (6.6) satisfy the following primal-dual relationship (Csiszar, 1975):
dr!(x,z) = y.(x,z) dp(x) dv(z) = e 2=V (=0 CN/E 45 (x) dv(z) .

Concretely, y/, the density of 77 with respect to p ® v, can be written explicitly in terms of the
entropic Brenier potentials (¢}, /).
Let (X, Z) be a pair of random variables with distribution 7). For a given x € dom(¢}), we

abuse notation and define the conditional probability of Z|X = x as

dr’ (z]x) = e(FD=0E Y@/ gy ()
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Similarly we denote 7} (-|z) = 7}(:|Z = z) whenever z € dom(y;). Likewise, if (X,Y) are
distributed according to the optimal entropic coupling 7* between p and p, we will write 72 (|x)
and 7¥' (+|y) for the conditional distributions of Y|X = x and X|Y = y, respectively. We will adopt
the convention throughout that X, Y, and Z always refer to random variables with marginal
distributions p, y, and v, respectively.

Following e.g., Pooladian and Niles-Weed (2021); Rigollet and Stromme (2022), we define,
respectively, the forward and backward entropic Brenier maps from p to v to be barycentric
projections of 7 (Ambrosio et al., 2008, Definition 5.4.2): for x € dom(¢;) and z € dom(y}), we

define
T, (x) ::/zdn;’(zlx), S; (2) ::/xdir:(xlz)

whenever the integrals are well-defined. Unlike the unregularized case, (S/)~! # T. Note that by

Jensen’s inequality, T, € L?(p) with ||T/|| M, (v) (resp. S! € L*(v) with ||S€V||iz(v) < My(p)).

2 <
L2 (p) ~
Also note that by the dominated convergence theorem, the gradient of ¢} (resp. ¢Y) from (6.7) has
a natural interpretation as the forward (resp. backward) entropic Brenier map: whenever x is in

the interior of dom(¢}) and z is in the interior of dom(y;),

Vo (x) =T/ (x), Vi (2) =5.(2). (6.8)

Under the same condition, a similar expression holds for the Hessians of the entropic Brenier

potentials (see, e.g., Chewi and Pooladian, 2023, Lemma 1):
Vz(p:(x) = g_ICovﬁgv (ZIX =x), V2¢€V(z) = £_1C0V”;(X|Z =2z). (6.9)

Throughout, we will write (¢}, ¥)) for the entropic Brenier potentials associated to OT,(p, v),
T! for the forward entropic Brenier map, and S} for the backward entropic Brenier map (and the

same for for OT,(p, pt)).
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Similarly, we will simply write ¢;, 1/, and T to refer to the quantities associated to the

unregularized optimal transport problem W2 (p, v) (as for W2 (p, ).

6.2.2 RELATED WORK IN ENTROPIC OPTIMAL TRANSPORT

FIXED REGULARIZATION. The initial motivation for studying (6.5) in the machine learning lit-
erature was its significant computational benefits compared to the standard optimal transport
problem (Altschuler et al., 2017; Cuturi, 2013). As a result, the study of entropic objects for a
fixed ¢ > 0 regularization parameter has been of great interest in a number of fields. For example,
del Barrio et al. (2022b); Goldfeld et al. (2024a); Gonzalez-Sanz et al. (2022) studied statistical
limit theorems for entropic optimal transport. Conforti et al. (2023); Greco et al. (2023); Nutz and
Wiesel (2023) study the convergence of Sinkhorn’s algorithm to the optimal Brenier potentials
at the population level. The works by Klein et al. (2024); Masud et al. (2023); Pooladian et al.
(2022); Rigollet and Stromme (2022); Stromme (2024); Werenski et al. (2023) studied additional
computational or statistical properties of entropic Brenier maps. As previously mentioned, Carlier
et al. (2024) initiated the study of the stability properties of entropic Brenier maps under variations

of the target measure, though their techniques differ significantly from ours.

VANISHING REGULARIZATION. Theoretical properties of entropic optimal transport for vanishing
regularization parameter are widely studied in both statistical and theoretical works. For example,
convergence of the regularized to unregularized couplings was studied by Bernton et al. (2022);
Carlier et al. (2017); Ghosal et al. (2022); Léonard (2012), and convergence of the transport costs
by Chizat et al. (2020); Conforti and Tamanini (2021); Eckstein and Nutz (2023); Pal (2024). Nutz
and Wiesel (2021) established convergence of the entropic to non-entropic Brenier potentials
under minimal assumptions; this convergence was improved in the case of semi-discrete optimal
transport by Altschuler et al. (2022) and Delalande (2022). Chewi and Pooladian (2023) established

a short proof of Caffarelli’s contraction theorem (Caffarelli, 2000) via covariance inequalities and
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entropic optimal transport, which was subsequently generalized by Conforti (2024). Statistical
convergence of entropic Brenier maps to unregularized Brenier maps was established by Pooladian
et al. (2023); Pooladian and Niles-Weed (2021), the latter paper focusing on the semi-discrete

setting.

6.2.3 KEY INGREDIENT: A TRANSPORT INEQUALITY FOR CONDITIONAL ENTROPIC

COUPLINGS

At the core of our approach is the use of a specific transport inequality which has been
developed for other purposes in the study of sampling and functional inequalities (Anari et al.,
2021a;b; Bauerschmidt et al., 2023; Chen and Eldan, 2022). We refer to Bauerschmidt et al. (2023,
Section 3.7) for more details, and briefly overview the necessary inequalities and notation here.

Let g € P, be a probability measure with finite moment generating function whose covariance

is denoted by Cov(q). For h € R?, we define the tilt 75q of g as the probability measure satisfying

d7hq
dg

() PR D)

d
Vz € RY, - Ez-glexp(<h, Z))]

We say that q is tilt-stable? if for all h € RY, Cov(7,q) < Crl for some Ct > 0. If q is tilt-stable

with constant Cr, then for all probability measures p € P,
IEp [X] = Eq[X]1I° < 2GrKL(pllg),

see Bauerschmidt et al. (2023, Lemma 3.21).
Our main observation is that conditional entropic couplings are tilt-stable, with a constant

that can be written in terms of the entropic Brenier potentials. For an entropic potential ¢; whose

2This name is not standard, but we introduce it here because the standard name for this concept (entropic stability)
is likely to cause confusion in the context of our main results.
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domain is all of R?, we write

Huax(¢7) = sup [|Covyy (ZIX = ) llop = € sup V20! (u)llop (6.10)

ueRd ueRd

and define Hyax (1)) analogously. The second equality in (6.10) is justified by the fact that (6.9)
holds everywhere when dom(¢) = RY. If either potential is not finite on all of R%, we adopt the

convention that Hy,x = +0.

Lemma 6.1. Let x € R? and let 7/ (-|x) be a conditional entropic coupling between two probability

measures p, v € P,. Assume that dom(¢!) = R%. Then for any h € R?,
Tnrre (-|x) = m (-|x + ch) .

Corollary 6.2. The conditional entropic coupling 7! (-|x) (resp. ! (-|z)) is tilt-stable with constant

Humax (¢f) (resp. Hmax (V).

6.3 MAIN RESULTS

We now present our general stability result for entropic Brenier maps.

Theorem 6.3 (Stability of entropic Brenier maps). Suppose p, j1, v have finite second moment. Then

.\ 2(Hiax (@) Hmax (Y7))) /2
£

I =T lrzge) < (1 )W v).

Remark 6.4. Note that if the potentials (¢, 1) are not finite everywhere, the quantities Hpax(¢;)
and Hp,.x () are infinite by convention, and the inequality becomes vacuous. The potentials are
finite everywhere whenever p and v have moment-generating functions that are finite everywhere
(including the important case of bounded supports), but also when p and v have support equal to

R?, without additional tail assumptions.

127



From here, we can prove the results highlighted in the introduction as special cases.

Corollary 6.5 (Entropic stability for bounded measures). Suppose p and v are supported in B(0; R),

and u has finite second moment. Then

T - T < (1 Z—sz
T — T M2y < |1+ . 2 (1, v) .

Proof. Since p and v are supported in B(0; R), (6.9) implies that both Hpax(¢)) and Hpax () are
smaller than R?, which completes the proof. m]

Note that Corollary 6.5 is entirely general in its requirements, and does not rely on smoothness

of maps, nor do any of the measures require densities.

Remark 6.6 (Tightness of Corollary 6.5). We now demonstrate that Corollary 6.5 is tight for general
bounded probability measures. Fix R > 0, and let py = %51?69 + %5—Re9 with eg = (cos(0), sin(0)),
for 6 € [0,7]. Let p := pr/o and € > 0, and let 79 denote the entropic optimal coupling between p

and pg for 0 € [0, 7). One can deduce that the optimal entropic coupling is symmetric for any

such 6:

7 (x,y) = 7 (—x,—y),

Following the calculations in Altschuler et al. (2022, Section 3), one can choose /¢ (eg) = 1/ (—eg) =

0, so that by (6.7), for all x € R¢,
o0 (x) = elog(LeRixen/s 4 1pR(xeo)le)
Then we compute

T (x) = Reg(n? (x, eg) — 70 (x, —eg)) = Reg tanh(R(x, eg) /) .
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Let pt == po and v := py. Following the above calculations, it is clear that

, R?0
172 = 2y = Rlleglly tanb? (R sin(@) ) = - + O(6) .

It is also easy to verify that W, (po, pg) < 6, since the optimal transport map from py to py is the
standard 2 X 2 rotation matrix acting on the dirac masses. This example shows that for 8 small the

dependence R?s~! in Corollary 6.5 is tight.

The following example provides the entropic analogue of Theorem 6 from Manole et al. (2024a);

their result is formally recovered in the ¢ — 0 limit.

Corollary 6.7 (Improved stability under smoothness). Suppose T is uniformly A-Lipschitz. If p is

supported in B(0; R), then
T =T N2y < (1+2VAR? /) Wa(p, v) .
If instead S is uniformly 1/A-Lipschitz, then
1T =T N2y < (14 2A/D)Wa(pv)

Proof. The first claim follows from the bounds Hpax(¢)) < Ae, which follows from (6.10), and

Hpmax (1)) < R?. For the second, we instead use that Hyay (7)) < €/A. m|

6.3.1 PRroor oF THEOREM 6.3

Our proof relies on three propositions. To continue, we require the following objects. Let
7 € II(, v) be a fixed (though not necessarily unique) optimal transport coupling between p and

v. For z € RY, let 7(-|z) be associated (regular) conditional measure (see Bogachev, 2007, Chapter
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10), so that for all measurable f : RY x RY — [0, +c0)

[ rwoawa= [ ( [rwa dr<y|z>) av(2).

For x € RY, let Q(-|x) be the probability measure with

dQ([x)
dv

Vz € RY, (z) = / Y (x,y) dr(ylz), (6.11)

where y! (x, y) is the density of 7 w.rt. p ® p. Note that this indeed defines a density as we have

the relation

/(/ ye (x,y) dr(ylz)) dv(z) = //yﬁl(x, y) dr(y, 2) :/Yf(x, y)du(y) = 1.

We also define the conditional Kullback-Leibler divergence:

I= / KL(Q(- 1)l (1)) dp (). (6.12)

We are now in a position to proceed with the proof. First, we decompose the difference of forward

entropic Brenier maps into a W, (y, v) term, plus a term depending on I.

Proposition 6.8. Suppose p, j1, v have finite second moment. Then
ITE = TNl < Walp, v) + (2Hmax (9))D'%.

In (6.12), we defined the conditional relative entropy between Q(-|x) and the conditional

entropic coupling 7} (-|x). We now turn to directly bounding the quantity I. Note that for all
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z € R4

dQ( dOCk) ) _ [ ¥t (x,y) de(ylz)
dr (+]x) vy (x,z) '

An application of Jensen’s inequality then yields that

I<i= /// “ y) ), de(3.2) dp(x). (6.13)

Expanding the densities y* (x, y) and y (x, z) and performing the integration, we obtain

d‘=// <x’y—Z>Y£(x,y)df(y,2')dp(x)+/(p:dp+/%vdv_/q)éldp_/%ld#
://<55(y),y—z>dr(y,z)+/q)gvdp+/¢;dv—/¢gdp_/¢5dﬂ

where we use the equality S (y) = f xy! (x,y) dp(x) in the last line. If we define I as a symmetric

analogue to I, namely,

i= /// 1og(;§ﬁ—23)y:<x, 2) dz(y, 2) dp(x),

then, since 0 < I, a symmetric calculation immediately yields the following:

Proposition 6.9. Suppose p, i, v have finite second moment. Then

el<e(I+]) = / (St (y) = SY(2),y — z)dr(y,2) . (6.14)

All in all, our bound currently reads

T = T N2 < Walpv) + (28‘1Hmax(qog))1/2 //(S“(y) St (2),y — z) dr(y, Z))
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The second term depends on the two backward entropic Brenier maps, St and S!. The next
proposition shows that tilt stability can again be used to bound the difference between these

backward maps by I.

Proposition 6.10. Suppose p, ji, v have finite second moment. Then

/ IS (y) = S{(2)1* dz(y, 2) < 2Hmax (Y1

Finally, with these results in hand, we can prove our main result.

Proof of Theorem 6.3. From (6.14), we apply Cauchy-Schwarz, resulting in
el < [[ (st = 5220y = 2 de0.2) < Walhu ) Hnus (UOD
This ultimately implies
IV < I'V2 < "Wy (1, v) (2Himax (90)) 2,

where we recall the first inequality from (6.13). Together with Proposition 6.8, the proof is

complete. ]

6.4 APPLICATION: IMPROVED QUANTITATIVE STABILITY OF
SEMI-DISCRETE OPTIMAL TRANSPORT MAPS

As an application of our new stability results for entropic Brenier maps, we turn to proving
quantitative stability results for unregularized optimal transport maps. As highlighted in the

introduction, our proof technique for proving quantitative stability for optimal transport maps is
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based on the following decomposition:

1Ty — Ty 2y < Ty = T llrzgpy + 1Ty = T llz2gpy + T2 = TY M2y - (6.15)

Recall that Corollary 6.5 takes care of the last term under virtually no assumptions other than
boundedness of the measures. It remains to control the first two terms in the above decomposition,
also known as bias terms.

To the best of our knowledge, bounds on the bias of entropic Brenier maps are known only
under strong assumptions. For example, Pooladian and Niles-Weed (2021) showed that (see their

Corollary 1)

”Toy - Tg#”?}(p) < 5210(,0:/1)’

where Iy(p, i) is the integrated Fisher information along the Wasserstein geodesic between p
and p, where p and p have upper and lower bounded densities over compact domains. Such
assumptions, while essential for estimating optimal transport maps on the basis of samples, are
too restrictive for our purposes.®

With this in mind, our goal is to establish quantitative control on the bias of entropic Brenier
maps under less restrictive regularity conditions. Specifically, we turn to the semi-discrete setting,
where p has a density, and p and v are both discrete measures. As we will shortly see, this setting
allows for (6.15) to be used to obtain meaningful bounds on the stability of two semi-discrete
optimal transport maps when the discrete measures themselves have favorable properties.

We briefly recall some fundamental notions from semi-discrete optimal transport: let y =

2521 pj6y; be a discrete probability measure with atoms located at the points {y; }5 with corre-

=1

*Indeed, under these assumptions, it is well-known via Caffarelli regularity theory (Caffarelli, 1992; 1996) that the
corresponding optimal transport map is Lipschitz, so the results of Gigli (2011) already imply a stability bound.

133



sponding weights y; > 0. In this setting, the Brenier potential is given explicitly by
¢p(x) = max (x,y;) - ();.
Jje{1,...J}

where 1//(/)1 € R/ is the dual potential. Note that <pg is p-almost everywhere differentiable, and so
the Brenier map T(‘)u = Vq)g is well-defined. The inverse transport map is now set-valued, where
for a given target atom y;, we define the Laguerre cell L; = (TO” )"(y;). These cells partition the
support of p. Consequently, for x € L;, the optimal transport mapping is x TO” (x) =y;.

With these notions in hand, we are ready to present the following result on the convergence
of entropic Brenier maps to their unregularized counterpart; its proof is located in Appendix E.5.
This is a slightly different version of Theorem 3.5 by Pooladian et al. (2023), which based off the

results of Delalande (2022).

Proposition 6.11 (Quantitative bias in the semi-discrete setting). Let p be a compactly supported
probability distribution with a density over R? and y be a discrete measure, written i = Zle iy,

Then for all e > 0,
- . — 1 o -1
ITy = T3z ) < eZ"‘/’éJ_‘pf"""/ggZ ”yl—zyjll'/ hij(UE)(l +e“/2) du, (6.16)
— 0
i,Jj

where 0 < h;;(-) measures the amount of overlap between L; and L; weighted against the source
measure p (see (E.1) in the appendix for precise details), and (1/;£V)j = (y))j—¢elogpj forje{1,...,J}.

In addition, suppose that

(T1) the density of p has convex support in B(0; R), is a-Holder continuous for a € (0, 1], and there

exist Pmin, Pmax SUCh that 0 < pmin < p(x) < Pmaxs

(T2) the support of 1 lies in B(0; R), and all the weights are uniformly lower-bounded i.e., j1; >

Umin > 0 forallj e {1,...,]}.
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Then it holds that, for all e > 0
1Ty = T2, ) < Coe™e, (6.17)

where the constants depend on puin, Pmax> @, R, pmin, J, mingz; [|y; — y;||, and on the maximum angle

formed by three non aligned points among the atoms {y; }§=1-

Remark 6.12. Following the asymptotic results of Altschuler et al. (2022), we can take a limit of

(6.16), resulting in the computation

. _ lyi — yjllhi;(0) [ =
limsup ¢ l||T6u — 7}””%2@) = Z i ]2 J / (1 + e”/z) du = Z lly; — y;llhi;(0) log(2),

£—00 —
LJ

where we used that ¢ — h;;(t) is continuous at t = 0 (which holds if, for instance, p has an upper
bounded density with compact support). We conjecture that this quantity is uniformly bounded

for all discrete measures.

Combined with (6.15) and Corollary 6.5, we can state and prove our main theorem for this
section. While the conditions do not allow for arbitrary discrete measures, we stress that they
permit a wide class of discrete measures, and in particular measures supported on different masses.
To our knowledge, this is the first general improvement to the stability bound of Delalande and

Mérigot (2023), even in the semi-discrete case.

Theorem 6.13 (Near-tight stability in the semi-discrete setting). Suppose p satisfies (T1), and both

u and v each independently satisfy (T2) (with possibly all different parameters). Then
175 = Tl < W),

where the underlying constants depend on those from Proposition 6.11.

Proof. First, we note that if Wz (p, v) > 1, then ||TO“ — Ty llz2(p) < 2R < 2RW;(p, )13, so the only
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case of interest is when W, (y, v) < 1. Then, using the decomposition from (6.15) with Corollary 6.5

and two applications of (6.17), we obtain

I - 13112, 4max{Co(p)eST W, Co(v)e WV Ve + (2 + 4R HYWE (1, v) .

(p) <

Choosing ¢ = sz/ } (4, v) < 1, we obtain our desired rate with a prefactor scaling like Coe®' + 1,

where we choose the worse constant arising from the bias terms between y and v. m]

Remark 6.14. Closest to this result is that of Bansil and Kitagawa (2022): when p and v are supported

on the same atoms, the following bound holds*
ITy = T3 172,y < (J = Ddiam(Q)°TV (1, v), (6.18)

where TV(., -) is the total variation distance, and J is the number of atoms in the support of y
and v. Theorem 6.13 implies meaningful bounds in some situations in which (6.18) fails to do
so. For example, consider the simple setting where p = Unif(B(0, 1)) and pg = %(569 +6_¢,) with
eg = (cos(0),sin(0)) for 0 < 0 < /2. It is easy to verify that W, (uo, tg) < 0, so Theorem 6.13

gives | T — T) |l 2(p) < 6'/3. On the other hand, since TV (yo, 9) = 1, the bound (6.18) is vacuous.

#This bound is not explicitly written in the paper but it can be extracted from their Theorem 1.3.
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Part 111

Optimization over the Wasserstein space
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7 ALGORITHMS FOR MEAN-FIELD
VARIATIONAL INFERENCE VIA POLYHEDRAL
OPTIMIZATION IN THE WASSERSTEIN

SPACE

7.1 INTRODUCTION

This chapter develops a framework for optimizing over polyhedral subsets of the Wasserstein
space, with accompanying guarantees. Our main application is to provide the first end-to-end
computational guarantees for mean-field variational inference (Blei et al., 2017; Wainwright and
Jordan, 2008) under standard tractability assumptions on the posterior distribution. We now
contextualize our work with respect to the broader literature.

Optimization over (subsets of) the Wasserstein space (the metric space of probability measures
over RY endowed with the 2-Wasserstein distance, see Section 7.2) has found diverse and effective
applications in modern machine learning. Notable examples include distributionally robust
optimization (Kuhn et al., 2019; Yue et al., 2022), the computation of barycenters (Altschuler
et al., 2021; Backhoff-Veraguas et al., 2022; Chewi et al., 2020; Cuturi and Doucet, 2014; Zemel

and Panaretos, 2019), sampling (Chewi, 2024; Jordan et al., 1998; Wibisono, 2018), and variational
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inference (see below). The development of optimization algorithms over this space, however, has
been hindered by significant implementation challenges stemming from its infinite-dimensional
nature and the curse of dimensionality which impedes efficient representation of high-dimensional
distributions.

To alleviate these hurdles, a popular approach is to restrict the optimization to tractable
subfamilies of probability distributions, such as finite-dimensional parametric families. Note that
this is in contrast to Euclidean optimization, in which constraint sets are typically imposed as part
of the problem (e.g., affine constraints in operations research). Here we view the use of a constraint
set in the Wasserstein space as a design choice, with the end goals of flexibility, interpretability,
and computational tractability.

An important motivating example is that of variational inference (VI), which seeks the best
approximation to a probability measure 7 over R? in the sense of KL divergence over some subset

of probability measures C:

d
n* € argmin KL(y||7) = argmin/ log(—'u) du. (7.1)
Hec Hec dr

For example, C could be taken to be the class of non-degenerate Gaussian distributions, in which
case (7.1) is known as Gaussian VI. Recently, by leveraging the rich theory of gradient flows over
the Wasserstein space, Diao et al. (2023); Lambert et al. (2022) provided algorithmic guarantees for
Gaussian VI under standard tractability assumptions, i.e., strong log-concavity and log-smoothness
of 7.

We instead study the problem of mean-field VI, in which C is taken to be the class of product
measures over R?, written P (R)®¢. In this context, the works by Lacker (2023); Yao and Yang
(2022); Zhang and Zhou (2020) have also developed algorithms based on Wasserstein gradient
flows, although computational guarantees for VI are still nascent (see Section 7.5.1 for further

details and comparison with the literature).
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The main result of our work is to provide computational guarantees under the usual tractability
assumptions for 7. Our approach is to replace the set of product measures by a smaller, “polyhedral”
subset P, which we prove is an accurate approximation to (R)®?, in the sense that the minimizer
7* of (7.1) is in fact close to the KL minimizer 7} over P, with quantifiable approximation rates.
This motivates our development of a theory of polyhedral optimization over the Wasserstein
space which, when applied to the mean-field VI problem, furnishes algorithms for minimization
of the KL divergence over P, with theoretical (even accelerated) guarantees. More broadly, we are
hopeful that the success of polyhedral optimization for mean-field VI will encourage the further
use of polyhedral constraint sets to model other problems of interest.

We discuss the implementation of our algorithm in Section 7.5.5.1, with code available here.

Below, we describe our contributions in more detail.

7.1.1 MAIN CONTRIBUTIONS

POLYHEDRAL OPTIMIZATION IN THE WASSERSTEIN SPACE. We study parametric sets of the follow-

ing form:
cone(M)p = {(ZTGM ATT)ﬂp ‘ Ae RW'} ,

where RLMl is the non-negative orthant, M is a family of user-chosen optimal transport maps,
and p is a fixed, known, reference measure. To our knowledge, such sets have not previously
appeared in the literature.

Before proceeding, however, we must dispel a potential source of confusion: although cone (M)
is a convex subset of the space of optimal transport maps at p—in other words, a convex subset
of the tangent space to Wasserstein space at p—the set cone(M)yp is not always a convex subset
of the Wasserstein space itself, in the sense of being closed under Wasserstein geodesics. For

this to hold, we impose a further condition on M, known as compatibility (Boissard et al., 2015).
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Although compatibility is restrictive, it is nevertheless powerful enough to capture our application
to mean-field VI described below. We refer to the set cone(M)yp, for a compatible family M, as a
polyhedral subset of the Wasserstein space (or more specifically, a cone).

The assumption of compatibility entails strong consequences: we show that in fact, the set
(cone(M)yp, W,) is isometric to (RLMl, Il - [lo), where || - || is a Euclidean norm. This isometry
allows us to optimize functionals over cone(M)yp via lightweight first-order algorithms for
Euclidean optimization in lieu of Wasserstein optimization, which often requires computationally
burdensome approximation schemes such as interacting particle systems. In particular, we can
apply projected gradient descent or incorporate faster, accelerated methods. Moreover, under the
isometry, convex subsets of cone(M) map to convex subsets of cone(M)yp, giving rise to a bevy
of geodesically convex constraint sets over which tractable optimization is feasible. This includes
Wasserstein analogues of polytopes, to which we can apply the projection-free Frank—Wolfe
algorithm. We show that as soon as the objective functional ¥ is geodesically convex and smooth,

these algorithms inherit the usual rates of convergence from the convex optimization literature.

APPLICATION TO MEAN-FIELD VI. We next turn toward mean-field VI as a compelling application
of our theory of polyhedral optimization. Throughout, we only assume that 7 satisfies the
standard assumptions of strong log-concavity and log-smoothness. By leveraging the structure of
the mean-field VI solution and establishing regularity bounds for optimal transport maps between
well-conditioned product measures, we first prove an approximation result which shows that the
solution 7* to mean-field VI in (7.1) is well-approximated by the minimizer 7 of the KL divergence
over a suitable polyhedral approximation #, of the space of product measures. Importantly, our
approximation rates, owing to the coordinate-wise decomposability of mean-field VI, do not incur
the curse of dimensionality.

Next, we establish the geodesic strong convexity and geodesic smoothness of the KL divergence

over P,. Consequently, bringing to bear the full force of the Euclidean-Wasserstein equivalence,
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we obtain, to the best of our knowledge, the first end-to-end convergence rates for mean-field VL

7.1.2 RELATED WORK

To the best of our knowledge, our introduction of polyhedral sets and theory of polyhedral

optimization over the Wasserstein space are novel. A special case of our set is

conv(M)yp = {(ZTGM ATT)ﬁP ‘ A€ AIMI}’

where Ay is the | M|-simplex. Such a constraint set is used by Boissard et al. (2015); Gunsilius
et al. (2024); Werenski et al. (2022), and is usually studied in the context of Wasserstein barycenters.
The work of Bonneel et al. (2016) also considers conv(M)yp, but makes no assumptions on the
maps, and they tackle the problem from a computational angle via Sinkhorn’s algorithm (Cuturi,
2013; Peyré and Cuturi, 2019), albeit without convergence guarantees. Albergo et al. (2024) use
the same set, but without incorporating any optimal transport theory.

Our approach to mean-field VI, which parameterizes the variational family as the pushforward
of a reference measure via transport maps, has its roots in the literature on generative modeling
and normalizing flows (Chen et al., 2018; Finlay et al., 2020a;b; Huang et al., 2021a). We provide
further background information and literature on mean-field VI in Section 7.5.1, and omit it here
to avoid redundancies.

Finally, we mention that our work falls under the category of linearized optimal transport

(Wang et al., 2013), which we closely address in Section 7.3.2.

7.2 BACKGROUND ON OPTIMAL TRANSPORT

In this section, we provide background on optimal transport relevant to our work and refer

to Santambrogio (2015); Villani (2009) for details. Throughout, we assume that all probability
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measures admit a density function with respect to Lebesgue measure. We let P, (R?) denote the
set of probability measures with density over R with finite second moment.

For p, u € P, (R%), the squared 2-Wasserstein distance is written as

Wip) = inf [ k=1 dpta), (72)

where the collection {T:Typ = p} is the set of all valid transport maps: for X ~ p, T(X) ~ p.

Since we assumed p has a density, Brenier’s theorem (Brenier, 1991) states that there exists a
unique minimizer to (7.2), called the optimal transport map T, between p and p. Further, T, = Vo,
for some convex function ¢, called a Brenier potential.

Additionally, since y also has a density, then there exists an optimal transport map between y
and p, given by Vi = (Ty) ™!, where ¢} (y) := sup,pa{{x,y) — ¢x(x)} is the Fenchel conjugate
of ¢.. For more information on (differentiable) convex functions and conjugacy, we suggest
Hiriart-Urruty and Lemaréchal (2004); Rockafellar (1997).

Recall that a function f : RY — R is m-strongly convex in some norm || - || if
m
f) 2 fE)+(Vf(x)y-x)+ S lx—yl?,  xyeRr?,
and M-smooth in some norm || - || if
M 2 d
fW) < fO+VfE)y-x)+—llx—ylI.  xyeR’,

where m, M > 0.
For two probability measures i, y1; € Po(R?), let Vp°=! denote the optimal transport map

from py to py. The (unique) constant-speed geodesic between py and 4 is given by the curve
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(Ht)tefoq], With
pe = (Vo)gpo = (id+1t (Yo'~ —id))ypo - (7.3)

If we equip P, (R?), the space of probability distributions with finite second moment over
R?, with the 2-Wasserstein distance, we obtain a metric space W = (P, (Rd), W,) (Villani, 2021,
Theorem 7.3), which we call the Wasserstein space. In fact, it can be formally viewed as a Riemannian
manifold over which one can define gradient flows of functionals (Otto, 2001). We refer the
interested reader to consult the background sections of Altschuler et al. (2021) or to Chewi (2024)
for a light exposition and further details.

The Riemannian structure of the Wasserstein space is crucial for the development of optimiza-
tion over this space, as it furnishes appropriate Wasserstein analogues of basic concepts from
Euclidean optimization, such as the gradient mapping, convexity, and smoothness. In particular,
we say that a subset C of the Wasserstein space is geodesically convex if it is closed under taking
geodesics (7.3). Also, a functional F : P5(R?) — R is geodesically (strongly) convex (resp. geodesi-
cally smooth) if the map [0,1] — R, t — F () is (strongly) convex (resp. smooth) along every

constant-speed geodesic (1)se[o.1]-

7.3 POLYHEDRAL SETS IN THE WASSERSTEIN SPACE

In this section, we establish properties of the constraint set

cone(M)yp = {(ZTGM ATT)ﬁp ‘ Ae RLMI}’ (7.4)

with respect to the known base measure p and a fixed set of optimal transport maps M. Typically,
we have in mind finite M, in which case (7.4) is valid. Otherwise, (7.4) should be modified to

range only over A with finitely many non-zero coordinates, or in other words, cone(M) is the
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smallest set containing all conic combinations of maps in M.

Despite its simplicity, we argue that the geometry of cone(M)yp is surprisingly deceptive.
Most strikingly, it is not always a geodesically convex set. Consider T (x) = x, Ty(x) = A/%x,
and T3(x) = BY2x, with p = N(0,I), the standard Gaussian in R? and A, B > 0. In this setting,

cone(M)yp is the following set of Gaussians:
cone(M)yp = {N(0, (MI + A% + 13BYH?) | 1 e RI}. (7.5)

One can check with virtually any randomly generated positive definite matrices A and B that, as
long as all three matrices I, A, B are not mutually diagonalizable, the geodesic between N (0, A)
and N (0, B) does not lie in (7.5). This simple example illustrates that some care is required in

order to define convex constraint sets in the Wasserstein space.

7.3.1 COMPATIBLE FAMILIES OF TRANSPORT MAPS

In the Gaussian example above, geodesic convexity of cone(M)yp is recovered if we addition-
ally assume that I, A, and B are mutually diagonalizable. This reflects a certain property of the
maps 1y, T, T3, which can be generalized to a property known as compatibility (Boissard et al.,
2015). We recall its definition and basic properties in the sequel. As always, we assume that p
admits a density with respect to Lebesgue measure.

Let M be a set of bijective vector-valued maps, given by gradients of convex functions. We

call the set of maps M compatible if
forall T, T, € M, Tjo (Ty)"" is the gradient of a convex function.

Compatibility is a fundamental notion which lies at the heart of numerous other works (see Bigot

et al., 2017; Boissard et al., 2015; Cazelles et al., 2018; Chewi et al., 2021; Panaretos and Zemel,
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2016; Werenski et al., 2022). See Panaretos and Zemel (2020) for details.

The main motivation for compatibility is the following theorem.

Theorem 7.1 (Compatibility induces geodesic convexity). Suppose that M is compatible. Then,
cone(M)yp is a geodesically convex set. Moreover, for any convex subset K C cone(M), the set Kyp

is a geodesically convex set.

Although this result is not difficult to prove, we were unable to find it in the existing literature.
In fact, it follows as a direct consequence of the isometry established in Section 7.3.2, which will
show that cone(M)yp is isometric to a convex subset of a Hilbert space.

Motivated by this theorem, we propose the following definition.

Definition 7.2. Let M be a compatible and finite family of optimal transport maps. We refer to

cone(M)yp as a polyhedral set in the Wasserstein space.

More generally, a polyhedral set in the Wasserstein space is a set of the form K;p where
K C cone(M) is polyhedral and M is a compatible family.
The next sequence of lemmas furnish important examples of compatible families, which we

prove in Appendix F.1.

Lemma 7.3 (Mutually diagonalizable linear maps). Let M be a family of mutually diagonalizable

and positive definite linear maps R — RY. Then, M is a compatible family.

Lemma 7.4 (Radial maps). Let

M = {x — g(||x|],) x | g : Ry — R, is continuous and strictly increasing} .

Then, M is a compatible family.
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Lemma 7.5 (One-dimensional maps). Let M denote the family of continuous and increasing’

functions R — R. Then, M is a compatible family.

Lemma 7.6 (Direct sum). Let M; and M, be compatible families of maps onR* and R% respectively.

Then, M = {(x1,x2) — (T1(x1), To(x2)) | T € My, T, € My} is a compatible family of maps on

Rd1+d2

Lemma 7.7 (Adding the identity). Let M be a compatible family. Then, M U {id} is a compatible

family.

Lemma 7.8 (Adding translations). Let M be a compatible family of maps on R?. Then, {x >

T(x)+0 | T € M, v € R%} is a compatible family of maps.
Lemma 7.9 (Cones). Let M be a compatible family. Then, cone(M) is a compatible family.

In the sequel, we will use these results in order to build rich compatible families, especially
with an eye toward approximating coordinate-wise separable maps which arise in mean-field VI
(see Section 7.5.3). In particular, Lemma 7.9 is the starting point for the development of our theory

of polyhedral optimization in the Wasserstein space.

Remark 7.10. In our applications of interest, cone(M) is typically constructed as follows: let
M, ..., M, be univariate compatible families (Lemma 7.5). We then take cone(M) to be the
cone generated by the direct sum of My, ..., My via Lemma 7.6. It is easy to see that a generating
family of this cone is the set of maps x — (0,...,0, T;(x;),0,...,0), where T; € M;. This is a finite

family of size Y%, | M.

Technically, M does not consist of bijective maps, which we required in the definition of compatibility. In one
dimension, however, the notion of compatibility still makes sense once we replace the inverse function with the
quantile function.
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7.3.2 ISOMETRY WITH EUCLIDEAN GEOMETRY

A key consequence of compatibility is that the Wasserstein distance equals the linearized

optimal transport distance with respect to p, i.e., for T, T e M,
Ao, (Tep. Typ) = IT = Tl ) = 1T 0 T7" = idllfs ) = Wi (Typ. Typ) (7.6)

where we applied compatibility in the last equality to argue that T o T~" is the optimal transport
map from Typ to :I:ﬁ p. This equality shows that for compatible M, the geometry of cone(M)yp is
in a sense trivial, being isometric to a convex subset of the Hilbert space L?(p). This fundamental
property lies at the heart of the widespread usage of one-dimensional optimal transport in appli-
cations, see Basu et al. (2014); Cai et al. (2020); Khurana et al. (2023); Kolouri and Rohde (2015);
Kolouri et al. (2016); Park and Thorpe (2018); Wang et al. (2013) for applications.

Next, we consider a family of the form cone(M), where M is finite. By its very definition,

cone(M) is naturally parameterized by the non-negative orthant. Henceforth, we write
Th = Y 4T, = (T
We can therefore consider the induced metric on RLM|. A straightforward calculation reveals:

B iy 1) = | Srent(nr = 2 T, ) = (7= HTQ(n = 4) = llg = A,

where the matrix Q has entries Q7 7 = (T, f">Lz( p) for T, T € M. Here, Q is nothing more than a
Gram matrix, which is always positive semi-definite. This collection of observations proves the

following result.

Theorem 7.11. Let M be a finite family of optimal transport maps with Q defined as the Gram

matrix with entries Qr = (T, f}Lz(p) for T,T € M. Then, (RLMl, Il - llo) is always isometric to
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(cone(M)yp, drot,). If; in addition, M is a compatible family (i.e., cone(M)yp is polyhedral), then

(RLM|, | - llo) is isometric to (cone(M)yp, Wa).

As we develop in the next section, Theorem 7.11 paves the way for the application of scalable
first-order Euclidean optimization algorithms for minimization problems over polyhedral subsets

of the Wasserstein space.

7.4 POLYHEDRAL OPTIMIZATION IN THE WASSERSTEIN SPACE

Let cone(M)yp be polyhedral and recall the Gram matrix Q from Theorem 7.11, with entries
given by Qr 7 = (T, T) 12(p)- We now turn toward the problem of minimizing a functional # over
cone(M);p. Henceforth, we assume that Q is positive definite, so that Q" exists. The positive

definiteness of Q follows if the maps T € M are linearly independent in L2(p).

7.4.1 CONTINUOUS-TIME GRADIENT FLOW

The isometry of Section 7.3.2 implies that the constrained Wasserstein gradient flow of ¥ is
equivalent to the gradient flow of the functional A — ¥ (y;) with respect to the Q-geometry.?

The latter gradient flow can be written explicitly as

Mt) = =Q7 VAT (pag) - (7.7)

Then, geodesic strong convexity over W translates to strong convexity of A — ¥ (u;) over
(RW', || - lo) for free. The following theorem® establishes convergence rates for this continuous-

time flow; see Lambert et al. (2022, Appendix D) for a proof.

2See Nesterov (2018, §4.2.1) for a thorough discussion on optimization over general Euclidean spaces.

3In the case where we further constrain the gradient flow to lie in a convex set, (7.7) should be replaced by a
differential inclusion. Since this is not relevant to the subsequent developments, we omit a fuller discussion of this
point.
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Theorem 7.12. Suppose F is geodesically m-strongly convex over W, for m > 0. Let cone(M);p
be polyhedral. Then, ¥ is geodesically m-strongly convex over cone(M)yp. Moreover, if i, = i« €
cone(M)yp is a minimizer of ¥ over cone(M)yp, the following convergence rates hold for the

gradient flow (7.7).
1. Ifm =0, then F (pacr)) — F (px) < 3; W7 (H2(0)s His)-
2. If m > 0, then:

(@) Wy (piace), pix) < exp(=2mt) W (13(0), fix)-

(b) F (1) — F () < exp(=2mt) (F (a0)) — F (1))

7.4.2 TIME-DISCRETIZATION MADE EASY

Appealing to the isometry in Section 7.3.2, optimization of a geodesically convex and geodesi-
cally smooth functional ¥ over a polyhedral set cone(M)yp boils down to a finite-dimensional,

convex, smooth, Euclidean optimization problem of the form

&i@l F (1) - (7.8)

More generally, we consider optimization over arbitrary convex subsets K C RLMl, and we let

K = {T* | A € K} denote the corresponding subset of cone(M). It leads to the problem

min ¥ (47) -

Our consideration of general constraint sets K is not purely for the sake of generality, as we in fact
use the full power of polyhedral optimization in our application to mean-field VI (in particular,

see Theorem 7.24 and Appendix F.3.3).
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We consider accelerated projected gradient descent (Beck, 2017), as well as stochastic projected
gradient descent which is useful when only a stochastic gradient is available (as in Section 7.5.5.2).
Moreover, when restricted to any polytope in the non-negative orthant, we also consider the
projection-free Frank—Wolfe algorithm (Frank and Wolfe, 1956). We briefly describe the algo-
rithms and state their corresponding convergence guarantees. Note that we could also port over
guarantees for other Euclidean optimization algorithms in a similar manner, but we omit them for

brevity.

7.4.2.1 ACCELERATED PROJECTED GRADIENT DESCENT

Starting at an initial point 1) € K, we can solve (7.8) by applying a projected variant of
Nesterov’s accelerated gradient descent method (Nesterov, 1983), a well-known extrapolation
technique that improves upon the convergence rate for projected gradient descent and is optimal for
smooth convex optimization (Nemirovski and Yudin, 1983). The algorithm is given as Algorithm 2.
Here, projg o (-) is the orthogonal projection operator onto K with respect to the || - || norm.

We summarize the following well-known convergence results for accelerated projected gradient

descent (APGD) below; see Beck (2017, Chapter 10) for proofs.

Theorem 7.13 (Convergence results for APGD). Let cone(M)yp be polyhedral and K C cone(M)
be convex. Suppose that ¥ is geodesically m-strongly convex and M-smooth over Kyp and let i,

denote a minimizer over this set. Let (/1(” :1=0,1,2,3...) denote the iterates of Algorithm 2.
1L Ifm=0, then F () — F (pa) S MET2WE(py0, ps) -
2. If m > 0, then fork == M/m,

(a) szz(,”/l(f)’ﬂ*) < KeXP(—t/\/%) %Z(H)L(Ohll*)-

(b) F(10) = F () < (1= 1/VR) (F(p0) = F () + 2 W2 (13005 i) )
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Algorithm 2: Accelerated projected gradient descent over cone(M)

Input: 19 € K, functional ¥ (m-convex and M-smooth in W), compatible family M
Initialize: n(© = 10k « M/mif m > 0, and Yoy =1ifm=0
fort=0,1,2,3,...do

A — projy o (1" = 3 Q7' VaF ()

if m > 0 then

() 0D 4 %(A(m) — )
else
1+, [1+4y?
Y(+1) < Ty(,)
p(tD)  A(+D) 4 (%)(A(M) — A®)
end
end

7.4.2.2 STOCHASTIC PROJECTED GRADIENT DESCENT

In some situations, the full gradient V,% (y,) cannot be computed, usually due to high compu-
tational costs. Instead, stochastic first-order methods alleviate this issue by instead allowing for
the use of an unbiased stochastic gradient oracle, written VaF( 13).* The decreased computational
overhead has contributed to the widespread use of stochastic gradient methods as a pillar of mod-
ern machine learning (Bubeck, 2015). We limit our discussions to the case where ¥ is smooth and
strongly convex, as this setting will be the most relevant later. Other settings readily generalize,
though we omit them for brevity.

We provide a description of stochastic projected gradient descent (SPGD) in Algorithm 3, and
convergence analysis in Theorem 7.14 which requires the following standard assumption on the

variance of the unbiased estimator:

(VB) There exist constants cg, ¢c; > 0 such that for any A € K, the gradient estimate satisfies

E[IQ™" (VaF (12) = VaF (m)lI5] < co + e BIWS (i, pe)] -

*An unbiased estimator of the gradient is one which E,;, [VAF ()] = VaF ().
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Algorithm 3: Stochastic projected gradient descent over cone(M)

Input: A0 e K, functional F (m-convex and M-smooth in W5), compfltible family M,
fixed step-size h > 0, and unbiased stochastic gradient oracle V7 (+)
fort=0,1,2,3,...do
A — proji o (A — Q™I Vi F (10))
end

Note that cg, ¢; in (VB) will typically depend on the smoothness and strong convexity parameters

of 7, and possibly the dimension of the problem.

Theorem 7.14 (Convergence results for SPGD). Let cone(M)yp be polyhedral and K C cone(M)
be convex. Suppose that ¥ is geodesically m-strongly convex and M-smooth over Kyp, let ji, denote
a minimizer over this set, and suppose that (VB) holds. Let (/W) :t=0,1,2,3...) denote the iterates

and the

of Algorithm 3 and let ¢ > 0 be sufficiently small. If we choose step size h < mc—sz < % A 21<1M’

number of iterations is at least

C
t> mTng log(Wa (1130, 1) /€) ,

then E[W} (110, pix)] < €.
For completeness, we provide a short proof of Theorem 7.14 in Appendix F.2.

7.4.2.3 FRANK-WOLFE

In this section, we consider optimization over a polytope, i.e., a set of the form

conv(M)yp = {(ZTGM ATT)ﬁP ‘ A€ A|M|}s

where M is a finite family of compatible maps and A5 denotes the | M|-dimensional simplex.
Note that conv(M) C cone(M), where cone(M)yp is polyhedral, so that conv(M) is an example

of a convex constraint set K considered in the previous subsection. The convergence guarantees
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for accelerated projection gradient descent in Theorem 7.13 therefore apply to optimization over
conv(M)yp.

In this setting, however, there is a popular alternative to projected gradient descent known
as conditional gradient descent or the Frank—Wolfe (FW) algorithm (Frank and Wolfe, 1956; Jaggi,
2013). In this scheme, we find a descent direction that ensures our iterates remain within the
constraint set. This direction 7*) is found at each iterate 1Y) by solving the following linear

sub-problem:

7 = argmin (V;F (100), 5 — AV . (7.9)
nEA M|

Finding this direction can be substantially cheaper than the projection step in Algorithm 2. Indeed,
the sub-problem (7.9) does not depend on the matrix Q. It is not hard to see that the minimizer
1Y) must be attained at one of the | M| vertices of the simplex.

The full algorithm is presented in Algorithm 4. Known results provide sublinear convergence
of the objective gap, which does not improve under strong convexity assumptions; see Beck (2017,

Chapter 13) for proofs and discussions.

Theorem 7.15 (Convergence results for FW). Suppose that ¥ is geodesically convex and M-smooth
over conv(M)ﬂp, and let p, be a minimizer of ¥ over this set. Let (/l(t) :t=0,1,2,3...) denote the

iterates of Algorithm 4, with step size a'!) = 2/(t + 2). Then,
F () — F(11x) < Mt~ diam(conv(M)yp). (7.10)

Via the isometry in Section 7.3.2, diam(conv(M)yp) equals the diameter of conv(M) in the

Q-norm. In terms of the matrix Q, this is at most 2 maxrep \/Or.7-

Remark 7.16. We are not the first to consider applying FW over the Wasserstein space. Kent

et al. (2021) use FW to optimize functionals over the constraint set {W,(-,7) < &} for some
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Algorithm 4: Frank-Wolfe over conv(M)
Input: A0 ¢ Am, functional ¥, and compatible family M with [M| = J
fort=0,1,2,3,...do
J* e argmin; ;) (VaF (ao). € — PION

A (1 —a) AW 4 oW e /7 V) = -4 is a standard step size choice

end

é > 0 and some fixed probability measure 7. In their work, the optimization truly occurs in an
infinite-dimensional space. The authors prove various discrete-time rates of convergence under
noisy gradient oracles and Holder smoothness of the objective function, among other general
properties. The core difference between our works is the constraint set of interest, resulting in

our algorithm being simpler. Indeed, our setup is purely parametric.

7.4.3 ENRICHING THE FAMILY OF COMPATIBLE MAPS

When applying our polyhedral optimization framework to specific problems of interest, it
is sometimes useful to first enrich the compatible family. For example, one notable advantage
of doing so is that it increases the expressive power of the constraint set. Another example is
that for our application to mean-field VI in Section 7.5, it will be necessary for us to ensure a
uniform lower bound on the Jacobian derivatives of the maps in our family (i.e., they are gradients
of strongly convex potentials).

The second issue can be addressed by adding « id to each member of the family. Indeed,
by Lemma 7.9 and Lemma 7.7, cone(M U {id}) is a compatible family, and then we can restrict
to the convex subset K C cone(M U {id}) corresponding to A for which the coefficient A4 in
front of id is a. The guarantees of Section 7.4.2.1 then apply directly to optimization over Kyp.

However, we prefer to handle the « id term separately, and so we define the cone generated by M
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with tip a id to be the family
cone(M; aid) = aid+cone(M).

Similarly, to address the first issue, we would like to enrich our compatible family by adding

translations, via Lemma 7.8. To this end, we define our augmented cone, cone(M) for short, to be
cone(M) = {ZTGM T +o|AeRM e Rd} :
Similarly, we define
cone(M; aid) = aid + cone(M).

The augmented cone is parameterized by (4,0) € RLA/” x R%. We may assume that each of the
maps T € M has mean zero under p, since this does not affect the augmented cone. Under this
assumption, it is easy to see (c.f. the proof of Theorem 7.28) that we still obtain an isometry with a
Euclidean metric: W2 (pyu, fi10) = lln — /1||?2 + |lu — 0||%. In this setting, the first-order algorithms

must be modified to compute the gradient and projection steps with respect to this metric.

Remark 7.17 (Broader impact of our framework). We now pause to briefly discuss the broader
impact of polyhedral sets. We want to stress that, even without compatibility, our framework
can be used to optimize functionals over any convex subset of the tangent space, provided that
the functional is convex with respect to the linearized optimal transport distance. In turn, this is
equivalent to requiring that the functional is convex along generalized geodesics (see Ambrosio
et al., 2008, §9.2), which is typically the case when the functional is convex in the Wasserstein
geometry; for example, it holds for the KL divergence with respect to a log-concave measure.
This substantially expands the scope of applications as it allows for optimization over any convex

subset of the tangent space, not just compatible ones.
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7.5 APPLICATION TO MEAN-FIELD VARIATIONAL INFERENCE

As our main application of polyhedral optimization over the Wasserstein space, we turn
to variational inference (VI) (Blei et al., 2017). In this framework, we are given access to an
unnormalized probability measure, known as the posterior, written 7 o« exp(—V), from which
we wish to obtain samples for downstream tasks. In principle, one can draw samples from 7 via
Markov chain Monte Carlo methods, but these have computational drawbacks, such as potentially
long burn-in times. Instead, VI suggests to minimize the Kullback-Leibler (KL) divergence over a
constraint set to obtain a proxy measure that is easy to sample from. Commonly used constraint
sets in the literature include the space of non-degenerate Gaussians, location-scale families,
mixtures of Gaussians, and the space of product measures.

For a general constraint set C, the VI optimization problem reads

mg € argmin KL(p||7) = argmin/ Vdu+ / logpdu+logZ, (7.11)
peC pHeC

where Z, the unknown normalizing constant of 7 « exp(—V) plays no part in the optimization
problem. The following assumption, which will play a crucial role in our analyses in Section 7.5.3

and Section 7.5.4, is standard in the literature on log-concave sampling (Chewi, 2024):
(WC) = is y-strongly log-concave and Ly-log-smooth, i.e., f/I < V2V < LyI for &, Ly > 0.

In brief, we say that x is well-conditioned. We denote by k := Ly /¢y the condition number.
The following lemma allows us to refer to the unique minimizer of the VI problem, which
follows from the strong geodesic convexity of the KL divergence (see the discussions around

Proposition 7.27).

Lemma 7.18. Suppose C is a geodesically convex subset of Po(R?), and suppose that 7 is strongly

log-concave. Then, there is a unique minimizer of KL(-||r) over C.
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Despite the widespread use of variational inference in numerous settings (see for example
Blei et al., 2017; Wainwright and Jordan, 2008), explicit guarantees have only recently been
established for a few constraint families. Recently, Diao et al. (2023); Lambert et al. (2022) obtained
computational guarantees for Gaussian VI by way of constrained Wasserstein gradient flows.
Domke (2020); Domke et al. (2023); Kim et al. (2023) considered VI for location-scale families
and provided algorithmic guarantees, though they abstained from the gradient flow formalism.
Subsequent work by Yi and Liu (2023) made this connection precise.

In the sequel, we develop end-to-end computational guarantees for mean-field variational

inference. This is done in five stages:

1. Transfer assumptions on the posterior 7, namely (WC), to the mean-field solution 7* (see

Proposition 7.19 in Section 7.5.1).

2. Use the properties of 7* to obtain regularity properties of the optimal transport map T*
from the standard Gaussian measure to 7*, via Caffarelli’s contraction theorem and the

Monge-Ampere equation (see Theorem 7.21 in Section 7.5.2).

3. Show that polyhedral sets in the Wasserstein space can approximate mean-field measures
arbitrarily well, making use of the regularity properties of the optimal transport map, approx-
imation theory, and Wasserstein calculus (see Theorem 7.23, Theorem 7.24, and Theorem 7.26

in Section 7.5.3).

4. Provide convergence guarantees for optimizing the KL divergence over these polyhedral

sets (see Theorem 7.29 in Section 7.5.4).

5. Describe implementation details for our final algorithm (see Section 7.5.5.1).
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7.5.1 MEAN-FIELD VARIATIONAL INFERENCE

In mean-field VI, the constraint set is the space of product measures over RY, written P (R)®¢.

Thus, the optimization problem is

n* € argmin KL(y||7), (7.12)
peP (R)®d

where, by design, the constraint set forces the minimizers to be of the form

d
7 (xr, . oxa) = () 7 (x) - (7.13)
i=1

Mean-field VI has a rich history in the realm of statistical inference; see Section 2.3 in Blei et al.
(2017) for a brief historical introduction. Despite being widely used, computational and statistical
guarantees have only recently emerged. A standard algorithm to solve (7.12) is Coordinate Ascent
VI (CAVI) (see Blei et al., 2017, Section 2.4), the updates for which can be implemented for certain
conjugate models. Guarantees for CAVI were provided recently in Bhattacharya et al. (2023) under
a generalized correlation condition for r; see also Arnese and Lacker (2024) and Lavenant and
Zanella (2024).

More closely related to our work is the use of Wasserstein gradient flows. The work of Lacker
(2023) connects mean-field VI to constrained Wasserstein gradient flows, providing continuous-
time guarantees via projected log-Sobolev inequalities but without a concrete algorithmic imple-
mentation; see also Lacker et al. (2024). Also, in the context of a Bayesian latent variable models,
convergence guarantees for a Wasserstein gradient flow under a well-conditioned assumption at
the population level was established by Yao and Yang (2022). Toward the issue of implementation,
they suggested two strategies based on particle approximation combined with either Langevin sam-
pling or optimization over transport maps respectively, but they did not analyze the error arising

from the particle approximation. Zhang and Zhou (2020) study the theoretical and computational
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properties of mean-field variational inference in the context of community detection. Despite the

promising nature of these works, implementation remains a challenge in complete generality.

MEAN-FIELD EQUATIONS. Via calculus of variations, one can readily derive the following system

of mean-field equations from (7.12): for i € [d],
7 (x;) o exp(— ‘[Rd_l Vixy,...,xq) ® nf(dx])) . (7.14)
j#i

These are also sometimes called self-consistency equations; we give a derivation in Appendix F.3.1.

From the structure of 7*, we can prove the following result.

Proposition 7.19. Suppose that i is well-conditioned (WC). Then, (7.12) admits a unique minimizer

of the form (7.13), where each 1 is well-conditioned (WC) with the same parameters ty, Ly as .

Uniqueness of the minimizer follows as a corollary of Lemma 7.18 and Lacker (2023, Proposition
3.2), which shows that P (R)®? is a geodesically convex subset of the Wasserstein space, and the

individual 7} measures being well-conditioned is immediate from (7.14).

OuR APPROACH. We approach solving mean-field VI by optimizing over a suitably rich family of

compatible maps. To this end, we want to relate (7.12) to

o= (To*)ﬁp € argmin KL(u||7), (7.15)
HEP,

where %, is a polyhedral subset of the Wasserstein space (Definition 7.2). Recall that polyhedral
subsets of the Wasserstein space are geodesically convex (see Theorem 7.1). Combined with

Lemma 7.18, the following corollary is immediate.

Corollary 7.20. Suppose that P, is a polyhedral subset of the Wasserstein space, and that r is

well-conditioned (WC). Then the minimizer to (7.15) is unique, denoted by .
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Borrowing inspiration from the existing literature combining normalizing flows and optimal
transport (Chen et al., 2018; Finlay et al., 2020a;b; Huang et al., 2021a), our goal is to transfer
the difficulty of estimating the measure 7* to estimating an appropriate optimal transport map.
Indeed, P, is a collection of pushforwards of a base measure p via optimal transport maps. Going
forward, we will provide a systematic way of choosing both p, the base measure, and M, the set
of optimal transport maps which generates P..

A natural candidate for the base density p is the standard Gaussian distribution in R?. Beyond
its naturality, this choice is justified by powerful regularity results, described in the next section,
for the optimal transport map T* from p to the mean-field solution 7*. This regularity result, in

turn, will feed into the approximation theory of Section 7.5.3.

7.5.2 REGULARITY OF OPTIMAL TRANSPORT MAPS BETWEEN WELL-CONDITIONED

PRODUCT MEASURES

In this section, we study the regularity of the optimal transport map from the standard Gaussian
to the mean-field solution 7*. More generally, our regularity bounds hold for the optimal transport
map from the Gaussian to any well-conditioned product measure, or between any two well-
conditioned product measures p and v (either by writing TF~" as T?~" o (T?~#)~! and directly

applying the results of this section, or by repeating the arguments thereof).

Theorem 7.21. Let p = N(0,I) and suppose that r is well-conditioned (WC). Then, there exists
a unique, coordinate-wise separable optimal transport map from p to =*, the minimizer to (7.12),

written T*(x) = (T} (x1), ..., T (x4)). Each map T}* satisfies

V1/Ly < (T*Y <1/t .
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Moreover, we have the higher-order regularity bounds

(T ()] s \/L{,_V (1+x]),  and ()" 5 \’/c—j_v (1+]x*). (7.16)

The bounds on (T*)” in Theorem 7.21 in fact follow immediately from two landmark results
in optimal transport, and Proposition 7.19. First, since p admits a density, then Brenier’s theorem
(Brenier, 1991) states that there always exists a unique optimal transport map from p to any target
measure, in this case, 7*. Obviously, since both p and 7* are product measures, the corresponding
optimal transport map is coordinate-wise separable. Then, Caffarelli’s contraction theorem
(Caftarelli, 2000) yields tight lower and upper bounds on the derivatives of each component of
T* as a function of the strong log-concavity and log-smoothness parameters of p and 7*. See,
e.g., Chewi and Pooladian (2023, Theorem 4) for a precise statement of the contraction theorem,
and a short proof based on entropic optimal transport.

On the other hand, we have not seen the bounds (7.16) in the literature. In general, regularity
theory for optimal transport is notoriously challenging due to the fully non-linear nature of the
associated Monge-Ampere PDE; see Villani (2021, Section 4.2.2) for an exposition to Caffarelli’s
celebrated regularity theory. Here, we can avoid difficult arguments by exploiting the coordinate-
wise separability of the transport map and straightforward computations with the Monge-Ampere
equation. See Appendix F.3.2 for the proof.

The regularity we obtain is essentially optimal, since we started with information on the
derivatives of 7* up to order two, and we obtain regularity bounds for the Kantorovich potential
(of which T* is the gradient) up to order four. Such higher-order regularity bounds are not only
useful for obtaining sharper approximation results, but are in fact essential for establishing the

key result Theorem 7.26 in Section 7.5.3.

Remark 7.22. In prior works that statistically estimate optimal transport maps on the basis of

samples (such as Deb et al. (2021); Divol et al. (2022); Hiitter and Rigollet (2021); Manole et al.
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(2024a); Pooladian and Niles-Weed (2021)), bounds on the Jacobian of the optimal transport map
of interest are necessary and standard. In contrast, here these bounds hold as a consequence of

our problem setting (in particular, from (WC)).

7.5.3 APPROXIMATING THE MEAN-FIELD SOLUTION WITH COMPATIBLE MAPS

So, Theorem 7.21 tells us that we can view 7* = (T*);p, where T* obeys desirable regularity
properties. The goal of this section is to demonstrate that we can prescribe a class of maps M

such that the minimizer of the KL divergence over $, := cone(M; «a id)ﬂ P,

n) € argmin KL(p||7),
,uePo

is close to 7* in the Wasserstein distance. Then, Section 7.5.4 will provide guarantees for computing
¥ via KL minimization over this set.
The first step is to prove an approximation theorem: there exists an element 7, € P, such that

7* is close to 7. We state this as the following general result. Here, we write ||D(T — DIl for

2
L%(p)
the quantity [ [|D(T - T)||2 dp.

Theorem 7.23. Let p = N(0,I). For any ¢ > 0, there exists a compatible family M of optimal
transport maps of size O(kV2d5/4 [ '12), with the following property. For any coordinate-wise separable
map T : RY — R? with Jacobian satisfying the first and second derivative bounds of Theorem 7.21,
there exists T € cone(M; aid), with a = 1/v/Ly, such that Wy (Typ, fﬁp) =|IT - T||Lz(p) < g/t"l,/z

and ||D(T = T) Iz < xV2dY 4 28],

Approximation theory has a large literature which aims at proving uniform rates of approxima-
tion over various function classes by linear combinations of well-chosen basis elements. Typical
choices of basis functions include polynomials, splines, wavelets, etc., with more recent literature

investigating approximations via neural networks.
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While resting on standard techniques, the most important departure of our result from the
literature is the coordinate-wise structure of T, which allows for approximation rates that do
not incur the curse of the dimensionality, in the sense that the cardinality of | M| does not
depend exponentially on the dimension d. Observe the presence of a structural constraint: in
one dimension, the problem essentially boils down to approximating a monotonically increasing
function via conic combinations of the generating set M.

Our construction is described as follows. Let R > 0 denote a truncation parameter, and let
& > 0 denote a mesh size. We partition the interval [—R, +R] into sub-intervals of size §. Then, M
consists of all functions of the form x — (0,...,0,¥(57! (x; — a)),0,...,0), where only the i-th
coordinate of the output is non-zero, I = [a, a + ] is a sub-interval of size §, and  : R — R is
piecewise linear, defined via /(x) := 1 A x;. Proofs are given in Appendix F.3.3.

This piecewise linear construction exploits the smoothness of T up to order two, but no further.
On the other hand, from Theorem 7.21 we see that T* also obeys a bound on its third derivative,
so we can expect to obtain better approximation rates through a smoother dictionary. This is
indeed the case, but the approximating set becomes more complicated (in particular, it is no
longer the pushforward of a pointed cone, but a general polyhedral set), so we defer the details

to Appendix F.3.3.

Theorem 7.24 (Higher-order smoothness). There exists a polyhedral set P, with an explicit generat-
ing family of size O(k23d716 | €113) with the following property. In the setting of Theorem 7.23, assume
also that each component T; of T obeys the third derivative bound in Theorem 7.21. Then, there exists

T € P. such that Wa(Typ, Typ) = IT = Tllie(p) < /6 and |ID(T = T)llpz(p) < 12/3d 03 /2.

Remark 7.25. We note that the worse dependence on « for the smoother dictionary is due to our

derivative bounds for the optimal transport map; we have no reason to believe it is fundamental.

The two preceding results show that we can, with prior knowledge of 7*, construct some

7, € P, which is close to 7*, but it does not guarantee that we can find 7, easily. The next
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result addresses this issue by showing that 7* is close to the minimizer 7} of the KL divergence
over P, and hence can be computed using the algorithms in Section 7.5.4. As the proof reveals,
establishing this statement is related to a geodesic smoothness property for the KL divergence,
which is quite non-trivial since the entropy is non-smooth over the full Wasserstein space (see
the further discussion in the next section). We are able to verify this smoothness property on the
geodesic connecting 7, to 7* using the bounds on ID(T, — T*)|| 12(p) in our approximation results

(Theorem 7.23 and Theorem 7.24). The proof of Theorem 7.26 is also found in Appendix F.3.3.

Theorem 7.26. The mean-field solution n* is close to the minimizer x} of the KL divergence over
P, with corresponding generating family M, in the sense that \/ty Wx(xX, n*) < ¢, in the following

two cases.

1. For the piecewise linear construction of Theorem 7.23, the size of the family is bounded by

IM| < O(k2d3/%/¢).

2. For the higher-order approximation scheme of Theorem 7.24, the size of the family is bounded

by IM| < O(xk3/2d%/4 ) 112).

7.5.4 COMPUTATIONAL GUARANTEES FOR MEAN-FIELD VI

Having identified polyhedral subsets #, of the Wasserstein space over which the KL minimizer
n} is close to the desired mean-field VI solution 7*, we are now in a position to apply our theory
of polyhedral optimization and thereby obtain novel computational guarantees for mean-field VI.

Recall that 7 o« exp(-V), and

KL(u||7) =V (p) +H(p) ::/Vd,u+/log,ud,u+logZ, (7.17)

where Z > 0 is the normalizing constant of 7.

For concreteness, we focus our discussion on the setting in which £, = cone(M; aid)yp, such
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as in Theorem 7.23, although the discussion below can be adapted to more general polyhedral
sets. As in Section 7.4.2, we apply Euclidean optimization algorithms over the parameterization of
cone(M; aid); see Section 7.5.5.1 for a discussion of implementation.

In order to apply the algorithmic guarantees from Section 7.4.2, we must verify the strong
geodesic convexity and geodesic smoothness of the KL divergence over the set #,. Strong convexity
follows from the celebrated fact that the KL divergence with respect to an #,-strongly log-concave
measure 7 is fy-strongly geodesically convex (see Villani, 2009, Particular Case 23.15), together

with the geodesic convexity of £, (Theorem 7.1 and Section 7.4.3).

Proposition 7.27 (Strong convexity of the KL divergence over geodesically convex sets). Assume
that 7 is well-conditioned (WC). Then, the KL divergence KL(:||7) is &y -strongly geodesically convex

over any geodesically convex subset of the Wasserstein space.

Smoothness of the KL divergence, however, is more subtle, owing to the non-smoothness of
the entropy H over the full Wasserstein space; see Diao et al. (2023) for further discussion of this
point. Prior works therefore established smoothness over restricted subsets of the Wasserstein
space (e.g., Lambert et al., 2022), or utilized proximal methods which succeed in the absence of
smoothness (e.g., Diao et al., 2023). We adopt the former approach, and for this we require a
further property of the family M of generating maps.

First, without loss of generality, we may assume that each T € M has mean zero under p:
f T dp = 0. Indeed, subtracting the means from the maps in the generating set does not affect
cone(M; aid), since cone(M; aid) is augmented by translations. Assuming now that M is
centered, we recall the Gram matrix Q with entries Q7 = (T, f}Lz( p)- We also form the Gram
matrix of the Jacobians, OV, with entries QS; = (DT, DT)LZ(p) = f (DT, DT) dp. Our main
assumption on M is an upper bound on Q! in terms of Q. We refer to families M satisfying this

condition as regular.

(Y) There exists Y > 0 such that for the Gram matrices associated with a centered family M, it
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holds that (Y < YQ.

We remark that when M is constructed as a direct sum of univariate families via Lemma 7.6 (c.f.
Remark 7.10), as in our approximation results (Section 7.5.3), the matrices Q and Qhaveadxd
block diagonal structure; see Section 7.5.5.1 for details. Consequently, the regularity Y of the
family M is the same as the regularity parameter for the univariate family used to construct M,
and is therefore nominally “dimension-free”.’

We can now establish our geodesic smoothness result for the KL divergence over the augmented

and pointed cone cone(M; a id)yp, where M is a regular generating family.

Proposition 7.28 (Smoothness of the KL divergence over cone(M; aid)yp). Assume that r is
well-conditioned (WC) and that M is regular (Y). Then, KL(-||7) is M-geodesically smooth over

cone(M; aid)ﬁp, with smoothness constant bounded by

M<Ly+Y/a.

From Theorem 7.21, we know that the optimal transport map T* from p to the mean-field
solution 7* is the gradient of a 1/+/Ly-strongly convex potential, so we take « = 1/vLy. The
smoothness constant for the KL divergence then becomes (1 + Y) Ly. With these results in hand,
we can state our accelerated convergence guarantees for mean-field VI, which follow directly

from the previous propositions, and Theorem 7.13.

Theorem 7.29 (Accelerated mean-field VI). Assume that r is well-conditioned (WC) and that
M is regular (Y). Let n} denote the unique minimizer of KL(-||r) over the polyhedral set P, =

cone(M; aid)yp witha =1/ VLy. Then, the iterates of accelerated projected gradient descent yield

SHowever, if one wishes to maintain the same quality of approximation in high dimension, our approximation
results in Section 7.5.3 require taking the size of the univariate family to scale mildly with the dimension, and in this
case the parameter Y may indeed scale with the dimension.
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a measure [y with the guarantee W, (), 7)) < €, with a number of iterations bounded by

t= O(\/K (1+7Y) log(\/EW2(/1(o), ”:)/5)) ]

where k = Ly [ty is the condition number of 7.

By combining Theorem 7.29 with our approximation result in Theorem 7.26, which provides a
bound on W, (7}, 7*) for explicit choices of P, with corresponding bounds on the size of | M|, we
can then ensure that the iterate i, is close to 7* in the Wasserstein distance. Namely, we ensure
that Wa(p(y), 7*) < € provided that we use either of the dictionaries in Theorem 7.26 and we take
the number of iterations t as in Theorem 7.29; here, t is the iteration complexity, whereas the
bounds on the size of the dictionary in Theorem 7.26 govern the per-iteration cost.

As previously mentioned, our analysis is made possible by bypassing the non-differentiability
of entropy over £ (R) and instead optimizing over pointed cones characterized by a univariate
compatible family M. Thus, the constant Y > 0 should blow up as the polyhedral set approaches

P (R). This fact is summarized in the following lemma for the piecewise-linear family.

Lemma 7.30. Let M be the piecewise linear construction of Theorem 7.23. Then, Y < |M; |2, where

M, is the generating family in a single dimension. Since |M;| = J, the bound is equivalently Y < J*.
As a corollary, we can fully characterize the runtime of solving the MFVI problem.

Corollary 7.31 (End-to-end guarantees for MFVI). Consider the setting of Theorem 7.29. Then the

required runtime to compute nt; becomes
t = 0(Jx"/?log(Vd/e))

If ©¥ is meant to approximation i, then we can use the approximation guarantees from Theorem 7.26
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to obtain the complete convergence guarantee of
t = O(k*2d 2 og(Vid/¢)) .

As we demonstrate below, the regime of | = O(1) appears to suffice numerically. To the
best of our knowledge, this constitutes the first accelerated and end-to-end convergence result for

mean-field VI. See Section 7.5.1 for comparisons with the literature.

7.5.5 ALGORITHMS FOR MEAN-FIELD VI

In this section, we discuss implementation details for our proposed mean-field VI algorithm,

which includes an analysis of stochastic gradient descent over our polyhedral sets.

7.5.5.1 IMPLEMENTATION DETAILS

Recall that the goal is to compute a product measure approximation to 7 which has density

proportional to exp(=V) on R

BUILDING THE FAMILY OF MAPs. The first step is to build a family M, of increasing maps R — R.
The specification of these maps is left to the user; in Section 7.5.3, we have provided an example of
a family of maps with favorable approximation properties. For later purposes, it is also important
to center the maps to ensure that they have mean zero under p; this is done by computing the
expectations of the maps via one-dimensional Gaussian quadrature and subtracting the means.

Let J denote the size of | M;| and write M, = {T,...,T}}.

PARAMETERIZATION OF THE CONE. As discussed in Section 7.4.3, it is useful to augment the
cone with translations. Once the one-dimensional family M, has been specified, it generates the
d-dimensional augmented cone of maps parameterized by (4,v) € R{d x R%: the corresponding

map T* is given by T*(x) = ax + Y4, Z§:1 AijTi(x;) e; + 0.
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CONSTRUCTION OF THE Q MATRIX. For concreteness, let us fix the reference measure p to be the
standard Gaussian N (0, I;). We must compute the Jd X Jd matrix Q, with entries Q(; j),(i7.j7) =
/ (T;(x;) e, Tj»(xi7) eir) p(dx). From this expression, it is clear that Q is block diagonal; in fact,
if we let Q™' denote the matrix corresponding to the one-dimensional family, with entries
Qx} = / T;Tj» dp; (here p; is the one-dimensional standard Gaussian), then Q = I; ® QM and
hence the full matrix Q never has to be stored in memory.

The entries of the J x J matrix QM can be precomputed, either via Monte Carlo sampling

from p,, or via one-dimensional Gaussian quadrature.

COMPUTATION OF THE GRADIENT AND PROJECTION. In order to apply the algorithms in Section 7.4,
we must specify the gradient of KL((T’L”)ﬁ pllr) w.rt. (A, 0) and the projection operator w.r.t. the
Q-norm, || - ||o. Recall that we compute the gradients and projections for the A variable w.r.t. || - [|g,
and for the v variable in the standard Euclidean norm.

Using the change of variables formula,

KL((T*)ypll7) = / [V(T*(x)) — log det DT (x)] p(dx) + / log pdp +logZ.
The partial derivatives are therefore computed to be

o, KL((TH)plim) = / [0V (T7 (%)) Tj(x:) = (er, (DTH) 7! () €1) T} (x:) | p(dx) ,
(7.18)

VKL((T),p]|7) = / YV (T () p(dx).

For the terms explicitly involving V, one can draw Monte Carlo samples from the Gaussian p and
approximate them via empirical averages (assuming access to evaluations of the partial derivatives

of V).
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To compute the second term, note that DT* is diagonal:

DTA(X) = al; + diag (ZJ: Ai,jTj,(xi))fﬂ
=1

Hence, inversion of DT*(x) is very fast, requiring only O(Jd) time to compute DT*(x) and then
O(d) time to invert it. Moreover, the (i, i)-entry of (DT*)~!(x) only depends on x;, so the second

term reduces to a one-dimensional integral:

T/ (xi)
o+ 3Ty AT ()

[y @ e 0 (e = [ pr(dxs)

In turn, this one-dimensional integral can be computed rapidly via Gaussian quadrature.

To summarize: the gradient of the potential energy term (the term involving V) can be
approximated via Monte Carlo sampling, and the gradient of the entropy term decomposes along
the coordinates and can therefore be dealt with via standard quadrature rules. Note that many
of these steps can be parallelized. In Section 7.5.5.2, we control the variance of the stochastic
gradient, thereby obtaining guarantees for SPGD.

To compute the projection of a point 7 € R/¢ onto the non-negative orthant R_{d w.rt. || - [lo,

one must solve the following optimization problem:
min (A -7,Q(A-n)).

Jd
AERY

Again, due to the block diagonal structure of Q, this is equivalent to solving d independent
projection problems: in each one, we must project a point in R/ onto Ri in the QM -norm. This
is a smooth, convex problem that can itself be solved via, e.g., projected gradient descent, or

L-BFGS-B (Zhu et al., 1997), or any standard quadratic program solver.
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7.5.5.2 CONVERGENCE FOR STOCHASTIC MEAN-FIELD VI

In Section 7.5.5.1, we noted that in general, the gradient of the KL divergence involves an
integral over p, which can be approximated via Monte Carlo sampling. This leads to a stochastic
projected gradient algorithm for mean-field VI, and this section is devoted to obtaining convergence
guarantees for SPGD.

Our goal here is not to conduct a comprehensive study, but rather to show how such guarantees
can be obtained, and hence we impose a number of simplifying assumptions. We do not work with
the cone augmented by translations, so that the maps are parameterized solely by A € RLA/” (the
v-component is easier to handle and only introduces extra notational burden into the proofs). Also,
we consider a stochastic approximation of the gradient of the potential term via a single sample
drawn from p at each iteration, and we assume that the gradient of the entropy is computed exactly.
As discussed in Section 7.5.5.1, the gradient of the entropy can be handled via one-dimensional
quadrature.

Even with these simplifications, the variance bound is somewhat involved. Motivated by the
piecewise linear construction of Theorem 7.23, in which all maps T € M can be taken to be

bounded, we impose the following assumption.

(2) There exists = > 0 such that for the Gram matrix Q™ associated with the centered

< E]J for all x € R, where

univariate family M, we have the pointwise bound (Q™!, O(x))

QTj«(x) = T(x)T(x) for T, T € M,. Here, J := |M;].
Similarly to Lemma 7.30, we can also quantify = for the piecewise linear dictionary.

Lemma 7.32. Let M be the piecewise linear construction of Theorem 7.23. Then, = < | M, |2, where

M, is the generating family in a single dimension. Since |M,| = ], the bound is equivalently = < J°.

The following lemma established a variance bound of the type (VB) which, when combined

with Theorem 7.14, proves Theorem 7.34.
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Lemma 7.33 (Variance bound for stochastic mean-field VI). Assume 7 is well-conditioned (WC)
and that M is generated from a univariate family M satisfying (Z). Let O~ V,KL(-||z) denote
the stochastic gradient (see Appendix F.3.5). Let n} denote the unique minimizer of KL(-||r) over

cone(M; o:id)ﬁp with a = 1/+/Ly. Then, the following second moment bound holds:
E[tr Cov(Q2 V;KL(p[I7))] < 2LEE] Wi (i, 72) + 4LvE] (Ly Wi (n2, 7%) + kd) .

Let us assume that the xd term is larger than LVWZZ(n: , m*); this can be guaranteed via the
approximation result in Section 7.5.3. The next theorem follows immediately from Theorem 7.14

and the previous lemma.

Theorem 7.34 (Convergence of stochastic mean-field VI). Assume that r is well-conditioned
(WC) and that M is regular (Y) and generated by a univariate family satisfying (=). Let ¥ denote
the unique minimizer of KL(:||r) over cone(M; aid)yp with a = 1/\Ly. Then, for all sufficiently
small ¢, the iterates of stochastic projected gradient descent yield a measure ji(y) with the guarantee
Vet E[Wa(p(r), 72)] < e, with a number of iterations bounded by

=x?]d

t2 —; log (Vv Wa (o), ) /€)

and step size h < % /(LyEx]d).

As with Theorem 7.29, we can state the following corollary given that E is uniformly bounded

via Lemma 7.32.

Corollary 7.35 (End-to-end guarantees with SPGD). Consider the setting of Theorem 7.34. Then

the required runtime to estimate 1} becomes

t = O(d)’k* e ?log(Veyd/e)) .
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If ©¥ is meant to approximation *, then we can use the approximation guarantees from Theorem 7.26

to obtain the complete convergence guarantee of

t = O(k3d>2e 7 log(VeEyd/e)) .

7.6 NUMERICAL EXPERIMENTS

KDE of product Gaussian mixture

Sensitivity to

~4 -2 0 2 4

KDE of MF approximation

*
—

a®/10
—-— a*/50

. 10° 10' 10° 10
Iterations

Figure 7.2: Our algorithm is robust to the choice
of a.

4 -2 0 2 4

Figure 7.1: KDEs for the optimal product Gaus-
sian mixture and our algorithm.

We showcase our proposed MFVI algorithm on numerical experiments. Experimental details
are deferred to Section F.4, and the code to reproduce the experiments is available here. Across
all experiments, which include low- and high-dimensional settings, we took the piecewise linear
dictionary (Theorem 7.23) with the same value for the size J = |M;| = 28 of the univariate family
(hence | M| = Jd), and we ran stochastic gradient descent (without acceleration) with a batch size

of 2000 samples per iteration.
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https://github.com/APooladian/MFVI

7.6.1 ProbpucT GAUSSIAN MIXTURE

In our first experiment, the target is a mixture of four Gaussians in R* which is itself a product
measure. Despite the non-log-concavity, our algorithm correctly recovers the correct target.
Though, we note that this approach is sensitive to the initialization, but this is expected as the

landscape is non-convex.

7.6.2 NON-ISOTROPIC GAUSSIAN

Next, we computed the mean-field approximation of a randomly generated centered and
non-isotropic Gaussian in dimension d = 5. Letting X denote the covariance matrix, the mean-field
approximation is also a Gaussian with diagonal covariance and entries (Zy);; = 1/(Z71);; (see
Section F.4.2 for a calculation of this fact).

In Figure 7.2, we plot the W;? error between the covariance matrix of our algorithm iterate
(computed from samples) and X\, which is a lower bound on the true W22 distance (cf. Cuesta-
Albertos et al., 1996).

In this case, the optimal parameter choice a* is known, though this is rarely the case in practice.
We ran our algorithm for various choices of «a, fixing all other parameters to be the same. We
see that our algorithm does not depend heavily on the choice of hyperparameter «, and the

practitioner can safely choose a small value of « without sacrificing performance.

7.6.3 SYNTHETIC BAYESIAN LOGISTIC REGRESSION

As a final example, we turn to Bayesian logistic regression on synthetic data; precise details
are deferred to Section F.4.3. In summary, we are given i.i.d. data (X;,Y;)) e R x Rfori=1,...,n,

(where d = 20 and n = 100) from which we want to recover a parameter §. When assuming an
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improper (Lebesgue) prior on 0, the posterior is given by

n

V() = ) [log(1+exp(07X)) - Y; 07X;]

i=1

Note that V is not strongly convex as V(6) behaves like a linear function as [|8|| — +oco. With
V and VV in hand, our algorithm is fully implementable. As we considered an improper prior,
a comparison to CAVI is not possible. Instead, we compared against standard Langevin Monte
Carlo (LMC). The final histograms were generated using 2000 samples from both the mean-field
VI algorithm and LMC. Figure 7.3 contains the 20 marginals for both our approach and LMC,

which are closely aligned.

Il MFVI

LMC

bbb
il o]
> b

Figure 7.3: Histograms of the first ten marginals computed via our mean-field VI algorithm vs. Langevin
Monte Carlo for a 20-dimensional Bayesian logistic regression example.
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7.7 EXTENSION TO MIXTURES OF PRODUCT MEASURES

In this section, we extend our methodology to approximations via mixtures of product mea-
sures. The motivation is simply that many more measures can be approximated via mixtures of
(approximate) product measures, e.g., Gibbs distributions with small gradient complexity (Austin,
2019; Eldan, 2018; Eldan and Gross, 2018; Jain et al., 2019).

In Section 7.5.4, we minimized KL(-||r) over cone(M; aid)yp, where cone(M; aid) is param-
eterized by the pair (4,0v) € M = RLA/” x R?, equipped with the norm Il per,- In this section,
following Lambert et al. (2022), a mixture of product measures is specified by a mixing measure
P € P(M) and corresponds to the measure pp = / (T’L“)ﬁ p P(dA, dv). We can now equip the
space P (M) with the Wasserstein geometry (with respect to [|-||pg,), and we shall derive the
Wasserstein gradient flow of the functional P +— KL(up||7).

This approach to mixture modelling is inspired by the distance on Gaussian mixtures proposed
in Chen et al. (2019); Delon and Desolneux (2020); see Bing et al. (2023) for a statistical perspective.

In this section, we again use the abstract parameterization T’ = aid + Y7 p( ArT + 0. Proofs

are given in Appendix F.5.

Theorem 7.36. The Wasserstein gradient flow of P +— KL(yp|| ) is the flow (P\),5, specified as

follows. For each t > 0, P1) is the law of (A®),v™®), where

T
50 = _/ Vlog ll};:) o TH 4

In practice, we use a finite number K of mixture components, in which case

K K
1 1
P=— E SA[KLolK]) » = § (THRelY, p (7.19)
k=1 k=1
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The system of ODEs above then becomes an interacting particle system:

A0k = _/<V10g@ o TS Y g forT e M,
T

oW [k] = _/ Vlogm o TMV K10 K] dp.
/A

The particles interact through the common term log pp. More explicitly, by the change of

variables formula,

K

] p o (THKolKy-1
HP =% Z det DTAKIOIK o (TATKLo[K) =1 °

k=1

Note that computing V log yp now requires taking the second derivative of the transport maps,
which hinders implementation. In this case, a smooth family M is required.

The dynamics (7.19) maintains equal weights for each of the particles at each time. We can
similarly derive the gradient flow with respect to the Wasserstein-Fisher—-Rao (or Hellinger—
Kantorovich) geometry, which captures unbalanced optimal transport (Chizat et al., 2018; Liero

et al., 2016; 2018). The use of this geometry for sampling was pioneered in Lu et al. (2019).

Theorem 7.37. The Wasserstein—Fisher-Rao gradient flow of P — KL(up||), initialized at P\ =
S wOlk] 810 [k],00 [k]) With iy wOTk] = 1, can be described as follows. For each time t > 0,

let P() = ZIk(:l w® k] S0 (k)00 [k]) and r[k] == Vw®[k]. Then,

/i(Tt) [k] = —/<Vlog Hp o T)W) [k].0® [k]’ T> dp, forT e M,
T

o® [k] = _/ Vlog% o 7MY [Kl.o"[k] dp,

FO k] = —(/ log Hro A Tkl k] dp - / log Hp® dﬂp([)) ri[k].
T

T

We leave it as an open question to obtain convergence rates for this flow.
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A SUPPLEMENT TO CHAPTER 2

A.1 SECOND-ORDER ERROR ESTIMATE

In this section, we outline a short proof of Theorem 2.2.

Theorem A.1. Suppose P and Q have bounded densities with compact support. Then
1 2
OT.(P.Q) = JWF (P.Q) + elog((27e)'?) < —= (H(P)+ H(Q)) + Th(P.Q). (A1)

where Iy(P, Q) is the integrated Fisher information along the Wasserstein geodesic between P and Q.

The proof hinges on the dynamic formulations of W2(P, Q) and OT,(P, Q) (Benamou and

Brenier, 2000; Chizat et al., 2020; Conforti and Tamanini, 2021). We begin with the former:

1 L ra
—WZZ(P, Q) = inf/ / —|lo(t, x)||§p(t, x) dx dt, (A.2)
2 pv Jo JRra 2

subject to d;p + V - (pv) = 0, called the continuity equation, with p(0,-) = p(-) and p(1,-) = q(-).
We let (po,vg) denote the joint minimizers to (A.2) satisfying these conditions.
Similarly, there exists a dynamic formulation for OT, (see Chizat et al., 2020; Conforti and

Tamanini, 2021, for more information): for two measures with bounded densities and compact
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support,

‘ 1 1 &2
OT.(r.Q)+clog(h) =inf [ [ (Zott 0l + TIT bog(o e ) ) st 0y axd - (a3)
0 Jo

-~ (H(P) + H(Q),

subject to the same conditions as (A.2), where A, = (27¢)%/2,

If we plug in the minimizers from (A.2) into (A.3), we get exactly the result of (A.1) by optimality

1 2
OT.(P,Q)+elog(a) < [ [ Slln(e, 0l po(t,0) b de + Th(P.Q) = SOH(P) +H(Q)),

1

2
= SWE(P.Q) + <o(P,Q) = ~(H(P) + H(Q),

where we identify IH(P, Q) = /01 /Rd IV log po (£, x) ||3p0(t, x) dx dt.

A.2 LAPLACE’S METHOD PROOF

In this section, we prove a quantitative approximation to the integral

I(¢) = Ai / exp (—%f(x)) dx, (A.4)

when ¢ — 0, with f convex and sufficiently regular and where A, = (27¢)%/2. This approximation
relies on expanding f around its global minimum; assuming that f is twice-differentiable, the
behavior of f near its minimum will be quadratic, so that (A.4) will resemble a Gaussian integral
for ¢ sufficiently small.

Recall that for a positive definite matrix S, we define J(S) := \/m .

In what follows, we write d*£(0, ), d*f(0, y) for the second and third total derivative of f at
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x, respectively. That is, for y € R?

d

dzf(x, y) = yTsz(x)y, de(x’ y) - Z

i,j.k=1

Pf(x)

—
dyiyaye Y

We also define the set B,(a) := {y € R?| ||y — a|| < r}, for some r > 0 and a € R?.

Theorem A.2. Let I(¢) be as in (A.4), with f € okans m-strongly convex, M-smooth, and o > 1.

Assume f has a global minimum at x*. Then there exist positive constants ¢ and C depending on

m, M, a,d, and || f||ce+1 such that for all e € (0,1),
¢ < J(VEF(xX*)I(e) < 1+ C(el@D/2M) (A.5)

Proof. Without loss of generality, we may assume that x* = 0. For the remainder of the proof, we
let A := V2£(0). Let 7 = Cppraav10g(2671), where the constant is to be decided later. We split the

desired integral into two parts:

1 - 1 _
I(e) = — / e /W dy + — e /W dy =: Li(¢e) + L(e) .
e JB,;:(0) Ae JB, (0

LowEeRr BoUNDs Note that I;(¢) > 0, so it suffices to only prove [; (¢) > —=== for some constant

Vdet(A)

c>0.

Since f € C**1, we have the following Taylor expansion

1 M
_f(y) > _EyTAy _ C”y”((x+1)/\3 > _?”yHZ _ C”y”(a+l)/\3
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for some constant C > 0. Using this expansion, we arrive at

1 M C
b= [ e |5l - Shal | ay
£ BT\/E(O) € €

1 M C
> [ el - Sovpre s ay
€ BT\/E(O) € €

Performing a change of measure and rearranging, we get

J(A)L(e)

\%

S ClryB 1 J(A)d / eI gy
2
M) Js s,

—C(/e)(@+DA3 /o
e CND e r AP Y || < VM),

4%

where Y ~ N(0,I). Since a > 1, the quantity C(zv/&)**1)"3/¢ is bounded as ¢ — 0, so we may
bound e=C(VO'“V"*/¢ from below by a constant. Since J(A) and P(||Y|| < VM) are both also

bounded from below, we obtain that J(A)I;(¢) > ¢ > 0, as desired.

UpPER BOUNDS ~ We first show that the contribution from I,(¢) is negligible. The strong convexity

of f implies
m. 2
>
f 22yl

leading us to the upper bound

Le) < - / ¢RIl g,
Ae JB, ;(0)°

1 19,02
_ =z llyll
= e 2 d
(Zmﬂ)d/z /B‘T(())c y

< (zlwe—%/e—illyllz dy
mit

A
Q
|
ISt
_
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where in the penultimate inequality we have used the fact that emilUl’ < =i on B.(0)¢. Taking
CmMm.dq sufficiently large in the definition of 7, we can make this term smaller than e.
For upper bounds on I; (¢), we proceed in a similar fashion. If f € C**! for « € (1, 2], then we

employ the bound

l [24
~f(y) < -5y Ay +Cllyl|*",
yielding

Il(é‘) = i/ e‘%f(y) dy < i/ e—inA!H%IIyII"‘“ dy
A B, z(0) A B, :(0)

Performing the change of variables u = 4/1/ey, we arrive at

1 1T (a=1)/2||,,ja+1
Li(e) < —/ g7 ¥ Augle ™ g
(2m)472 Jp, (o)

Since & > 1, the term Ce(*~D/2||||**! is bounded above on B, (0), so that there exists a positive

constant C’ such that
(a=1)/2|| || _
CE T < 1 4 @ D2y 19t vy € B,(0).

We obtain

1 1T
11(8) < —/ ezt Au(l +C’g(a—1)/2“u”a+1) du
(2m)4/% Jg,(0)

1

) W/ e U A(1 4 Cel@ V2| y)|9*) du.

Performing another change of variables yields

1 1y,,112
Li(e) € —M——— 1+C’€(“—1)/2 A_l/zu a+l e—§||u|| du
1(¢) DA /( l 147°)
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We obtain

J(AL(e) < 1+C"el@D/2,

Combining this with the bound on J(A)I;(¢) yields the bound for « < 2.

When a > 2, we use the same technique but expand to the third order, yielding

1
Li(e) = —/ e /W dy
Ae B yz(0)

< i/ oy Ay—E EFO0y+E lyl|e! dy
Ae JB, (0
1

_1,T _ﬁ 3 (a-1)/2 a+l
— —d/2/ e 2! Au—— d’f(0,u)+Ce [Jull du
(27)%7% JB,(0)

Since —% d3 (0, u) + Ce'*D/2||y||**! is bounded on B, (0), we have
p1/2

o O EFOwHCE Dt —— Ef0.w) + CeD ™ + R(w),

where R is a positive remainder term satisfying R(u) < e( d>£(0,u))? + ¢ 1||u||*(**). We obtain
WO < o / 1= E2 & F(0,u) 4 Cele D 21 4 R(w)| e H A ay
~ (2m)42 Jp.(0) 6 ’

The symmetry of B,(0) and the fact that d*£(0, u)e_%”TA“ is an odd function of u imply

/ d3f(0, u)e_%”TA" du=0,
B(0)
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SO

Li(e) < /(1 +Cel 1)/2||u||0‘+1 +R(u))e” 2ulAu gy,

)d/z

= W /(1 + Cg(a_l)/2||A_l/2u||a+l +R(A_1/2u))e_%”u”2 du
T

<14+C"¢ (a— 1)/2+C”€,

which is the desired bound.

Corollary A.3. Assume (E2) and (E3). For all & € (1,3], there exist positive constants ¢ and C such

that

¢ < ](qu,g(x*))zg(x) < 1+C€(a—l)/2’

foralle € (0,1) and x € supp(P).

(A.6)

Proof. Take f(-) = D[-|x*] which is 1/L-strongly convex, and 1/p-smooth, with minimizer x* (see

(2.13)). The claim now follows from Theorem A.2.

A.3 OMITTED PROOFS

A.3.1 Proor or PrRoPOSITION 2.1

It suffices to show that

OT.(P,Q) > sup / ndr, — eﬂ e(Gey) = llx=yll*) /e dP(x)dQ(y) +¢,

nell(z.)

since the other direction follows from choosing 1(x,y) = f(x) + g(y) and using (1.24).
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Write

y(x, y) = e%(ff(x)"'ge(y)_%”x—yuz)

for the P ® Q density of .. The inequality
aloga>ab—e’+a

holds for all a > 0 and b € R, as can be seen by noting that the right side is a concave function
of b which achieves its maximum at b = loga. Applying this inequality with a = y(x,y) and

b= %(ly(x, y) — %Hx —y||?) and integrating with respect to P ® Q yields

/ 10gyd7r52§(/ an, - [ %le—ynzdng(x,y))‘// e IDIE AP (x) dQ(y) + 1

Multiplying by ¢ and using the fact that

[ eogran = [(h0+a.w - 3k -9l dm = OT(.0) - [ Jlix = ol dr ()

yields the claim. o

A.3.2 Proor ofr PROPOSITION 2.15

Proposition 2.15 follows from the following more general result by choosing P = P,.

Proposition A.4. Let P and Q be probability measures with support contained in Q, and denote by

P, and Q, corresponding empirical measures. If P is a probability measure with support in Q such
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that TV(f’, P,) < & for some § > 0, then

Bl s [fxwpdnan - [[ @ - 076y dpo dguw)

1OXQ-R

< el 5+ (e 7P log(n)n_l/z,

where 7., is the optimal entropic plan for P and Q,, j is the P ® Q, density of the optimal entropic

plan for P and Q,,, and the supremum is taken over all y € L' (7,.,).

Proof. Write f; and §, for the optimal entropic potentials for P and Q,, so that
- ~1/ 7 ~ 1 2
yeny) =exp e (fe(x) +g:(y) = Sllx —ylD) | -
Plugging in n(x,y) = ex(x,y) + ji(x) + g.(y) into Proposition 2.1 gives

sup // X e — / (X9~ 1)7(x, ) dP(x) dQu(y) Se—l(omP, 0.)

X:QOXQ—-R
—/fldP—/gngn),

where we have used that y is a probability density with respect to P ® Q, by the optimality
conditions (1.27) and (1.28).
Let f., and g., be the optimal entropic dual potentials for P and Q,. As in the proof of

Lemma A.8, the optimality of f; and g, for the pair (P, Q,) implies

[iiars [5:000> [ fndps [ gund0, - [[ etintrmantevi) g ag,(u) +e

:/f;“,ndﬁ""/ge,ndQn’
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since / e ¢ fen()+9en()=3llx-yII*) dQ,(y) = 1 by the dual optimality condition (1.27). Therefore

ot - [ fiap= [ G:d0,< [ (fiu=foar-ap
:/(ﬁ’”_ﬁ)(dp‘dp'l“/(ﬁ,n—ﬁ)(dPn—dﬁ)

By Genevay et al. (2019, Proposition 1), we may choose f;, andfg to satisty ||fgn||oo , ||fg||oo < 1,80

we may bound the second term as

/ (i = f)(dP, — dP) < TV(P,P,) < 6.

Also, since f;, is independent of P,
Eﬁn(dp - dPn)(y) =0.

Altogether, we obtain

g s [ i - [ -0y arw a0 w < e—l((ma / ﬁ(dPn—dm).

1:OxXQ—R

We conclude by again appealing to Genevay et al. (2019, Proposition 1): since f; is an optimal
entropic potential for the pair of compactly distributed probability measures (P, Q,), its derivatives
up to order s are bounded by C; 4k (1 + ') on any compact set K for any s > 0. Taking K to be a

suitably large ball containing Q and applying Lemma A.8 with s = d/2 yields the claim. O

A.3.3 PROOFS FROM SECTION 2.2.1

Proof of Lemma 2.12. Fix x € supp(P) and let x* := Ty(x), and for notational convenience, write

Y for the random variable with density ¢*, and denote its mean by Y. It suffices to show the
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existence of a constant K such that for any unit vector v,

Ee® (Y-x))/ale < g (A7)

Indeed, by Young’s and Jensen’s inequalities, this implies

Ee(vT(Y—Y))2/8L8 < e(vT(Y—x*))2/4L€Ee(vT(Y—x*))2/4Le < K2,

and hence by another application of Jensen’s inequality that

Ee(vT(Y—Y))Z/Cg <2

for C = 8LK?.
We prove (A.7) using the strong convexity of D[y|x*]. By (2.13),

Fo@ (v=x)/aLe . 1 / e~ Dl Tt Iy I g,
— Ze(x)Ae

o ! / el I gy
— Ze(x)A,

_(2L)7?
 Ze(x)

<1,

where the final inequality uses Corollary A.3.

Proof of Lemma 2.13. Let us first fix an x € supp(P), and write Y for the random variable with

density g} and Y for its mean, and write x* := Ty(x). Lemma 2.12 implies (see Vershynin, 2018,
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Proposition 2.5.2) that there exists a positive constant C, independent of x, such for any v € RY,

Eel0T(Y=x) _ oo (=3 (07 (F=1) < " (F=a)+Celoll® o o7 [2+(CHD)eloll®

where the last step uses Young’s inequality. Equivalently, for a > (C + 1)e, we have for all

x € supp(P) and v € R?

/ o@Dl g2 () Gy < (AN

Applying this inequality with v = h(x) and integrating with respect to P yields the claim. O

Proof of Lemma 2.14. 1t suffices to prove the claim for a € (1, 2]. Let us fix an x € supp(P). Since

@y € C**1(Q), Taylor’s theorem implies
%k % 1 % % % % %
Dlylx] = =xTy + po(x) + ¢5(1) = 5 (y =x) TV (x")(y - x) + R(ylx"),

where the remainder satisfies

IRyl < lly = "1™ (A.8)

We aim to bound

15" - 7| =

1 )~ DIylx']
- e d
el K Y

Let 7 = C+/log(2¢71) for a sufficiently large constant C. As in the proof of Theorem A.2, the
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contribution to the integral from the set B,,;(x*)* is negligible; indeed, (2.13) implies

1 / g~ Dlylx‘]
(y—xe "W I dy
Ze(X)Ae Jp, (v
1 / L l—*]2
< ly — x*[|e" 21" dy
Zs(x)Ae B, s (x*)¢

(d+1)/2
~ o e gy
Ze(x)Ae JB,(0)

E(d+1)/2 . , 1/2 ) , 1/2
< (/ ”yllze—gllyll dy) (/ e—ﬁ”y” dy)
Ze(x)Ae B, (0)¢

SPpY| > 7], Y ~N(0,I),

A

and this quantity can be made smaller than ¢ by choosing the constant in the definition of 7
sufficiently large.

It remains to bound

1
Ze(X)A,

/ (y — x")e R =3 =) V0 () () g
Br\fg(x*)

., (A9)

1 / # (e~ LR(lx") A (yx") TV} (x*) (yx")
(y—x)(ef yix —l)e 2e\Y PotX ™Y dy
Zs(x)As Bz (x*)

where we have used that

/ (y - x*)e 2 W) TV () (y=x7) dy=0.
Br\ﬁ(x*)

By (A.8),

1 L1 . \
SR < Zlly =" 1" <1 VyeBg(x"),

and since |e' — 1| < |t| for |t| < 1, we obtain that

. 1
eI 1] < Sy - XM Vy € BLg(x).
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Therefore (A.9) is bounded above by

C

1
e — x¥ 2+a _ _aF Tvz * * Lk d < 0(/2
Zo(x)Ace /Rd ly = "I exp(=o-(y = x") T V205 (x7) (y = x")) dy < 7%,

where in the last step we have applied Corollary A.3. We therefore obtain
IBgr (V) —x*|| < e +e.

Taking squares, we get the desired result.

A.4 SUPPLEMENTARY RESULTS

Proposition A.5. For any x € supp(P), ifa € [Le, 1], then

E sup /ejh(x,y)qf_(y)(dQn -dO)(y) < (1 + g—d/Z)n—l/Z,
h:Q—Rd q(y)

where the implicit constant is uniform in x.

Proof. To bound this process, we employ the following two lemmas:

Lemma A.6. Ifa > Le, then for anyv € R,
* 1 % eL
0" (y —x") —alloll* - -Dlylx™] < —Ellvllz-
Proof. By (2.13), D[y|x*] > illy — x*||2. Combining this fact with Young’s inequality yields

eL ., 1 2 5 1 . eL
—|lo]|* + —lly = x7||” = al|lv|| = =Dly|x"] < ——||v
Cllol® + 5 —lly = I = allol* - ~Dlylx"] < == [ol

0" (y = x") —allo]|* - —Dlylx"] <

as claimed.
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By slight abuse of notation, for any v € R4, write Jo : Q — R for the function

Jo(y) =07 (y = To(x)) — allo]|?.

Let

q:(y)
0

d
) U<F } (A.10)

= (el I
Lemma A.7. Ifa € [Le, 1], then

log N(7, Jo. I| - llz=(@)) < dlog(K/7),

where K < (1+ ¢ 42).

Proof. Fix § € (0,1). Let Ns be a §*/2-net with respect to the Euclidean metric of a ball of radius

512 in R?, and consider the set

5 AC). }u{ iwa: (y)}

g‘“z{ (W) W)

where w € R? is an arbitrary vector of norm /2. By Lemma A.6, if a > Le and ||v|| > R, then

Sup e]U QE (y) 1 _ﬁRz 2L

< sup —————— < sup 5
yesupp(Q) q(y) yesupp(Q) Ze (x)qu(y) yesupp(Q) ZE(X)AEq(y)R

Therefore, if v € R? satisfies ||o|| > 6~'/2, then

yesupp(Q) q(y) q(y) yesupp(Q) Zg(x)qu(y)

—dj2.

for K = <e€

1+4L
SUPyesupp(Q) Z,(0)A.q(y) ~
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On the other hand, if v € R satisfies ||o]] < §7/2, pick u € Nj satistying ||u —o|| < 532, We

then have
LW T @ _ 1@~ h @)l
q(y) q(y) |~ q(y)

3

where we have used Lemma A.6 combined with the inequality
le? — €| < |a—b] Va,b < 0.
Since ||u — o|| < 82 and ||ul| + ||o|| < 267'/2, we have for any y € Q,

() = o) = 1 =) (y = To(x)) — allull® ~ [lol|*)] 5 6% + 5a,

where we have used the fact that y and Ty(x) lie in the compact set Q. Therefore, as long asa < 1,
this quantity is bounded by C§ for a positive constant C.

All told, we obtain that for any v € R, there exists a g € Gs such that

oo q; (y) B

< K$,
q(y)

L=(Q)

where K < 1+ ¢ %2, Moreover, Lemma A.6 implies that, for any g € Gs,

1
lgll=o) <  sup K.

- <
yesupp(Q) Ze (x)qu(y)

By a volume argument, we may choose N such that it satisfies

log [ N5 < log(1/9).

194



We therefore obtain for any 7 < K,

log N(7, Jo, || - llz=(0)) < log |Gkl < log(K/7),

as claimed. m|

Returning to the empirical process, we obtain by a chaining bound (Giné and Nickl, 2021,

Theorem 3.5.1)

E sup / et W) 46 _ 40)(y) = Esup / J()(d0y - dO)(y)

h:Q—Rd q(y) jeg
K
< n_l/Z/ Vlog(K/7) dr
0
< Kn™Y2.
Recalling that K < (1 + ¢ %2) completes the proof. ]

Lemma A.8. For a convex, compact K C RY, for any real numbers > d /2, and M > 0, let C*(K; M)
be the set of s-Holder smooth functions with Holder norm bounded by M. For any probability measure

v with support contained in K and corresponding empirical measure v,, we have that

E sup / 9(5) (dva(y) — dv(y)) < CeM log(mynV/2.
geCs(K;M)

Proof. We write ¥ to be the set of functions in C*(K; 1). A version of Dudley’s chaining bound

(see, e.g., von Luxburg and Bousquet, 2003, Theorem 16) therefore implies for any § > 0,

1
e s [ g(y)(dm(y)—dv(y))sM(«nn-l/Z /5 VBN 7 Tl de

geCs(K;M)

Letting s > d/2 and applying standard covering number bounds for Hélder spaces (Vaart and
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Wellner, 1996, Theorem 2.7.1) implies

1
E sup /g(y)(dvn(y) —dv(y)) < Cxinf M (5+ n_l/Z/ ! dr) .
geCs(K;M) 6=>0 5

Taking § = n™/? yields

E sup [ gu)dn(y) - dv(y) oMt 21 = log(n12) < Cet 2 logn,
geCs(K;M)

as claimed. m]

Lemma A.9. Let P and Q be compactly supported, and let (f, g.) denote the optimal dual potentials
corresponding to OT,(P, Q). For any real number s > 0, the derivatives of (f, g.) up to orders are

bounded by Cq 4 (1+¢'™*) on any compact set K, where Cs g > 0 is some constant independent of ¢.

Proof. It suffices to show the claim for f;. Let r be a positive integer, and let A € [0, 1]. By Genevay

et al. (2019, Theorem 2), it holds that

Ifeller =01 +€'77).

For any s > 0, we can write s = r + (1 — A) for some A € (0,1) and r € N. Consequently, any
such s can be written as s = Ar + (1 — A)(r + 1), from which we can now apply an interpolation

inequality between the two integers (Lunardi, 2009):

W llereneen < IEIANEISS
< (1 +€l—r)/1(1 +€—r)1—/1

< 14 £1-0A-r(1=2)

— 1+g—r+l

N

=145,
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Thus, ||f:llcs = O(1 + £!17%) for any s > 0, as desired. O

Corollary A.10. If P and Q are compactly supported, then
EOT.(P,Qn) ~ OT:(P,Q) 5 (1+¢' ™) log(mn™'/2.

Proof. Let (f;n,9.,) be the optimal dual potentials for P and Q,. Following Mena and Niles-Weed

(2019, Proposition 2), observe that

OTE(P,QH)_OTE(PaQ):/ﬁe,n)dp"'/g(a,n)dQn_S}lp{/fdP+/ng
g

e // e F9@=HIr=yIP)e gp () dQ(y)H}

< / Gem (1)(d0u(y) — dO(y)),

where the bound follows from choosing (f(sn), g(¢n)) in the supremum and using
/ im0 =3 1x-vIV/e 4p(x) = 1 vy € RY

by the dual optimality condition (1.28).
We conclude by applying Lemma A.9: the derivatives of g., up to order s are bounded by
Csax(1+ &™) on any compact set K for any s > 0, so we may take K to be a suitably large ball

containing the support of P and Q and apply Lemma A.8 with s = d/2. O

A.5 PROOF OF THEOREM 2.16

We recall the notation from the main text. For convenience, we consider « > 1 + 1 for some
1 > 0 sufficiently small, but fixed. Let s := a + 1, which defines the regularity of the conjugate

Brenier potential ¢, thus s € [2+1,4] for our problem considerations, since smoothness is capped
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at o = 3. Let S be the following discrete subset
S = {Smin =51 <2 <+ < SN = Smax} >
where Smin = 2+ 1, sy = 4, with increments s; — s;_; < (logn)™!, and set
es = (nflog n) V2@ -y (s) = (&)° = (n/logn) /2@

Let D, := {(X;, Y;)}!_, denote our initial dataset with hold-out dataset D;,. The latter gives rise to

empirical measures P; and Q;,. Our choice of smoothness parameter is given by the following rule:

§=max{se S : ||, - f}s ) S Un(s),Vs <s,s" € S}. (A.11)

2
e,

The proof closely follows an exposition of Lepski’s method due to Hiitter and Mao (2017).
For a given probability measure and its empirical counterpart from n samples, written p and

pn, we will frequently return to the empirical process over a given function class M, written

1 = pullac = sup / Fd(p - p)
feM

We will consider the following function classes: ¥, will denote the class of entropic Kantorovich
potentials for a regularization parameter ¢, and J; be the function class from (A.10). Hy will

denote the random, P,-measurable set of N? bounded functions of the form
175 (x) = T, ()15,

fori,j € {1,2,..., N}, where we recall that N is the cardinality of S.
Without loss of generality, we can assume ¢; € C* for some s; € S. We define the event

&Ej = {§ =s;} forall j € [N], and denote our estimator by T; (for clarity, we omit the explicit
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dependence on ¢). The ratio between the risk of T; and the oracle rate Un(s;) can be written as

i—1

BT =~ TollZa gy Yn(s) ™1 = D ELIT = Tolls gy ¥n(s) 1))
j=1
N

+ > BTy = TollZ oy () 1(E)] -

j=i

Our goal is to show that the right-hand side is upper bounded by an absolute constant. We study
the two terms above separately.

Let us first focus on the terms where j > i, i.e. our estimator of the smoothness of the optimal

transport map is larger than the actual smoothness parameter. Inside the expectation, we can

write via Young’s inequality

1T, = TollFopy < 1T, = TollFagpy + 1T = Toll 22 )

2
e
1, = Bl gy # 15 = Tl + [ P
< ”’fs] - ’fs,HEZ(prfl) + ”’f& - TO”EZ(p) + ”P - Pr,1||7'{N >
where h = ||T; = fsi ||2. We conclude by taking expectations. The first term on the right-hand side is
bounded by 1,,(s;): our estimator § = s; under the event &;, and our criterion for §, namely (A.11),

and s; < s; by assumption. For the second term: as ¢; € C*, our main theorem (Theorem 2.5) tells

us that

BIIT;, — TollZgp) S n(s) -

The third term, by Hoeffding’s inequality and a union bound, satisfies
E||P;, = Plizy, = E[E[IIP; = Pligty | Pall < loglog(n)/vn,

where we used that N =< log n. Note that the third term is in fact faster than any ¥, (s;) for any
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choice of s; € S. Altogether, this gives the following bound
N N
N BT, - Tolla pyn(s) M 1(EN] 5 (& +E) D BE) +& < G
j=i

j=i

for three different constants cg, ¢y, ¢y > 0.
We now turn our attention to the case where j < i, which is more technical. Focusing on one

term in the summand, we want to choose ¢; to appropriately balance

E[IT;; = TollZ py¥n(s) 7 1EN] < B(EN + | BUIT, = TollZ py¥n(s) ™ = 1) dt.
(P) t (P)

J

By definition of the estimator, we can upper bound P(&;) by two events, leading to

i-1
2(8)) < 3 (BUIT, = Toll% gy ()™ > ¢2/4) + BAIT, = TollZa (s ™ > 3/4)) . (A12)
=1
Indeed, since s; < s; and since we are on the set &;, there must exist an s; < s’ < s; such that
”Ts, - Ts’”;(p;l)wn(s/) > Co-

By Young’s inequality, we can break this up into two possible events, whereby summing over
all possible s” gives the above bound (we replace s’ by s;). Finally, we note that we also have the

inequality
B(IT:, = TollZe gy Yn(s) ™ > €3/4) < BATy, = Toll2s g Yn(s) ™ > c2/4).

since ¥, (-) is decreasing. It remains to bound these two tail probabilities across all [ < i, where

note the norm is measured in L*(P)). To continue, we require the following lemma.
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Proposition A.11. There exist absolute constants c,C > 0 such that fort > c,

B (IF: = Tyl gy ¥n(9)™ 2 ct) < exp (__

Proof. For any choice of s € (2,4], it holds that

I = Tl ) €72 +11Qn = Qll + €7 1P = Pl

which stems from the calculations that appear between Theorem 2.6 and Theorem 2.10. Both
|Qn — Oll.7. and ||P, — P||# are subGaussian random variables via McDiarmid’s inequality: for

two constants a, b > 0, it holds that for ¢ large enough

P(1Qn - Qllg. = (1+ H)(e~nH1?) < emat’/2

P(e Y|Py = Pl = (e7'n )2t 4+ 6 2n7112) < 702

Consequently, we can merge these via a union bound; taking the worst case constant, we have

that for t > ce~%/?n~1/2, for ¢ > 0 sufficiently large, it holds that
P(”TS - TO”%Z(P) 2 65/2 + g_d/zn—l/zt) < e—ct2/2 ‘

Dividing through by #,,(s) = (n/ log(n))_m completes the proof. ]

We can also obtain tail bounds under L?(P)) at virtually no cost. Indeed, for any s € S,

1T = Toll22pry < 1T = Toll2 ) + 1P = Pllty »

(P, (P)

where the last term has expectation bounded above by loglog(n)n~'/? up to a constant factor

(indeed, since Ty = Tj,, this is perfectly fine at the cost of adding one more function to the set). By
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employing a further union bound, we can state Proposition A.11 as

_t*log(n) ) (A.13)

P (Hfs - T0||i2(pé)¢n(s)_1 > Ct) < 2€Xp( .

forany s € S, where the constants that appear are slightly different. Indeed, since log log(n)/y/n <
Un(s), nothing is lost by incorporating this additional term.
Returning to (A.12), we can take ¢ sufficiently large in both terms, we can employ (A.13) for

all the terms in the summand, which results in
2(8;) < -8

For the integrated tail, we use a similar argument, appealing to Proposition A.11 directly.

Indeed, for t > Cy,,(s;)/¥n(si), the following bound holds:

t*log(n) Yn(s:) )

C ) (A.14)

P (”Ts] - T(J”iz(p)lpn(si)_l = t) < exp (_
Choosing tj = c14/¥n(sj)/Yn(s;), the tail can be upper bounded as
® < _tz log(n) Ebn(si)) ( Yn(s;)C ) Yn(si) < (_Cl log(n))
/ o ( ¢ ntsp) = atstogm | ity “P T ¢

_[Ua(s)  C _cylog(n)
"\ VG alogin) P\ ¢ )
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Merging everything together, we obtain rather crudely that

—_

i—1 i—
DB, = Toll2ap vn(s) 1(E)] <

j=1 j=
i—

—_

1

= logn

IA

=1,

since there exist N < log(n) terms. This completes the proof.
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B SUPPLEMENT TO CHAPTER 3

B.1 REMINDERS ON SEMI-DISCRETE ENTROPIC OPTIMAL TRANSPORT

We recall in this section some known results on entropic optimal transport that will be needed

later. Let y, v € P(Q), where Q C B(0; R) is a compact set.

Vo oV

Lemma B.1 (Genevay et al., 2019). The entropic potential (¢} ", y!") have a bounded amplitude,
in the sense that

max ¢} ' —mingl " < cR (B.1)
x€Q x€Q

for some absolute constant c, and similarly for ¢! ",

Assume now that v = 25:1 v;6y; is a discrete measure. In this situation, only the values of
the dual potential /" on the points yy, ..., y; are relevant. We therefore consider /" as a
vector in R/. The potentials ¢! " and ¢/ " are dual of one another, in the sense of the e-Legendre
transform. Given a finite measure p, the e-Legendre transform of a function h with respect to p is
given by

L (h)(x) = glog/ e EW=h())/e g (x). (B.2)

Modifying (1.27) and (1.28) for entropic Brenier maps tell us that ¢} " = ®' (/") and vice-versa.

In the semi-discrete setting, it is also convenient to introduce the e-Legendre transform with
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respect to the counting measure o on {yj,...,y;}. For a vector i € R/, we have

() (x) = L (Y)(x) = elog »_ e wIVwIe, (B.3)

The &, transform and the ®; transform are linked through the relation

@(Y) =, (y)  where  Y(y;) = Y(y;) - elogv;, (B.4)

where we call lﬁ a shifted potential. With this notation, the optimality condition on the potentials

can be rephrased. Let

F;’*V:z//eRfe/@g(zp)dw/lpdv. (B.5)

Then, the function F " is minimized at ng " Fory € R/ and x € R?, we introduce the probability

measure supported on {y,...,y;} given by

RS TANE
ST, elCeudvyle

Vie[J, = [y)(y) = = (i) =@:(Y) ()Y (1)) /¢ (B.6)

A computation gives VFY " (¢) = f X [¥] du(x) — v, so that at optimality, we have

[ aut) = v (®.)

In this case, 7} = 1} [iﬁf "] is the conditional distribution of the second marginal of 7, given that
the first is equal to x. More generally, for any potential /, the first order condition implies that ¢/

is equal to 1/;5 " the optimal dual potential between y an vy = f X Y] du(x).
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B.2 BOUND ON THE APPROXIMATION ERROR

Proof of Theorem 3.5. Let i, j € [J]. We define the jth slack at x € L; by

241 () =~ 45} + 0o ) + o). ®.5)

As @ is the Legendre transform of /), we have A;j(x) > 0. If the cells L; and L; have a nonempty
intersection, the set H;;(t) = {x € L; : A;j(x) = t} represents the trace on L; of the hyperplane
spanned by the boundary between L; and L;, shifted by t. It is stated by Altschuler et al. (2022)
that for every nonnegative measurable function f : R — Ry,

1

AfmmmMQszww_%”

/0 f(®)hi(¢) de, (B.9)

where h;;(t) = /Hij " p(x) dH;-1(x) and Hy-q is the (d — 1)-dimensional Hausdorff measure. In
particular, w;; = h;;(0) is the (weighted) surface of the boundary between the i and j* Laguerre
cells (should it exist). Given x € L;, let s(x) = minj4; %A,- i(x). When the point x is sufficiently
inside its Laguerre cell, the conditional probability 7} becomes extremely concentrated around

the point y;, as the next lemma shows. Note that 7) = §,, when x € L;.

Lemma B.2. Let x € L;. For ¢ small enough, it holds that for every j € [J], |7} (y;) — 73 (y;)] <

ce™X/¢ where ¢ depends on J, the distances ||y; — y;ll and on the quantities w;;.

Such a result was already stated in Delalande (2022, Corollary 2.2), although while requiring

that the source measure P has a Holder continuous density. Only assumption (S1) is needed here.

Proof. According to Altschuler et al. (2022, Proposition 4.6), for ¢ small enough,

e lYe — Yolleo < C, (B.10)
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where E;e is the shifted version of ¢/, (see (B.3)) and C depends on the distances ||y; — y;|| and on

the w;;s. Following Delalande (2022, Proof of Corollary 2.2) and (B.6), we have for j # i

ey e (y))) e o elEun—ta))/e

= <e < 2CemsM/e,
Z]-/ 1e((x,yjr)—l,l/g(yj/))/e 25,_1 e(<X,yj’>—Wo(yj’))/€
j'= =

|7 (y) — my (yy)| = 72 (y;) =

A similar computation yields that |7} (y;) — 7y (y:)| = |7} (y;) — 1] < Je¥Ces/e, m|

We can bound for any x € L;,

J J
IT:(6) = TGOl = 11 )y (X (y)) = 3 )l < ¢ D Hlyslle™e. (B.11)
j=1 j=1

Therefore, letting C’ denote a constant, which may depend on J, whose value may change from

line to line, we obtain

IT: - TouLz(p)— / IT: (x) = To(x)II? dP<x><C'Z / Z e B/ dp(x) (B.12)

1]1

<c’Z/ Aij()/e 4p(x) <c'22”y . ”/ “ep(t) de, (B.13)
i J

i#]j i#j

where in the second equality, we used the definition of s(x). Assumption (S1) ensures that the

functions h;js are bounded, which implies that the right-hand side in (B.13) is of order e. ]

B.3 STABILITY OF ENTROPIC TRANSPORT PLANS

Proof of Proposition 3.10. Note that we may assume without loss of generality that v < v' and
that KL(v||v") < oo, for otherwise the bound is vacuous. For notational convenience, we omit
the dependence on ¢ in the subscripts. Write 7" = y*"(x, y)du(x)dv(y) for the entropic optimal

plan between p and v, where y*" = exp (%((x, y) — " 7"(x) — ¥#7V(y))), and analogously define

P =exp (2((xy) — 0" TV (x) = PH T ().
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Consider the measure y**" (x, y) du(x) dv’(y). The first-order optimality condition for the pair

of potentials (¢ ="', y#*'="") implies that

/ Py dv(y) =1 VxeQ, (B.14)

so that y**" (x,y) dv/(y) is a probability measure. Let us write dz*(y) = y*"(x,y) dv(y) and
dp*(y) = y""" (x,y) dv'(y).

We make the following observations: first, TV (x) = / ydz*(y) and T ™" (x) = / ydp*(y).
Second, the support of p* lies inside B(0; R); since any Lipschitz function f on B(0; R) satisfies
sup, f(x) —infy f(x) < 2R, Hoeffding’s lemma (see Boucheron et al., 2013, Lemma 2.2) implies

that if f is Lipschitz and / fdp* =0, then

/ e dp* < X" VieR.
This implies (Bobkov and Gotze, 1999, Theorem 3.1) that

Wi (7%, p¥)? < 8REKL(7*||p¥) . (B.15)
Third, Jensen’s inequality implies that for any coupling y between 7* and p*,

= |7 (x) = T~V ()1, (B.16)

/ ly - o1l dy(y. ) > / (v - ) dy(y. )

so that in particular, || T#7"(x) — T# ™" (x)|| < Wi(*, p¥). Combining these facts, we obtain

1

—v "=y’ X|| AX i dv v
0 =P ol < ko) = [ 1og (Lo gh ) o vt @
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Integrating both sides of this equation with respect to y yields

8R2||Tﬂ—>V(x) TH =V (x)”LZ( ) < /log( yrY = (x, y) (y)) dz™’ (x,y) . (B.13)

Expanding the definition of y*" and y**"" and using that

d d
[ 10g S dn ) = [ 1og T ) dv(w) = kLG V)

yields the claim. o

We now record two corollaries of this bound, which apply when either the source or the target

measures of the entropic maps agree.

Corollary B.3. For any u, v, v’ supported in B(0; R),

1

Sl =T Ry < [ - Ry @19)

Proof. We apply Proposition 3.10 with p = g/, which yields (once again omitting the dependency

in ¢)

1

T =T Gy < €7 ( / (¢ =" dpr+ / W =) dv) + KLY

(B.20)

By definition, (¢*~"',*~"") minimizes the expression

/(pd“/¢dv/+€//e<<x,y>—w<x>—¢<y>>/edﬂ(x) v (y) - e,
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so, recalling that /f () =p" " 0=y () fe du(x) dv'(y) = 1, we have in particular

/(pll—w’ d‘u+/¢/l—>v’ dv’ S/(pﬂ_)vd,u+/¢‘u_wdvl

+e // =0 D= WD 4y (1) AV (y) —

= / ¢ dp+ / Y dy,

where we have used that the first-order optimality condition for (¢*~",¢#*~") implies that

f/ (o) =" )= W) /e qy(x) dv/ (y) = 1 as well (recall (1.27)). This implies

/ ("™ =~ ¢") du < - / P = v

Applying this inequality to (B.20) yields

1

Sl =T By <7 [ =g =)+ KLY,

Corollary B.4. For any pu, 1/, v supported in B(0; R),

1

Sl T Ry < [ o a0,

Proof. We apply Proposition 3.10 with v = v/, yielding (dropping the dependency on ¢)

8R?

An argument analogous to the one used in the proof of Corollary B.3 gives the inequality

/(p”/_)vd,u’+/¢”/_)vdvs/(p”_)vd,u’+/¢“_’vdv,
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1T =T My < €7 (/(fp" ') d#+/(¢” -y dV) -

(B.21)

(B.22)

(B.23)

(B.24)



or, equivalently,

/ (Y=g dv < - / (¢ =" di (B.25)

and combining this inequality with (B.23) proves the claim. O

B.4 STRONG CONVEXITY OF THE ENTROPIC SEMI-DUAL PROBLEM

Proposition B.5 (Strong convexity of F£ ). Let v = Z?:l v;6y, be a measure supported on
{y1,...,ys} S B(O;R) and let i supported on a compact convex set Q C B(0;R) with a density p

Satisfying pmin < P < Pmax fOr SOMe Prmay = Pmin > 0. For y € R/, define vy = / X [y] dp(x) and

assume that vy > Av for some 0 < A < 1. Then, we have for e € (0,1)

FI™ () - min F'™" > CA - Var, (y — yt"), (B.26)

-1
2 .
where C = (€2R Pumax g) Puin

Pmin Pmax

Proof. As ji and ¢ are fixed, we will simply write 1, instead of /", and write similarly F, = F".
Recall the definition (B.3) of the shifted potential i, (y i) = Yv(yj) —elog vj. According to Delalande

(2022, Theorem 3.2), the functional F, is minimized at the vector 1/2,, with

Yo e R/, Var,(v) < (eZRZ@ + 3) UTVZFV(I/;V)U. (B.27)

min

For t € [0,1], let ¥, = l}v +t(y — l%) and let v; = / X [¢+] du(x). The potential ¢; is the (shifted)
entropic Brenier potential between y and v, so that it minimizes the functional F,, (see Section B.1).

Also, note that V2F, does not depend on v, so that

-1
0" V2F,(Yy)o = 0" V2F,, (Y1)v > (eZRZM + 5) Var,, (v). (B.28)

min
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Let o = 1y — /", A Taylor expansion of F, gives

F,(¢) - Fv(l;;v) = /01 v V2F,(Yp)odt > (eZRZM + e)_ /OlVarvt(U) dt. (B.29)

min
Lemma B.6. Write v, = Z;zl vt,j5yj. Then, for allt € [0,1] and j € []], we have v ; > ﬁm‘“ yi= tvl]'
This lemma is enough to conclude the proof. Indeed, vi = vy > Av, so that it implies that

Var,, (v) > %AV&IV (v). m]

Proof of Lemma B.6. According to Delalande (2022, Proof of Proposition 4.1),

@ (1) (tx + (1 = B)y) < 10 (P ") (x) + (1 = DO (Y) (y). (B.30)

Therefore, if we let h; (x) = e(CU) Ve W)=2W)()/¢ then we have h; (tx+(1—t)y) > ho(x)thy (y)' .

By the Prékopa-Leindler inequality,

t 1-t
Vi = / hi(x) dp(x) > pmin/ hi(x) dx > pmin (/ ho(x) dx) (/ hyi(x) dx) > Mvé’jv};t.
X X X p

max
O

Proof of Proposition 3.12. As in the previous proof, we drop the ¢ and ; dependency in our notation.
Write v = Y/ i=1 Vk,jOy; for k = 0,1, and define as before the shifted potentials rﬁvk (yj) = ¥, (yj) =
elog v j. Let 6 > 0 be a parameter to fix. According to Proposition B.5, Lemma B.15, and using

the inequality F,, ({/,,) < Fy, (}4,), we have

Civarvo(l/;vl - l/;vo) < Fvo (l/;vl) - Fvo (l/;vo) < Fvo(l/;vl) - Fvl(l/;vl) + Fv1 (l}vo) - Fvo(lﬁvo)
= [ G =G dn - v

IA

0 ~ ~ 1
EvarV() (I)b\/l - I)b\/o) + %Xz(vl ||VO)'
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We pick 0 = CA to conclude that

Vary, (fi, — V) < (ClT)zx%vlnvo). (B31)

Therefore, using the inequality | log(a/b)| < |a — b|/min{a, b} for a,b > 0,

o s (2]
>

2
Vl,j — VO,j
XZ(V1||V0) + Vo, j (— )
j=1

Var,, (1 — ) < ZVarVO(gﬁl - 1/;0) +2
2
mm{vo,j, Vl,j}

2
<
—(CcA)?

2 2 2 J 1 ) 9 2\
< ppX il + 55 o=y =10’ < | g + 5 Xl
2

1 0j

B.5 CONTROL OF THE FLUCTUATIONS IN THE ONE-SAMPLE CASE

Lemma B.7 (Sample complexity in the one-sample case). Assume that P satisfy (S1) and that Q

satisfy (S2). Then, it holds thatEHTP_)Q" T2, .. < e tnl.

xpp) ~

Proof. To ease notation, we write T, , = TEP ~2 and Ven = lﬁf 0 As explained in Section 3.2, the

stability result Proposition 3.10 implies that

+8R°E[Y*(QnllQ)].  (B.32)

8R2( [Varg (Yen — ¥e) ] N E[Xz(Qn”Q)])
£ 2

BT, - T2, y

P =

Write Q = Zj.zl q;0y; and Q, = Zgzl §;dy;, and introduce the event E = {Vj € [J], §; > q;/2}. If
E is satisfied, we have Q, > Q/2, so that Proposition 3.12 yields

Varg (Yen = ¥e) < Cx*(QullQ)- (B.33)

213



If E is not satisfied, we use the fact that the entropic potentials have a bounded amplitude (see

Lemma B.1), to obtain that

Varg (Yen — ¥e) < C. (B.34)
Lemma B.8. Let E be the event that Q, > Q/2. Then P(E®) < Je “Iin" for some ¢ > 0.

Proof. By Vershynin (2018, Exercise 2.3.2), we have P(E¢) < Z§:1 P(g; < gj/2) < Je “dmin™ for

some ¢ > 0. |
We obtain
. R R
Elfen = Tllfzpy € —ELC(QullQ)] + —Je™0m < e7ln™! (B:35)
by Lemma B.16. O

B.6 CONTROL OF THE FLUCTUATIONS IN THE TWO-SAMPLE CASE

The goal of this section is to prove Theorem 3.8. We will actually prove a more general result,
and show that for any discrete measure v = Z;zl v;6y, supported on {yi, ..., ys} with vj > vyn > 0

for all j € [J], we have for log(1/¢) < n/log(n),
E”Tan—)v _ ’];‘P_”}”EZ(P) < g_ln_l, (B.36)

Theorem 3.8 follows from (B.36) by conditioning on Q,,. Let E be the event that Q, > Q/2. Then,

by Lemma B.8,

~ P—Q, ~ P—Q,
ET. - TN, ) < B (BIIT. = T2 ) |Qa] 1{E} | + R*P(E°)

< Celn™! 4+ R*Je ¢qmin" < o~1p~1,
We obtain Theorem 3.8 by combining this bound with Lemma B.7.
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To prove (B.36), we first use Corollary B.4 which yields

BT/ = TPVNE () < 8R% B / (@f™" = 9! ") d(P, - P)
(B.37)
_ 8R%'E / (@(JF") = B, (7)) d(Pa - P),

where we recall that for a potential ¢/, the shifted potential l} is given by 1/;]- =y — elogv;. The
remainder of the proof consists in bounding this integral by using localization arguments and
standard bounds on suprema of empirical processes. Our first goal is to show that the potential
l//f"_)v is close to to the potential 1/ " for the co-norm. It will be convenient to work with the

« . »
Lo,-variance

. 2
. N max { — min ¢/
Vare () = inf max ¥ (y;) —cl” = (—2 ) : (B.38)
As the measure v is lower bounded, it holds that
Var, (§) 2 VininVare (). (B.39)

Lemma B.9 (Supremum of e-Legendre transforms). Let (Jy be a fixed potential and let T > 0. Then,

forallj e []],

E sup
»Var‘x, (¥—yo)<7?

< C\/] max{log(zr/¢), 1} (B.40)

n

< CT\/z (B.41)
n

/ (W), - 7 (o)) d(P = Po) ()

E sup
| Vare, (—o) <72

/(Cbg(l//) (x) = @c(%0)) (x) d(P = Pp)(x)

for some absolute constant C.

Proof. For a metric space (A,d) and u > 0, we let N(u, A, d) be the covering number of A at
scale u, that is the smallest number of balls of radius u needed to cover A. Let B be the Lo-ball

of radius 7 in R/, centered at 1, and let || - ||co denote the co-norm. For 0 < u < 7, we have

log N(u, B, || - [|o) < Jlog(7/u).
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We start with the second inequality. Note that ¢y — ®,(¢) is 1-Lipschitz continuous, and that
the functional ®, satisfies ®.(/+c) = ®,(¢)+c forallc € R. Then the set {{/ : Vare,(¢—1) < 2} is
equal totheset {¢+c: ¢ € B, c € R}. As / cd(P-P,) = 0, we can therefore restrict the supremum

to vectors ¢ € B. Furthermore, an envelope function of the class {®.(¢) — ®.(p) : ¥ € B} is the

constant function equal to 7. Therefore, by Lemma B.17, we obtain
E sup

ly—tollo<z ]
< \/_Oﬁ-/o VT Tog2N(u (.(§) : ¥ € BLII- llo) du < \/Z

We repeat the same argument for the first inequality. The functional 7} is invariant by

/ (©(9) - D, (Y)) (dP — dP,)

translation: 7} (Y + ¢) = 7X(¢) for all ¢ € R. This implies that

sup
Vare, (Y —1p) <72

/(Cbg(lﬁ) (x) = @c(%0)) (x) d(P = Pp)(x)

/ (®e(¥) (x) = Dc(%0)) (x) d(P = Pn)(x)

sup
lY=vollost

As the function ¢ — 7¥(¢); is e !-Lipschitz continuous for every x € R? we have for

0<u<1/e,

log N(u, {x = 77 (¥); : ¥ € BL | - lleo) < Jlog(z/(ue)).

Remarking furthermore that 0 < 77 (1/); < 1 (so that the class of functions {x — 7} (¥); : € B}

admits the constant function 1 as an envelope function), we obtain the following control using
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Lemma B.17:

E / (), — 72 (Y0),) (AP — dPy)(x)

sup
ly—vollo<t

|

<% [ \rogaNGu tx o )y € BLI- o) du
< \/czjmax{log(r/e),l}

n

where ¢, ¢; and ¢, are absolute constants, and the last line follows from arguing whether ¢; < 7/¢

or not. O

Proposition B.10. Assume that P satisfies (S1) and let v = >/

=1V 0y, be a measure supported on

{y1,...,ys} € B(O;R), with vj > quin for all j € []J]. Then, for all0 < ¢ < 1 withlog(1/e) <
n/log(n), it holds that

EVaroo(gﬁf"_’V - 1,55_”) <n L. (B.42)
Proof. To alleviate notation, we will write ¢, = f"_)v and o = ¢/, Similarly, we write

F, = F""Vand Fy = F'>". Let v, = fﬂf(lﬁf"_w) dP(x). Under the event E = {v, > v/2}, we

have according to Proposition B.5 and the fact that Y/ minimizes F,

CominVare (Y — o) < CVar, (Y — )
< Fo(m) — Fo(o)
< Fo(Yn) — Fa(Yn) + Fa(h0) — Fo(to)
- [ @) - 0G0y dp -2

(B.43)

Let us bound P(E®). As vﬁn is the minimum of F,,, we have v = / n;‘(lﬁ,,)] dP,(x) (see Section B.1).

Therefore, we may write v, ; = f ng‘(l/;n)j dP,(x) + / njf(g&,,)j d(P - P,)(x) = vj + Z;, where

Z, = / 7 (i) d(P = P) (x) = / (25 (), = 725 (o)) (P — Pa) ().
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Note that Varoo(lﬁn - 1/;0) < R? (see Lemma B.1), so that by Lemma B.9 and Lemma B.17,

sn!

J
c \/ﬁqmin
P(E°) < P(|Z; i/2) <] - , B.44
SEPWCIESTE exp( c( ﬁlog(l/g)ﬂogn) (B.44)

under the condition log(1/¢) < n/log(n).

For k > 0, let a; = 2¥/+/n and fix some p > 2. Let

B, =

sup
Vare (lﬁ—l}o) <a?

/ (@:(9) — ®.(J0)) d(P — )

. Assume that E is satisfied and that Vare (Y — ) € [a? b?]. Then, according to (B.43), it holds

that B, > ca®. Using Markov’s inequality, Lemma B.9 and Lemma B.17, we bound

EVaroo(gﬁn — l/;o) < ag + Z P(Varoo(lﬁn — g/;o) € [ai, a,zm] and E)a,i+1 + CP(E°)
k>0

-1 2\ 2 -1 E[Bg,..]
<n +ZP(Bak+12cak)a <n +Z ) a

2
k+1 ~ 2 k+1
k>0 k>0 49
2k n p 4k+l 22k—pk
et YL B
= (4%/n)¢ n n

k>0

Proposition B.11. Under the same assumptions than Proposition B.10, it holds that

E”TEPn—W _ TEP—W”gO < S_ln_l

(B.45)

Proof. Let Z = Varoo(lﬁn - lﬁo). Let once again aj = 2%/+/n for k > 1, with ay = 0. Fix some p > 2,
with g = p%l. Fora > 0, let D, = SUPyar (y—i) <a?

[(@:(¥) = ®.($hp)) d(P - P,)|. By Holder
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inequality and Markov inequality, we obtain,

B / (@:(n) — @c(J0)) d(P — Py)

< Z E|1{Z € [a},a},,]}  sup /(cpg(gp) — . (o)) d(P - Py)

k>0 Vare (Y—o)<d? |

< E[Dg,] + Z (P(Z > alzc))l/qE [Dp ]1/p

Afe+1
k>1
< n !4 Z

E[Z] Ya g ok(1-2/q)
k=0

2 -1
—SE sn,
n n

k>0

2
k

a

where we use Proposition B.10, Lemma B.9 and Lemma B.17 at the last line. (B.37) then gives the

conclusion. O

B.7 A LOWER BOUND FOR THE PERFORMANCE OF THE 1NN
ESTIMATOR

In this section, we prove Proposition 3.14. We let P be the Lebesgue measure on Q = [0, 1]d,
and let yo = (0,1/2,...,1/2) and y; = (1,1/2,...,1/2). We denote by P, an empirical measure
consisting of i.i.d. samples from P. As in Section B.6, we work in a general setting of a generic
discrete target measure v, which may either be fixed or may be a random measure independent
of P,. Weletv = ), =01 vj5y]. for vo, v{ = i; this latter condition will hold with overwhelming
probability if v is an empirical measure Q, corresponding to n i.i.d. samples from Q = %Syo + %Syl.

Following Manole et al. (2024a), we define the one-nearest neighbor estimator leN in this general

context by

n

Tan(x) = > ) () (n(X ),

i=1 j=0,1

where 7 is the empirical optimal coupling between P, and v.
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We first examine the structure of the Brenier map Ty = V¢,. The considerations in Section 3.1.3
imply that

Yo (e, x) <
To(x) =

Y1 (enx) > vy,
where e; is the first elementary basis vector. The potential ¢, is not differentiable on the separating
hyperplane (e;, x) = vy, which has measure 0 under P, but we may arbitrarily assign points on
this hyperplane to y,.
Similar arguments imply that the empirical transport plan 7 between P, and v has the following

property: there exists a (random) threshold 7 € (0, 1) such that

1 {e,x)<Tt
7(x,10) =
0 (e,x)>r.

The set (e1, x) = 7 may not have measure 0 under P,, and 7(x, y) may take values strictly between
0 and 1 on this set.

The following lemma shows that 7 is close to vy with high probability.

Lemma B.12. Foranyt > 0,

(t>vp+1) <e 2.

Proof. If © > vy + t, this implies that P,({x : (e;,x) < vo +t}) < vo. On the other hand,
nP,({x : {(e},x) < vy + t} is a Bin(n, vy + t) random variable. The result then follows from

Hoeffding’s inequality (Boucheron et al., 2013, Theorem 2.8). ]

Let us write H for the halfspace {x : (e, x) < v}, and H for the halfspace {x : {e;,x) < 7}.
Let x be any point in Q such that x € H. We are interested in the event that there exists an
element X; € {Xy,..., Xy} such that a) x € V; and b) X; € HC. Call this event &E(x). On this event,

Tinn(x) = 1y and Ty (x) = yo, so || Tinn(x) = To(x)||? = 1.
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We therefore obtain

Ellfows = Tll ) = B [ o) = Tl 4P
> & [ () - HILER) dPG)
2 E/ 1{&E(x)} dP(x)
H
- [ &) are.
H

where the final equality follows from the Fubini-Tonelli theorem.

We now lower bound the probability of E(x). Let us write A; for the event that 7 < vy + t, for
t > 0 to be specified, and write H; for the halfspace {x : {(e1, x) < vy + t}. Given any x € H, write
A =d(x, H), and let B be a ball of radius 2A around x, intersected with Q.

Denote by ¥ (x) the event that there are no samples in V = B N H; but there is at least one
point in BN Hy. Then ¥ (x) N A; € &E(x), since on ¥ (x) the nearest neighbor to x must be a

sample in Hf, and on A; we have Hf C H°.

Lemma B.13.

(F(x) NA) = (1 -vol(V))" — (1 - vol(B))" — e " |

Proof. We first compute (7 (x)). The probability that there are no samples in V is (1 — vol(V))",
and this event may be written as the disjoint union of ¥ (x) and the event that all of B is empty.

The latter event has probability (1 — vol(B))". Therefore
(1 =vol(V))" = (F(x)) + (1 —vol(B))".

Since (A{) < e=21° the claim follows. O

We need the following lemma.
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Lemma B.14. Assume that A > 0 and that d(x,0Q) > 2A. There exist positive constants cgy < 1
and cg1 such that

vol(V) < cq vol(B) (B.46)

and

vol(B) > cq ;A% (B.47)

Proof. This is immediate from a scaling argument: since d(x, Q) > 2A, the set B is a Euclidean
ball of radius 2A, and the set V is a Euclidean ball of radius 2A minus a spherical dome cut off by a
hyperplane at distance A from the center. When A = 1, it is clear that the claimed inequalities

hold, and the general case is obtained by dilation. ]

We assume in what follows that d(x,9Q) > 2A. The inequalities (1 + x)” > 1+ nx and

e* <1+x+x? validforall x € [-1,0] andn > 1, imply that for any § > 0 there exists a constant

cds > 0 such that if A < cd,(gn_l/ 4 then we will have

(1 - vol(V))"

\%

1 — ncgp vol(B) (B.48)

(1 —-vol(B))" < eI < 1 - (1 -8)nvol(B) (B.49)

IA

Choosing § sufficiently small, we obtain the existence of a small ¢35 > 0 such thatif A < ¢;3 n1/d,

then

(1 - vol(V))" = (1 — vol(B))" > CynA? .

Define A, = cd,4n'1/d

. Putting it all together, consider the set

S={xeHNQ:A,/2 <d(x,H) <A, d(x,0Q) > 2A,}.

The above considerations imply that (E(x)) > Cyn(A,/2)¢ — e > C) - e~2" for all x € S.
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Choosing t to be a sufficiently large constant multiple of n™/2, we obtain

/ (E(x)) dP(x) > /(S(x)) dP(x) 24 vol(S).
H s

-1/2

Since t < n™"/*, we will have that t <« A, for n sufficiently large (as d > 3). Therefore, for n large

enough, the set S contains the set
S={xeQ:vy—Ay+t<(er,x) <vo—An/2+1t2A, <(ej,x) <1-2A, Vj=2,...,d}.

Since vol(S’) 24 Ap = n~14 the claim follows.

B.8 AUXILIARY LEMMAS

Lemma B.15 (Young’s inequality). Let Qo, Q1 be probability measures with Q1 < Qo and let f be a

function. Then, for 6 > 0,

OVarg, (f) N X2 (Q11Qo0)
2 20 '

/f( dQy — dQy) < (B.50)

Proof. Recall Young’s inequality: for a,b € R, ab < “72 + %2. As the left-hand side is invariant

by translation, we may assume without loss of generality that / fdQo = 0, so that Varg, (f) =

f f2dQ,. We write

/f(on—dQl)—/(‘/_f)( dQ)on—/fdew%/(l—@) a0

Vo dQo
_ OVarg,(f) X 2(011100)
B 2 20 '

O
Lemma B.16 (Expectation of empirical y?-divergence). Let Q = Z§=1 q;0y; be a discrete measure
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supported on ] atoms, and let Q,, denote its empirical measure, consisting of n i.i.d. samples. Then,

ELA Q0] =T~ (B.51)

Proof. We can write Q,, = 25:1 G;dy;» where g; is a binomial random variable with parameters n

and q;. We obtain

¥(Ql1Q) = iw

j=1 J

Taking expectations, our bound reads

J —_
B0 = ) T Z"J“ ) _J-1

J=1 "

Lemma B.17 (Control of suprema of empirical processes). Let Xi, ..., X, be an i.i.d. sample from
some probability measure P on R?, with P, the associated empirical measure. Consider F a class of
functions R — R with ||f]le < A forall f € F. Foru > 0, let N(u) be the u-covering numbers of

¥, that is the minimal number of balls of radius u for the || - ||o-metric required to cover ¥ . Then,

sup
fe‘F

\/% : \/logZN(u)du :;% (B.52)

for two positive absolute constants Cy and Cy. Furthermore, for allt > 0,

/ Fd(P, - P) >t) <exp( Ifi“{z;n), (B.53)

sup
fe?'
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for some positive absolute constant C,. Eventually, for all p > 2,

ks I+A
E [sup /fd(P - P) <G . (B.54)
feF " \/ﬁ
Proof. See Vaart and Wellner (1996, Theorem 2.14.2 and Theorem 2.14.5). O
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C SUPPLEMENT TO CHAPTER 4

C.1 CONNECTING THE TWO DYNAMIC FORMULATIONS

In this section, we reconcile (at a formal level) two versions of the dynamic formulation for
entropic optimal transport. We will start with (4.10) and show that this is equivalent to (4.9) by a
reparameterization.

We begin by recognizing that Ap; = V-(p;V log p;), which allows us to write the Fokker—Planck

equation as
dpr + V- ((v; — 5Vlogpy)p:) =0, (C.1)

Inserting b; = v; — £V log p; into (4.10), we expand the square and arrive at

] 1r 2 €
inf / / (b I2 + 117 log pr ()12 + £57V log py) pe(x) dx .
(p:bt) Jo 2 8 2

Up to the cross-term, this aligns with (4.9); it remains to eliminate the cross term. Using integration-

by-parts and (C.1), we obtain

1 1 1
[ [woviogpara=- [ [ v @potogpearar= [ [ @pytogpiaxa.
0 0 0
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Though, we have (by product rule) the equivalence

9 (ptlog py) — d:pr = (9rp:) log p: .

Exchanging partial derivatives under the integral, this yields the following simplification

1 1 1
//(atpt)logptdxdtZ//Bt(ptlogpt)dxdt—//atptdxdt
0 0 0
1 1
=/8t/ptlogptdxdt—/at/ptdxdt
0 0

1
= / 9 H (py) dt +0
0

=H(p1) — H(po),

where p; = v and py = p. We see that (4.10) is equivalent to

2o =) + inf [ [ (S0 + 1 10gp I puto) de .

(pt:br)

C.2 CONNECTING MARKOV PROCESSES AND ENTROPIC BRENIER
MAPS

Here we prove Proposition 4.1. To continue, we require the following lemma.

Lemma C.1. Fix anyt € [0,1]. Under M, the random variables X, and X; are conditionally

independent given X;.

Proof. A calculation shows that the joint density of X, X7, and X; with respect to 1 ®y; ® Lebesgue

equals

S ST 2 1
A eropyee” 200 (00 0)IE (FapsgGe—g lxo=sall)/e  F (3, x0) G (1)
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where
1 D STV
Fe(xp, x0) = Agtef(xo)/ee—ﬁllxt—xollz and G, (x;,x) = A(l_t)geg(xl)/ee ze1i—p el ‘

Since this density factors, the law of X, and X; given X; is a product measure, proving the claim. O

Proof of Proposition 4.1. First, we prove that M is Markov. Let (X;);c[o,1] be distributed according

to M. It suffices to show that for any integrable a € o(X[o;]), b € 0(X|;1]), we have the identity
Elab|X;] = E[a|X;]E[b|X;] a.s.

Using the tower property and the fact that, conditioned on X, and Xj, the law of the path is a

Brownian bridge between X, and Xj, and hence is Markov, we have
Em[ab|X;] = E[E[ab|Xo, X, X11|1X:] = E[E[alXo, X; |E[D|X;, X1]1X:] .

By Lemma C.1, the sigma-algebras o(Xj, X;) and o(X;, X;) are conditionally independent given

X;, hence
E[E[a|Xo, X:|E[b]X:, X1]1X:] = E[E[al|Xo, X;]|X; |E[E[b| X0, X;]1X;] = E[alX;]E[b|X;],

as claimed.

The proof of the second statement follows directly from the computations presented be-
low (4.15), which hold under no additional assumptions.

We now prove the third statement. Following the approach of F6llmer (1985), the representation
of M as a mixture of Brownian bridges shows that the law of X[q ) for any ¢ < 1 has finite entropy

with respect to the law of X + v/eB;, for X ~ . Hence, to verify the representation in terms of
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the SDE, it suffices to compute the stochastic derivative:
li —1 [ +h — | ]
im —E[X X;| X R
o h t+h L1 [0,¢]

where the limit is taken in L2. Using the the fact that the process is Markov and, conditioned on

Xo and X7, the path is a Brownian bridge, we obtain

o1 o1 1
lim ~E[X;,, — Xt|X[o,t]] = lim —E[E[Xpn — Xi| X0, Xi, X1]|1X:] = —E[Xq1 = X¢|X:] .
h—o h h—o h 1—-1t

Recalling the computations in Lemma C.1, we observe that, conditioned on X; = x;, the variable
Xj has p; density proportional to G;(x;, x;). Since 7 is a probability measure, in particular we

have that €7 lies in L' (1). We can therefore apply dominated convergence to obtain

H=E G (g, 200 g (doxy)

J Gu(ax, x1)p (dxy)

1
1_—tE[X1 - Xi|Xi =x¢] = = eVlog H—p[exp(g/e) ] (x:),

as desired.
For the fourth statement, we require the following claim.

Claim: The joint probability measure ;(z, x1), defined as

exp((—(1 = 1) fi-e(2) + (1 = )g(x1) = 3llz = %1 %)/ ((1 = )e))my (dz)pr (dxr)

is the optimal entropic coupling from m; to p with regularization parameter (1 — t)e, where
fi—t(2) = elog H(1—p)e [€9/¢11] (). Under this claim, it is easy to verify that the definition of Ve, _,
is precisely this conditional expectation, which concludes the proof.

To prove the claim, we notice that =; is already in the correct form of an optimal entropic

coupling, and 7; € I'(my, ?) by construction. Thus, it suffices to only check the second marginal.
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By the second part, above, we have that

my(z) = H—ne[exp(g/€) ] (2)Hee[exp(f/e)pol (2) -

Integrating, performing the appropriate cancellations, and applying the semigroup property, we

have

/ (2, dxy) dz = e950/¢ g (doy ) H gy [Hee [/ 1011 (361) = 907y (doe ) He [ o] (1)

which proves the claim. O

C.3 PROOFS FOR SECTION 4.4

C.3.1 ONE-SAMPLE ANALYSIS

Proof of Proposition 4.5. First, we recognize that a path with law P (resp. P) can be obtained by
sampling a Brownian bridge between (Xo, X;) ~ 7, (resp. 7,), by Proposition 4.1. Thus, by the

data processing inequality,

EIKL(Ppoa1Pio0)] < EIKLPIP)] < EKL([17)] = 3] [ log(m/) dm .

where the above manipulations are valid as both 7, and 77, have densities with respect to y ® v,,.

Completing the expansion by explicitly writing out the densities, we obtain

EIKLPjoq [Pe)] < 5] [ (749 7= g dm| = 18[0Tur) - [ Fau= [ g*an].
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We now employ the rounding trick of Stromme (2024): the rounded potential f satisfies

f = argmax D™ (f,g%) ;
feL(p)

Therefore, in particular, D" (£, g*) > D" (f*, g*). Continuing from above, we obtain

~ _ 1
EIKL(PoIPros)] < ~E[OT, (4 ) - / £ dy / g* dv,]

= ZE[OT,(y, vn)—/f*du—/g*dV]

= “E[OT.(pt, v) — OT, (11, v)],

= ™M

_ M

™

where in the penultimate equality we observed that g is independent of the data Y3, ..., Y,. Com-

bined with Theorem 2.6 of Groppe and Hundrieser (2024), the proof is complete. m]

Proof of Proposition 4.6. We start by applying Girsanov’s theorem to obtain a difference in the

drifts, which can be re-written as differences in entropic Brenier maps:

EIKL(Pf,  IProcp) < [ Bl =By dt = [ (1=072B1900 = Vol il dr. (€2

The result then follows from Lemma C.2, where we lazily bound the resulting integral:

~ R2€_k T L Rzg—k L
B[KL(Pf IP1os)] < — / (1-1)72dt < —(1-71) k=2,
0

Lemma C.2 (Point-wise drift bound). Under the assumptions of Proposition 4.6, let $1—; be the

entropic Brenier map between p; and v, and ¢}_, be the entropic Brenier map between p} and v, both
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with regularization parameter (1 — t)e. Then

_ R _
EHV‘pl—l‘ - V(p;(—t”iz(pt) S 7((1 - t)g) k-

Proof. Setting some notation, we express VoI as the conditional expectation of the optimal

entropic coupling 7} between p} and v (recall Proposition 4.1), where we write

7} (z,y) = v} (z y)p;f (dz)v(dy) .

The rest of our proof follows a technique due to Stromme (2024): by triangle inequality, we

can add and subtract the following term
1 n
S EY),
j=1
into the integrand in (C.2), resulting in

]E”V@l—t - Vq)r—t”;(pn < E”Vq_’l—t -nty" JYt ( Y)”Lz(p*) (C )
! 3

+E”n_1 ]Yt( Y) V(pl t”LZ(p*)

For the second term, with the same manipulations as Stromme (2024, Lemma 20), we obtain a final

bound of

Elln~ X5 Yy (L Y)) - VG"f—t”iZ(p;) ”Yt ”LZ(p*@v) = ((1_t)€) “,

where the final inequality is also due to Stromme (2024, Lemma 16). To control the first term in
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(C.3), we also appeal to his calculations of the same theorem: observing that, from (4.25)

L epl(g ) - sl - IR
Vor-:(z) == ) Y Yiii(z, Y;
LGP Mo e e DY R Z Pz )

Since the following equality is true

¥ (2, Y))
% Zz:l Y:(Z; Yk) ’

Yt(z: Y]) =

we can verbatim apply the remaining arguments of Stromme (2024, Lemma 20). Indeed, for fixed

x € R?, we have

— 2
In™ S5 Y (5 (6 Y) = e Y)) I < RS, v (e Y) = 1

Taking the L?*(p}) norm and the outer expectation, we see that the remaining term is nothing but
the first component of the gradient of the dual entropic objective function (see Proposition C.6),

which can be bounded via Lemma C.7, resulting in the chain of inequalities

Elln™' X5, Y (v (-, Y)) = Yt("Yj))”LZ(p*) ||)’t IILZ(p*@W)_ ((1—t)£) -,

where the last inequality again holds via Stromme (2024, Lemma 16).

233



C.3.2 COMPLETING THE RESULTS

Proof of Proposition 4.7. This proof closely follows the ideas of Chen et al. (2022b). Applying

Girsanov’s theorem, we obtain

. - . . N=1 A (k+1)p . R
TV2(Po.c1, Pos]) S KL(PoolIPor) = Z /k Ep . 110k (Xip) = (X1 dt .
k=0 YK

Recall that € (0, 1) is a chosen step-size based on N, the number of steps to be taken. As in prior
analyses, we hope to uniformly bound the integrand above for any t € [kn, (k + 1)5]. Adding and

subtracting the appropriate terms, we have
Bp, bty (Xe) = be X1 < By by (Xey) = be (X I2 + By, 1162 (Xi) — be (XD (C)
By the semigroup property, we first notice that
H 1-kn [eé/gvn] = Ht—kry [Hl—t [eé/gvn]] :

We can verbatim apply Lemma 16 of Chen et al. (2022b) with q := Hy_;[e9/?v,], My = id and

M; = (t — kn)I, since Hl_kn[eg/gvn] =q* N(0,(t — kn)I). This gives

)|

N . 0,(t —kn)I
kn (Xin) — by (X = ||ev10g L5
1o (Xer) = b (X I = [[e9 1og L2 ; D)

S Lind + Lin®|eV log q(Xin) I
Since ¢log q is L;-smooth, we obtain the bounds

Ep,, leV1og (X II* < Bp _lleV1og g(Xo) I + L1IXe — Xpnl|*

< eld+ LtZEIB[O,T] 1 — Xinll? .
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where the final inequality is a standard smoothness inequality (see Lemma C.5). Similarly, the

second term on the right-hand side of (C.4) can be bounded by

Ef’[o,r] ||l;t(qu) - I;t(Xt)“z < L?Ep[o 1 Xy — X2

7]

Combining the terms, we obtain
Bp,,  1bky (Xi) = B XIS eLind + LB [|Xi — X1

where, to simplify, we use the fact that n < 1/L; (with L, > 1), and that »? < 5 for n € [0,1]. We

now bound the remaining expectation. Under IS[O,T], we can write

t kn
X = / bs(Xs) ds + ‘/EBt s Xkh = / bs(Xs) ds + \/EBkry >
0

0

and thus

t
X; = Xioy = /k b5(X,) ds + VE(B, - Byy) -
n

Taking squared expectations, writing § := t — kn < n (recall that t € [kn, (k + 1)5)), we obtain

(through an application of the triangle inequality and Jensen’s inequality)

E-

t
b 1Xe = XigI* < €Bp (1B = Biy|* + 5/}(’7 Bp,,. 1B:(X) 17 ds

< end + 8°Lid

< (e+1)nd

where we again used Lemma C.5. Combining all like terms, we obtain the final result.

The estimates for the Lipschitz constant follow from Lemma C.4. O
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C.4 PROOFS FOR SECTION 4.4.3

C.4.1 CompPUTING EQUATION 4.26

The Follmer drift is a special case of the Schrédinger bridge, where y = &, for any a € R%. Let
(fF, ") denote the optimal entropic potentials in this setting. Note that they these potentials are
defined up to translation (i.e., the solution is the same if we take fF + ¢ and g" — ¢ for any ¢ € R).

So, we further impose the condition that fT(a) = 0 = c. Then the optimality conditions yield

F Lo
= — . C5
g W= lyl ©5)
Plugging this into the expression for the Schrédinger bridge drift, we obtain

1 1
L udrme gy

1
b () = eV log Her-el e vl (2) = (1= 7 P ——
f e;llyll ~ 2=z =7l v(dy)

Replacing the integrals with respect to v with their empirical counterparts yields the estimator.

C.4.2 Proor ofF PROPOSITION 4.9

Our goal is to prove the following lemma.

Lemma C.3. Let p, be the Follmer bridge at time t € [0,1) between y = 8 and v € Py(R?) with

¢ = 1 and suppose the squared second moment of v is bounded above by d. Then
W(prov) < d(1-7).

Proof. Note that p; = P1_;, where P;_; is the reverse bridge, which starts at v and ends at p = J.

This reverse bridge is well known to satisfy a simple SDE (Follmer, 1985): the measure P;_; is the
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law of Y;_;, where Y; solves

Y,
c‘le:—1 * ds + dB;, Yy ~ v,
— S

which has the explicit solution

N
1
Ys:(l—s)Y0+(1—s)/ ——dB,.
o 1—-71
In particular, we obtain

W7 (Ps,v) < E[Y; — Yolf?
2
=FE

N
1
—sYo+(1—s)/ dB,
0 1-r
_ 2 2
= s“E||Yo||* + ds(1 —s)

<ds,

which proves the claim. O

C.5 TECHNICAL LEMMAS

Lemma C.4 (Hessian calculation and bounds). Let (py, b;) be the optimal density-drift pair satisfying
the Fokker—Planck equation (4.10) between o and ;. Fort € [0, 1), b; is Lipschitz with constant L,

given by

1
L, = sgp ||Vbt(x)||0p < m(l V ||V2§01—t(3€)”0p) )
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where V1, is the entropic Brenier map between p; and p; with regularization parameter (1 — t)e.

Moreover, if the support of j1; is contained in B(0, R), then

L<(1-t)"AVR((1-t)e)™). (C.6)
Proof. Taking the Jacobian of b;, we arrive at

Vb (x) = (1 - 1) (Vg1 (x) = 1),

As entropic Brenier potentials are convex (recall that their Hessians are covariance matrices; see

(4.7)), we have the bounds
—(1-t)"' <2 Vb(x) < (1=1)7"Vip_(x).

The first claim follows by considering the larger of the two operator norms of both sides.
The second claim follows from the fact that since ¢;_; is an optimal entropic Brenier potential,

its Hessian is the conditional covariance of an optimal entropic coupling 7; € T'(py, 1), so

1 R?
g”COVﬂ,[let = 7] ”op < (1——t

||V2<P1—t(2)||op = m Ve’

since supp (1) € B(0,R). i

Lemma C.5. Let (py, b;) be the optimal density-drift pair satisfying the Fokker—Planck equation

(4.10) between g and py. Then for anyt € [0, 1)
, €
Ep, [Ib:]|° < ELtd'
Proof. This proof follows the ideas of Vempala and Wibisono (2019, Lemma 9). We note that the
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generator given by the forward Schrédinger bridge with volatility ¢ is
Lif = 50F = (b V),
for a smooth function f. Writing b; = V(elog Hy_;[e9/¢111]), we obtain
0 =Ep, L (elog Hy_[e91]) = Ep,[|bi(X)|* = ngt [V-b] < thd.

O

Lemma C.6. (Stromme, 2024, Proposition 3.1) Let P, Q be probability measures on R, and fix e > 0.
For every pair hy = (fi,g1) € L (P) X L*(Q), there exists an element of L (P) X L*(Q) which we
denote by VDL (fi, g1) such that for all hg = (fy, go) € L=(P) X L®(Q),

(V@fQ(hl),hoh?(P)xLZ(Q) = / fo(x)(l _ / e~ (exy)=fi(x)-g1(y)) dQ(y)) dP(x)

+/go(y)(1_/e—f‘l(C(x,y)—ﬁ(x)—gl(y)) dP(x)) dO(x).

In other words, the gradient ofoQ at (f1, g1) is the marginal error corresponding to (f1, g1).

Lemma C.7. Following Proposition C.6, suppose P = p and Q = vy, where v, is the empirical measure
of some measure v on the basis of n i.i.d. samples. Let (f*,g*) be the optimal entropic potentials

between u and v, which induce an optimal entropic coupling =* (recall (1.26)). Then

[Vl [P

E”VDé/:wn(f*’g*)lliZ(P)XLZ(Vn) < Ts

dn*

where the expectation is with respect to the data, and y* = Tuan) -

Proof. Writing out the squared-norm of the gradient explicitly in the norm L?(u) X L2(vy), we
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obtain
HVn *x %k 2 1 - * 2
BIVDL" (1) sy =B [ (5 27 (e 1) = 1) ()
j=1
1% . 2
+B= ([ puan) -1)
j=1

Note that by the optimality conditions, f y*(x,Y;)p(dx) = 1forall Y;. Thus, writing Z; = y*(x, Y;)

which are i.i.d., we see that

5 [(E3 -1 uwn = [E(E Y -Bz))
j=1 j=1

1 1
= Varﬂ®v(— Z]) = —Vary®v(Zl) .
n = n

The remaining component of the squared gradient vanishes, and we obtain

2
1 ”}/*HLZ( ®v)
BIVDL" (% 052 pniziry) = 5 Vatuon(r®) < ————.
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D SUPPLEMENT TO CHAPTER 5

D.1 ProofF ofF THE CRAMER—RAO LOWER BOUND

For any smooth and compactly supported test function & : R? — R, integration by parts yields
EpVh = / VhdP = —/(hVInP)dP = /(h—Eph) vvdp
where we used the fact that EpV In P = 0. Therefore,
(EpVh, (EpV*V) 1 EpVh) = / (h — Eph) (VV, (EpV?V) ' EpVh) dP. (D.1)

Applying the Cauchy-Schwarz inequality,

(D.1) < \/ (Varp h) / (EpVh, (EpV2V) 1 (VV)®% (EpV2V) ' EpVh) dP.
Integration by parts shows that / VVe®idp = f V2V dP, and upon rearranging we deduce that
Varp h > (EpVh, (EpV2V) 1 EpVh). (D.2)

By approximation, this continues to hold for any locally Lipschitz h : R¢ — R with Ep ||VA|| < co.

Specializing the inequality (D.2) to h := (e, -) for a unit vector e € R? then recovers the
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Cramér—Rao inequality of Lemma 5.5.

D.2 (GAUSSIAN CASE

Suppose P = N(0,A) and Q = N(0, B) are Gaussians. Then, it is known that the Hessian of

the Brenier potential is given by (see Gelbrich, 1990)
V200 (x) = A2 (A1/2BA1/2)1/2 ATl2
If we have A™! < fland B™! > al > 0, then Caffarelli’s contraction theorem (Theorem 5.1) implies

”Vz(Pollop < Vﬁ/a-

This matches the bound of Altschuler et al. (2021, Lemma 2).

For ¢ > 0, the upper bound from Theorem 5.6 implies

1
V2], < 5 (VapJa+ 27— ep). (D.3)
On the other hand, from Janati et al. (2020); Mallasto et al. (2022), it is known that
2 —1/2 ( 41/2 3 21/2 £ 1/2 ,-1/2 € 41
Vép.(x) = A (A BA +ZI) A _EA .

In particular, if we take A = 7T and B = @™, then (D.3) is an equality. Hence, Theorem 5.6 is

sharp for every ¢ > 0.
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E SUPPLEMENT TO CHAPTER 6

E.1 Proor orF LEMMA 6.1

We temporarily omit the superscript in v for ease of reading. Note that

Ejor (o [¢B)] = ¢ Pe0e / (2 /e gy (5 = (Oelrreh)—pe(x)) e

From this we can conclude, since for all z € R?

d 7, (+|x)

(2) = e\ eeeha)=pu(x)=4u(2) e o ps(x)=peoreh) o
dv

— ({xtehz)—ge(x+eh) =y (2)) [

dr.(-|x + €h)

STl

E.2 PRroor oF COROLLARY 6.2

If the domain of ¢} is not RY, then Hpax(@}) = 400, and the proposition is vacuous. Otherwise,
fix x € RY. By definition of tilt stability, it suffices to compute an upper bound on the covariance

of 757 (+|x) which holds uniformly over all tilts » € R%. This follows by direct computation, as
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Lemma 6.1 and (6.10) imply that
Cov(Tpr; (+|x)) = Cov(r; (-|x + eh)) < Hmax(¢;)1,

where the last inequality holds by taking the supremum over both x and h arguments. Note that

the argument is symmetric for the other conditional entropic coupling.

E.3 PRrROOF OF PROPOSITION 6.8

We assume that ¢! is finite everywhere, for otherwise there is nothing to prove. We have that

T (x) - TV (x) = / ydr (ylx) - / 2 (2]x)

- [[ vt drwn - [z

- // (y - Dy (o y) de(y,2) + // 2(" (x9) dr(y,2) — dr(2]x)
- / (y - Dy (xg) dr(y,2) + / 2d(0(z]x) - ! (2]1) -

Taking the L?(p)-norm of both sides and applying Minkowski’s and Jensen’s inequalities

yields

12
i1 =Tl < ( [ ho-art e aradow) -+ [ a0t - nG

2(p)

Since 7 is an optimal coupling between y and v and / vE(x,y) dp(x) = 1, the first term is Wy (p1, v).

For the second term, Corollary 6.2 implies for all x € R?

H / 2 d(Q(zlx) - 7!(21))|| < V2Hmar (PDKL(QC ) 17 ()
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Therefore

| [ =0 - =), < \/szax(q):) [ Ke@ela ) ot

= (ZHmax((ng)I)l/z >

which completes the proof.

E.4 PRrRoOOF OF PROPOSITION 6.10

We assume that i is finite everywhere, for otherwise there is nothing to prove. Recall that

Sl(z) = / x dz!(x|z) and similarly for St (y). By Corollary 6.2, we have the following bound

I5:2) = SE @I =] [ xdcazxle) - 2t el |
< 2 (YKL Cly 1 (12))

u
= 2t (12) [ og( S ) o).

Integrating with respect to 7 concludes the proof.

E.5 PROOF OF THE BIAS TERM

Recall that our target measures are discrete measures of the form

J
H= Z 10y, -
=1

and that we write the Laguerre cells as L; fori € {1,...,J}.

We require the following definitions, which we borrow from Altschuler et al. (2022). For x € L;
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and any other j € {1,..., J}, we write

Aij(x) = 2(¢xyi — y5) — ¥ (i) + ¥ (7)),

and H;j(t) = {x € L; : A;j(x) = t}, which represents the trace on L; of the hyperplane spanned by
the boundary between L; and L, shifted by t (should the two cells have non-empty intersection).
Moreover, we have the following co-area formula: for every nonnegative measurable function
f:R-oRy,

[ 1@unpe ac= ot [ om0 a

where

(1) = / p () dHy1 (). (1)

Hij(1)
and Hy_, is the (d — 1)-dimensional Hausdorff measure.

Proof of Proposition 6.11. Let x € L;. For j € {1,..., J} other than i, we have the upper bound

7 (y;lx) = () =0t (0) =9t (y))) e
e (Cryp) =P (y)) e
3] eloyo-il /e
ey =V (y)) /e
<

T ey ) /e 4 oy =y (y)) /e

Adding and subtracting appropriate factors of tﬁ(’; (y;) and g&é’ (y;), we obtain

oy v () /e

Ky lx) < e2lVe—vEls/e
e (Y1) < o (un—ve e 4 o(xu)—Vh /e

_ G2l ||m/e(1 N eAi,»(x)/ze)‘l
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By an application of Jensen’s inequality, we have

J 5 J 1
H_TH .
T2 -l < 3wyl gl < 10 Sy g2 (14 e00002)
j:l ]21

so integrating against p (partitioned into the J Laguerre cells) yields
H_in N -1
1T = T2, ) < eI VE00E 3 Yy, — g /L (1+e2772) " dp(x)
i i
- o -1
= AT =y l2 [ (1)
i,j 0

N o -1
= AT Sy w2 [ e (14 €) du,
— 0
LJ

where the second line follows from the definition of the co-area formula, and the last line is a
change of variables u = t/¢. This gives (6.16).
With the additional assumptions (T1) and (T2), we can use Corollary 2.2 by Delalande (2022),

which tells us that
e Yl =l lleo < Cre”, (E.2)

where the underlying constant depends on d, R, J, fimin, min;4; ||y — y;l, Pmin> Pmax> and on the
maximum angle formed by three non aligned points among the atoms {y J'}j:l' This gives and

upper bound of
a o0 -1
1T = T,y < (D ||y,‘—yj||/z/0 hiy(ue) (1+ €2)  duje
Lj

Since ||ly; — y;|| < 2R, h;;j(ue) is bounded under our assumptions on p, the proof is concluded. O
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F SUPPLEMENT TO CHAPTER 7

F.1 PROOFS FOR SECTION 7.3

Proof of Lemma 7.3. Take T;(x) = A;x and T,(x) = A,x for Ay, A, positive definite, and mutually
diagonalizable: there exists an orthogonal matrix U such that A; = UA;U~! with A; diagonal with

positive entries. Then
I o (T) M) (x) = UMU N (UALU™)  x = UAMA; U x = Ax,
( 2

with A > 0; this completes the claim. O
Proof of Lemma 7.4. See Panaretos and Zemel (2020, Section 2.3.2). O

Proof of Lemma 7.5. Let S,T € M, and for simplicity assume they are strictly increasing. Note

that T~! is also strictly increasing, so S o T™! is strictly increasing. O

Proof of Lemma 7.6. Take S1,T; € M; and Sy, T, € M;. Take (x,y) € R4*%  and write S(x, y) =
(S1(x), S2(y)), and similarly for T. Since each of S; o T1_1 and S; o Tz_l are gradients of convex
functions, then S o T™! = (S; 0 T, S o T; 1) is also the gradient of a convex (and separable)

function. m|

Proof of Lemma 7.7. For any T € M, T and T™! are both gradients of convex functions, so the

claim is immediate. O
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Proof of Lemma 7.8. Suppose Ty, T, € M are compatible i.e., T; o (T;) ! is the gradient of a convex
function. Write T; = V§; = V(¢p; + (u,-)) and T, = V@, = V(g, + (v,-)). One can check that
@, (y) = ¢5(y — v), and then by convex duality (T)! = V@3 (- — v) is the gradient of a convex

function. So,

T(T; ' (y) = Vo1 (Vs (y — ) +u,

which is the gradient of a sum of convex functions. m]

Proof of Lemma 7.9. For n,A € RLMl, write ST = YocpnsS and T4 = Yoy ArT in cone(M).

Assume 1, A # 0 or otherwise the statement is trivial. The composition reads
- -1
T o (S = Srem AT o (LsemnsS)

so it suffices to show that T := T o (Xsem 1755)_1 is the gradient of a convex function. Since each

S € M is the gradient of a convex function, we have that

™= (Z nsS) o T™' = Z ns(SoT™).

SeM SeM

Since T~! is the gradient of a convex function, by conjugacy, it holds that T is the gradient of a

convex function. m|

F.2 PROOFS FOR SECTION 7.4.2

Proof of Theorem 7.14. For an iteration number ¢ € N, we use the shorthand V,7; = V,;F (130),

and similarly for the true gradient.
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Since projections are contractive, a first manipulation gives
A = 2 < A = A% )13 + B2 1Q 7 VaFilf + 2k (VaF, A% = A1)
Taking expectations conditioned on A*) yields, by linearity,
B A = A1 < A0 = A1 + R ENQ™ VATl + 2h (V4% = A0y
By m-strong convexity of ¥, we obtain

EACD = 2%13 < (1= mh) [|A© = 2413 + B2 BN Q™ VaFillh + 2k (F (1) = F (y0))

< (1= 2mh)[AD - 2* |4 + B ENQ™ Va5
Taking expectations again,
BIACY = 2413 < (1 - 2mh) BI2Y = A* |3 + K BIE(IQ™ Vi3]

Adding and subtracting the true gradient at iterate A written Q™! V, ¥, the second term can be

bounded via smoothness of F:

R E[ENQ™ Va7 %] < 2B EIE Q7 (V2% - ViF)I3] + 2K EQ Vil

< 2R E[E Q" (VaFi — aF)lI5] + 2M*H* B2 - 24|13,
Combining this with our previous bound results in

EJACD —2¥1% < (1 - 2mh+ 2M*RD) AW — 2[4 + 2K BB IO (9,7 - Vi A [13]

< (1—mh) BIIAY = 2*|[5 + 2h* E[E,]|Q7" (V2 F: = VaFD) 3],
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- 1
where in the last step we took h < 5—.

By (VB), we obtain
EIACY = A%)1% < (1= mh+ cih*) E[AY = 2*[1%) + coh®.
If cih? < mh/2,ie., h < m/(2c;), then
A = 2*[1%) < (1= mh/2) BIIAY = A*|1%) + coh® .

Iterating this bound gives

2C0h

EIAY = A*)1% < (1= 2! A9 = ¥ + ——= < exp(-mht/2) A0 - 2*[|2 +
m

Choosing h < me?/cy concludes the proof.

F.3 PROOFS FOR SECTION 7.5

F.3.1 PROOFS FOR SECTION 7.5.1

To derive the mean-field equations, we recall that the KL divergence is

KL(y||Jr):/Vdp+/logydy+log2.

Over the space of product measures, we obtain the functional

ZCOh
o

d d d
(yl,...,yd)HKL(®yi H n)=/Vd®yi+2/log,u,~dyi+log2.
i=1 i=1 i=1
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If we take the first variation of this functional (c.f. Santambrogio, 2015, Section 7.2) w.r.t. y;, we

obtain the equation
d
[5m KL(® Ui ” n)] (x;) = / Vixy,...,xq) ®,uj(dxj) + log i (x;) + const.
j=1 Jj#i
At optimality, the first variation must equal a constant, which leads to

7 (x;) o exp(—/ Vixy,...,xq) ® JTJ*(de)) .

J#i

F.3.2 PROOFS FOR SECTION 7.5.2

In this section, we prove the regularity bounds on the optimal transport maps given as Theo-
rem 7.21. Recall that 7* denotes the mean-field VI solution and T* is the optimal transport map
from p to 7*. Let )" and T* denote the i-th components respectively, and recall also from (7.14)

that 7 oc exp(-V;), where

Vi(x;) = /V(xl,...,xd) (g)nj*(dxj).

J#i

We begin with a few simple lemmas which show that Tl.*(O), the mean of ﬂ'l-* , and the mode of ﬂl?"

are all close to each other.

Lemma F.1. Let T denote the optimal transport map from p = N(0, 1) to u, and let m denote the
mean of p. If T" < B, then |T(0) — m| < +/2/m B.

Proof. Let Z ~ N(0,1), so that T(Z) ~ pand m := ET(Z). Since T" < p,

IT(0) —m| = [E(T(0) - T(2))| < PE|Z]| = \/gﬁ-
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Lemma F.2. Let m and m denote the mean and the mode of 1, respectively, where y is ty-strongly

log concave and univariate. Then, |m — m| < 1/+/ty.

Proof. This is a standard consequence of strong log-concavity, see, e.g., Dalalyan et al. (2022,

Proposition 4). o
We are now ready to prove Theorem 7.21.

Proof of Theorem 7.21. As the main text contains the proof of the bounds on the first derivative of
T, we continue with the second and third derivative bounds.
We, obviously, start with the second derivative bounds. Recall the Monge-Ampére equation

(or the change of variables formula) yields

2
log 7% o T*(x) = —’% — log(T}*) (x) — L log(2m) . (F.1)

Differentiating once yields

(log 7" o T7)' (x) = =V{/ (T} (%)) (T")"(x) = —x - ") : (F.2)
i i i\t i (Tl.*)’(x)
Rearranging to isolate (T*)” gives
(T)" (%) = =(T7") (x) (x=V{ (T (x)) (T)"(x)) . (F.3)

Let m¥ and i} denote the mean and mode of 7* respectively. Recall also that 0 < 1/v/Ly <
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(T*)" < 1//ty. By Lemma F.1 and Lemma F.2,

V(T ()| < V] (m)| + Ly |T* (x) — |
|
=0

<Ly (IT7(x) = T + |T7(0) = mf| + |m} — m}])

<Ly (— ||+\/5 4 1)<LV(1+||)
<Ly (—|x — < x|).
Vv T Ny iy Vv
Substituting this into (F.3), we obtain

(T ()] 5 —= (x| + i—VV (1+1x]) < v% (1+]x]).

vty v

For the third derivative control, we differentiate (F.2) again to yield

(log 77 o T)" (x) = =(V/(T* (x)) (T)(x)* + V/ (T*(x)) (T}")" (x)

- (T)" () (1) (x) = (1) (x)?
(T (x)?

Again, we rearrange and isolate, giving

(Ti*)//(x)Z

(T7)" (%) = T

—(T) () (1=V/ (T (x)) (T) (x)*=V/ (T (%)) (T)" () -
Taking absolute values, we can collect the terms one by one:

2
(T () (T ()] < K—fv (1+]x]%),

\/_
[V (T (x)) (T7) (x)?] < &,

[V/ (T () (T ()] < \L/—:_V (1+|x) - \/L[_V (1+]x]) s x° (1+]x[).
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To obtain the first bound, note that by (F.3) and the subsequent calculations, we have

(T /(T ()] S . (1+]x]).

Square and use (T*)’(x) < 1/+/fy. Hence, the final bound scales as

KZ

(T (0] < N (1+[x[*).

F.3.3 PROOFS FOR SECTION 7.5.3

For our approximation results, we begin with a simple construction via piecewise linear maps.
Let R > 0 denote a truncation parameter, and partition the interval [—R, +R] into sub-intervals of

length & > 0. Let ¢/ be the elementary step function

(=]
%

N
o

y:R—-R, ¢(x)::4x, x € [0,1],

We then define the following family of compatible maps:
M = {x U (xi—a)e | ie[d], I=]aa+d]isa sub—interval} .

We suppress the dependence on the parameters R, § in the notation.

Proof of Theorem 7.23. Owing to the isometry, we wish to show that we can find a map T €
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cone(M; aid), with @ = 1/+/Ly, such that
IT~H,y <@ty and DT =)l < /ey ®4)

Here, || D(T — T)IliZ(p) = [ID(T - D) dp.
We first make a series of reductions. By assumption, DT > aI, and by definition, T is of the
form o id+ Y 7c pq ArT +0. By replacing T with T — « id, it suffices to prove the following statement:

V21 together with the second derivative bound on T, there exists T of

assuming that 0 < DT < £,
the form »\7cp ArT + v such that (F.4) holds. However, from the structure of M, the problem now
separates across the coordinates and it suffices to prove this statement with d = 1 and ¢ replaced
with &/ Vd.

Truncation procedure. We will construct T so that T(=R) = T(=R) and T(+R) = T(+R).
Assuming that this holds, the bound on T’ and the fact that T is constant on (=00, —R] and on

[+R, +0) readily imply
- A 1
IT(x) -T(x)| < —(|x| - R), for |x| > R.
Vv

The error contributed by the tails is therefore bounded by

_ . 1
/ IT - T)*dp < / (Ix] = R)* exp(—x?%/2) dx .
R\(-R+R) V27 fy JR\(-R+R)

Similarly,

1T (x) = T'(x)] < 1/VE, for |x| > R,

256



which gives

. 1
T = T'|*dp < / exp(—x?/2) dx .
/R\(—R,+R) V21 fy JR\(-R+R)

Standard Gaussian tail bounds and the Cauchy-Schwarz inequality imply that with the choice

R =< /log(1/(¢ty€?)), we obtain ||T — Tl V| =T ¢%, where p is the Gaussian measure

2 2
12(5) 2(5) S

restricted to the set R \ [—R, R].

Uniform approximation over a compact domain. We now show that T can be chosen to

uniformly approximate T on [—R, +R]. Indeed, we take

2R/5-1

Foo =T-R+ Y A

m=0

x—(—1;+m5)),

where the A, are chosen so that T and T agree at each of the endpoints of the sub-intervals of size

0. Consider such a sub-interval I = [a, a + §]. Then, for x € I,

T(a+6)—T(a)
1)

IT(x) = T(x)| = |T(x) = T(a) - (x —a)|.

By the mean value theorem, T'(x) = T(a) + T’(c;) (x —a) and T(a+ ) = T(a) + T’(c;) S for some

c1, ¢z € I. Together with the second derivative bound on T, it yields

IT(x) = T(x)| = [(T"(ex) = T'(e2)) (x — @)| < ;—;V 5.

Similarly, for the derivative,

T(x) - T(en)] < ~Ko5.

T/ (x) = T'(x)| = |T'(x) - N7

T(a+6) - T(a)‘ B
5 =

To obtain our desired error bounds, we take § = ©(+/e/x). Finally, to obtain the stated bounds in
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the theorem in dimension d, replace ¢ with ¢/ V.
With this choice of §, we then obtain &, = O(Vd k8) = O(x'/2d"/4¢!/2).
Size of the generating family. Finally, the size of M is O(dR/6) = O(x/2d/*/!/?), which

completes the proof. O

In the proof above, we have used the bounds on the first and second derivatives of T. However,
from Theorem 7.21, we actually have control on the third derivative as well, so we can expect to
exploit this added degree of smoothness to obtain better approximation rates.

As above, we fix a truncation parameter R > 0 and a mesh size § > 0. Our family of maps will

be constructed from the following basic building blocks.
« Linear function. We let *(x) := x for x € R.

» Piecewise quadratics. Define the piecewise quadratic

d,+ .
PAEE(x) = £ 442, x € [0,1],

« Piecewise cubics. Define the piecewise cubic,

0, x<0,

lﬁCUb’i (X) .

I
H+

x?(3-2x), x¢€[0,1],

1, x=1.

Given a univariate function ¢ and i € [d], we extend it to a map ¢; : R? — R? by setting
Yi(x) = ¥(x;). Also, given a sub-interval I = [a,a + 8], we define the map y;; : RY — R? via

Yri(x) = 987" (xi — a)).
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Let 7 denote the set of sub-intervals. Our generating family will consist of

d
M= (i Lie [y u |l vl nt s,

IeT i=1
which consists of (4 |7| + 1) d elements. However, we will not consider the full cone generated by
M—indeed, if we did, then the presence of the negative piecewise quadratics and cubics would

mean that we obtain non-monotone maps.

Elements of our polyhedral set will be of the form x > aid+ Y. 7cp ArT + v, where v € R?
and we may decorate components of A according to the elements of M to which they correspond,
)L?’lilad,—

is the coefficient in front of ;&quad’_

eg., I

To provide some intuition, we will use the linear function and the piecewise quadratics to
approximate the derivative of T. Indeed, suppose for the moment that T is univariate and note
that the derivatives of the linear and piecewise quadratic functions give rise to piecewise linear
interpolations of T’. The interpolation of T’, once integrated, does not necessarily interpolate T,
and the piecewise cubics will be used to remedy this issue.

Toward this end, note that since T is monotonically increasing, T’ is non-negative. We will
want our approximating T to have the same property, which will be ensured by imposing linear
constraints on A. We consider the following polyhedral subset of RW':

2 _ .
K= {2 erM |vieal, 2 3 0p - a8 v 2l > 0,

Ier ) (FS)
and  VIe T, Vie[d], M(S’ <%}

We then take K := {x — ax + Yrer ArT+0 | A €K, v € R} and P, = Kyp. The first constraint

ensures that the sum of the linear and piecewise quadratic functions has non-negative slope. As for
the second constraint, it ensures that the sum of the negative piecewise cubic functions has slope

at least —ar/2. Since we always add « id, each of our maps will have slope at least «/2 and therefore

259



be increasing. With this choice, our family consists of gradients of strongly convex functions with
convexity parameter less than that of the true map T*, which does affect some of the other results
of this paper (e.g., the geodesic smoothness of the KL divergence in Proposition 7.28), but only by
at most a constant factor, and henceforth we ignore this technical issue.

We are now ready to prove our improved approximation result.

Proof of Theorem 7.24. We start with the same reductions as in the proof of Theorem 7.23, reducing
to the univariate case.

Truncation procedure. The truncation procedure is similar to the one before, except that T
is no longer constant on (—oco, —R] and on [+R, +00). Instead, on these intervals, T will be linear,
with the additional conditions T’(~R) = T’(-R) and T’ (+R) = T’(+R). However, the arguments
still go through, and we can take R < \/W as before.

Uniform approximation over a compact domain. We will first construct a preliminary
version of T without using the piecewise cubics. Recall from the discussion above that using the
linear and piecewise quadratic functions, we can ensure that T” is a linear interpolation of T".

Namely, we set

T’ _ T/(_R) " Z [A}luad,— (l//quad,—)/ " A;luad’-'- (¢quad,+)/:| ,
Iel
where the coefficients are chosen such that 7" and T’ agree at each of the endpoints of the
sub-intervals. Following the argument as before, for a sub-interval I = [a,a + §] and x € I,

T(a+8) - T'(a)

IT0) = ()| = | (0) - T (@) - ——=

(x —a)l.

By the mean value theorem, T’(x) = T'(a) + T”(c;) (x — a) and T'(a + &) = T’(a) + T”(c3) 6 for
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some cy, ¢, € I. Using the bounds on the derivatives of T,

K*R? 52

T (x) = T/ (x)| = |[(T"(cy) = T"(¢)) (x — a)| <
IT"(x) = T'(x)| = |(T"(c1) (c2)) ( )|<\/E

(F.6)
Next, we wish to control |T(x) — T(x)|. Here, T is defined by integrating 77, and choosing the
shift o so that T(—R) = T(=R). First, suppose that T(a) = T(a). We can then use the fundamental

theorem of calculus to obtain

2n2

/ (F'(y) - () dy| s X 6. (£7)

IT(x) =T (x)| = N

In particular, [T(a + 8) — T(a + 8)| is of order §°.

To ensure that T and T agree at each of these endpoints, we scan the set of sub-intervals left to
right, and we iteratively add non-negative multiples of the piecewise cubics in order to achieve this
interpolating condition. Since the original endpoint error is bounded in (F.7), it follows that the
coeflicients of the piecewise cubics that we add are small: 0 < A;ub’i < k%R%8% /\/ty. In particular,
the constraint on /lfub’_ in (F.5) is met for small §.

The key property of the piecewise cubics is that (°">*)’(0) = (°*»*)’(1) = 0. This means
that even after adding the piecewise cubics, T’ and T” agree at all of the endpoints of the sub-
intervals. However, we must check that adding these piecewise cubics does not destroy the
approximation rates (F.6) and (F.7). Since |( Icub’i)’l < 1/6, the bound on the coefficients for the
piecewise cubics shows that the derivative of the piecewise cubic part of T is bounded in magnitude
by O(x*R?8%//ty), so that (F.6) is intact. Similarly, (F.7) is also intact, either by integrating (F.6) or
by using the bound on the coefficients of the piecewise cubics. Thus, |T(x) — T(x)| < K*R%83 | \/ty,
and setting this to be at most ¢/ Vdfy yields the choice § = ©(¢!/3/(k?/3d"/%)).

Size of the generating family. The size of the generating family is then O(dR/d) =

O(x?3d7/6 /€1/3), which completes the proof. O
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Using the bounds on the Jacobian DT, of the approximating map, we can bound the change in
the KL divergence on the path from 7, to 7*. This shows that 7, has a small suboptimality gap
for KL minimization over $,. The following calculation is similar to the one for Proposition 7.28,
which establishes smoothness of the KL divergence over $,. However, since 7* does not lie in P,

it does not apply here.

Corollary F.3. Assume that r is well-conditioned (WC). Let 7z, = (To)ﬁ p denote the approximation

to T* given by the piecewise linear construction (Theorem 7.23). Then,
KL (7 ||7) = KL(7X||7) < KL(#%||7) — KL(7*||7) < k3d/%.
If, on the other hand, 7t, = (To)ﬁ p is given by the construction of Theorem 7.24,
KL (#||7) — KL(7*||7) < KL(#%||7) — KL(x*||7) < '/3d" 3643

Proof. Let (y1;)te[0,1] denote the geodesic joining 7* to 7. Then, by differentiating the KL diver-
gence along this geodesic twice, we obtain the following expressions; see Chewi (2024) and Diao
et al. (2023, Appendix B.2) for derivations. We write T = T, o (T*)~! for the optimal transport map
from 7* to #,,and T, = (1 —t)id + ¢ T.

For the potential energy term,
RV (i) = BprT —id, (VAV o T,) (T = id)) < Ly Epx|IT —id||* = Ly B, || T — T*||*.
Next, for the entropy term,
O H () = Ex+[|(DT;) ™ (DT = DI

By Theorem 7.21, DT = D((T*)~") DT, > 1/+/k, so DT; > 1/+/k. Also, DT* > 1/+/Ly. Therefore,
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we obtain

FH (py) < KE|IDU(T*)™Y) DT, o (T%) 7 = I3

< kLy Ex+||DT; o (T*) ™ = D((T*) ™% = kLv B, ||IDT, - DT*||%.
Therefore, adding the two terms together,

FKL(ullm) < Ly ||Te = T* + Ly |ID(T, = T |17,

I7 :
L2(p) )

Integrating this expression fromt =0to t =1,

KL(||7) = KL(7*||7) < B {[VwKL(-[I7)](x*), T — id)

Ly 7 * 12 7 * 112
+ 2 (1T = T, + < IDT = DT )

However, since 7., 7* both belong to the geodesically convex set of product measures, and 7*
minimizes the KL divergence over this set, we must have E + ([ VwKL(:||7)] (x*), T —id) = 0.
We are now in a position to apply the approximation guarantees. Applying the result of Theo-

rem 7.23, we obtain
KL(#||7) — KL(7*||7) < ké® +x3d %
If we instead use the improved guarantee of Theorem 7.24, we obtain

KL(#||7) — KL(7*||7) < ke® +x'3d" 3643

Finally, from the small suboptimality gap of 7, and the strong geodesic convexity of the
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KL divergence, we are able to prove that 7* is close, not just to our constructed 7., but to the
minimizer 7} of the KL divergence over P, which in turn can be computed via the algorithms

in Section 7.5.4.

Proof of Theorem 7.26. By triangle inequality, we have
VVZ(]T:’ 77'.*) S WZ(]T:, 7’7:.0) + VVZ(ﬁ'Oa 77:*) 5

and since we can control the second term (recall Theorem 7.23), it suffices to control the first.

Since KL(-||r) is #y-strongly geodesically convex, the first term can be bounded above by
by W2 (X, #,) /2 < KL(#||m) — KL(xX||7) < k*d'/?¢,

where the final bound is obtained from Corollary F.3 (we only take the worst-case scaling term),
and 7 is the approximation accuracy guaranteed by Theorem 7.23. Setting this equal to £, we
apply Theorem 7.23 with —%; /2 replacing ¢ and we see that |[M| = O(x%d*/?/¢).

Similarly, for the higher-order approximation scheme, we use Corollary F.3 and apply Theo-

rem 7.24 with =5 replacing ¢, obtaining | M| = O(k3/2d5/*/!/?). o

5/2d1/4

F.3.4 PROOFS FOR SECTION 7.5.4

Proof of Proposition 7.28. We write

KL(pl|l7) =V (p) + H(p) ::/Vd,u+/logyd,u+logZ.
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To prove smoothness, it suffices to show that the Wasserstein Hessians for both V and H are

bounded. Since we work with the augmented cone, we let

T = qid + Z AT +o, foo = (T)yp.
TeM

Our goal is to upper bound the following quadratic forms

VYV (1p) [Tﬂ;}” —id, TZ;” —id] =E,,, [(T/Z;” —id)T V2V (TZ’U” —id)],

V2 H () [T~ id, T ~ id] = B, [IDT" ~ 1|2,

in terms of the squared Wasserstein distance between 1, , and 1, 4, and TZ;” is the optimal transport
map from p, to . See Chewi (2024) and Diao et al. (2023, Appendix B.2) for derivations of
these expressions. We bound the two terms separately.

An upper bound on the potential term is straightforward. By (WC), V2V < LyI, and so

V&Y (1p) [T/Z;” —id, TZ’U” —id] =E,,, [(TZ;” —id)"T V¥V (TZ;” —id)]

< Ly By, T, = idlI* = Lv Wy (100 i) -
The entropy term needs a bit more work. To start, we note that by compatibility,
T =T o (TH) ' =T o (TH 7} (- = 0) +u, (F.8)
where we write T** = T* + v and similarly T7* = T” + u. By the chain rule,
DTJY(:) = [DT7 o (1) (- =) D[(TH) (-~ 0).

(For simplicity, the reader may wish to first read the following calculations setting u = v = 0.)
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Performing the appropriate change of variables, the Wasserstein Hessian of H reads

Em,UIIDTZ;,” — 1|2 =E,, II[DT" o (T (- = 0)] D[(TH](- = v) - I||
= E,|IDT" D[(T) ] o (T* —0) - 1|2
=E,|IDT" D[(T*)™*] o T* - I||2

=E,||DT" (DTH ™" - I||2,

where we invoked the inverse function theorem in the last step. Given our set of maps, we know

that for any A € RLN”, DT* > al, and since DT* (DTA)_1 = ], we obtain
1
Ey, DT =117 < — B, IDT" - DT|2.
Since our maps are regular (i.e., (1) holds), there exists Y > 0 such that

2
B, IDT" - DT =B, || 3 (g =) DT|| = tr =209 -2y <Y (- A0 (5 - 2)).
TeM

Finally, note that

2 2
WE Gt i) =By D" G = 20) T = =5,|| > (ar = A T+ llu = ol
TeM TeM

= =A4Q (=) +llu-ol?
where we used the fact that the maps in M are centered. This shows that
2 nu . nu . Y 2
VW}[(IJA,U) [TA,U - lds T).,Z) - ld] < E ‘/‘/2 ()uA,ZJs ,Ur],u) .

Combining all of the terms completes the proof. m]
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Proof of Lemma 7.30. We restrict our attention to the piecewise linear family denoted M in di-
mension one with | M| = J. This suffices due to the tensorization property of Y, see the remark

after the definition of Y. It suffices to prove, for all A € R/,

” Z ATT/“EZ@) < Y” Z ATT”EZ(/))’

TeM TeM

where p = N(0,1). We truncate the domain of p to [-R, R], where R < 4/log(1/(#y£?)). On some

interval [a, a + §], note that
T (x) = TH(a) + 1 ((x — @)/8)s, DT*(x) =Ar/S.

It thus suffices to prove the statement on such an interval. This is equivalent to proving that

a+d

/aa+5(%)2p(dx) < Y/ (1@ + 4 %) pan).

a

Rearranging, it suffices to show that

inf per /aa+5(,%a ~ m)zp(dx) _ varX
/aa+5p(dx) 52

Syt < :
or Y71 < varX, with X ~ Pliaa+s)-

Letting m, := EX, suppose WLOG m, < a+ §/2. We compute

a+oé
/a+35/4 p(dx) S 52

E[(X = mg)’] 2 E[(6/4)" 1xzas3/4] 2 8*P(X 2 a+35/4) = §* — <0
L7 p(dx)

provided § < 1/R; indeed, for this choice of &, |log p(x) —logp(y)| < 1 forall x,y € [a,a + J].

Stringing together the inequalities, we obtain the desired claim. O
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F.3.5 PROOFS FOR SECTION 7.5.5.2

In this section, we prove our variance bounds for SPGD for mean-field VI. We start with a

gradient bound under 7*.

Lemma F.4. Let & be a (WC) measure, and let 7* be the mean-field approximation. Then
EVV =0, E+||VV|? < Lykd. (F.9)

Proof. Recall our definition of 7* with components 7; « exp(—V;) with

i) [ Ve ()

J#i

Assuming the first claim, we can prove the second by applying the Brascamp-Lieb inequal-

ity (Brascamp and Lieb, 1976):
|| VV = Egw VY2 < Ege tr((V2V)? diag (V") 1),

where V" = (V’,..., V7). By Proposition 7.19, each component satisfies the bound (V)1 < 1/ey,

and we also have by assumption V2V < LyI. Together, the bound is clear:
B+ ||VVII® < tr((LyD)?)/ty = Lyxd .

It remains to prove the first equality. Recall that for i € [d],

it = [ Ve @) ().

J#i
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Consider a test vector e; = (1,0,....,0) € RY. Appropriately interchanging the order of integration,

one can check that we obtain

exp(—Vi(x1))
J exp(=Vi(x))) dx

E,,*VVTel = / Vl'(xl) nf(dxl) = / Vl,(X) dx1 =0,

by an application of integration by parts. The same is true for the other coordinates. O

Proof of Lemma 7.33. We want to bound the quantity

ELIQ™ (V4 () = VaV )31 = BUIQ ™2 (93 () = VaV () IP]

Using convenient notation choices, we first recall the expressions of the stochastic and non-

stochastic gradients of the potential energy:
ViV(m) =TX)VV(THX)), ViV () =E,[TVV o T,

where X ~ p is a random draw, and T(X) = (T,(X), .. .,T|M|(X')) e RMI x R? is the evaluation
of the whole dictionary at the random draw.
We begin by exploiting symmetry in the problem, reducing it to one dimension. First, note

that T can be equivalently expressed as d repetitions of the following vectors,
T = (TIZ_]) AR Tl]) b

where Ty.; denotes the first ] maps in our dictionary (the same maps exist in all dimensions)
(This is a slight abuse of notation because the i-th occurrence of Ti.; above acts only on the i-th

coordinate of the input.) Thus, the matrix Q_l/ 2 is block-diagonal, written

0 =Le0 )",
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where Q. is the first J X J block of the full Q matrix, which is Jd X Jd. We can similarly express

the gradients with respect to A in this way (i.e., only differentiating the first J components), which

results in controlling the following quantity

A d A

BIIQ™2 (VaV () = VaV () IP] = Y BIIQL > (Vg V () = ViV () I1]
i=1

1

Combining these reductions, we are left with bounding the following term in each dimension:

tr Cov(Qy/* T1y (X) 0V (TH(X)) = B[(Tiy (X)) Tiy (X)), 7)) iV (TH(X))?]

< EJE[aV(T (X)),
where we invoked (=) in the last inequality. Summing over the coordinates,
E[IQ7Y2 (VaV (1) = ViV ()Pl < ETE|IVV o T4
We bound the remaining expectation by repeatedly invoking smoothness of V. First,

E,|[VV o TH|?> < 2E,||[VV o T = VV o T}|| + 2E,||VV o T}||?

< 2Ly |IT = TX|2, , + 2B, [IVV o TH|1?

(p)
= 2L% W (i, m2) + 2B, || VV o TF||7.

For the next term, we apply the same trick, but we compare against 7*, the true mean-field

approximation:

E,|[VV o TM|? < 202 W2 (i, 7¥) + 4E,||VV o T} — VV o T*|| + 4E,||VV o T*||?

< 2L‘2, Wi (pp, k) + 4L‘2, W) (rk, m*) + 4Lyxd,
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where we used Lemma F.4 in the last step.

Our full variance bound reads

E[IQ7" (VaV (1) = VaV (u))13)] < 2LGET Wi (i, 72) + 4Ly EJ (Ly Wy (i}, ) + k) .

Finally, we also prove the bound on E for the piecewise linear dictionary.

Proof of Lemma 7.32. If we can show that Q > yI for some y > 0, then

(QL0M) <y ') =y Y T <y,

TeM

where we use the fact that the elements of the piecewise linear dictionary are uniformly bounded
by 1.

To prove the lower bound on Q, we note that for any A € R/,

2

12(p)

LOA) = H 3 ot
TeM

On an interval [a, a + 8], since TA(x) = T*(a) + At ((x — @) /5)s4,

a+d a+d _ b —
/a TA(x)zp(dx):/a (Tﬂ(a)me(S“)Zp(dx)>A§;2§R/a (x(sa—m)‘?p(dx)

a+d
228 [ pa),

where we used the variance bound from the proof of Lemma 7.30. Summing across the intervals,
we find that (1, Q0 A) 2 6% Y rem /1%, so we can take y < §°. This leads to an upper bound on Z of

order 672 < J2. o
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F.4 REMAINING IMPLEMENTATION DETAILS

F.4.1 ProbpucT GAUSSIAN MIXTURE

Let V; (resp. V) be the potential for a univariate Gaussian mixture with weights w;; and wy»
(resp. w1 and wy ) that sum to unity, and centers my; and my; (resp. my; and my ), where all the
mixture components have unit variance. Then, V : R? — R defined by V(x,y) = Vi(x) + Vz(y) is

the potential for the Gaussian mixture with mean-weight pairs given by

{([ml,l, mz,l], W1,1W2,1), ([ml,l, mz,z], W1,1W2,2), ([ml,z, mz,l], W1,2W2,1), ([m1,2, mz,z], W1,2W2,2)} .

We take my; = my; = 2, myo = myy = —2, with w1 = wyy = 0.25 and w2 = wyy = 0.75. As for
the hyperparameters of our model, we chose J = 28, & = 0.1, a step-size h = 10~> (for both A and
v), ran for 3000 iterations, and initialized at A(”) = 02x; € R?/, and (¥ = 0, € R?. The KDE plots
were generated via sklearn, after we generated 50,000 samples from the ground truth density

and from our algorithm.

F.4.2 NoN-1SOTROPIC GAUSSIAN

We generated A € R4 \ith entries Ajj ~ N(0,1), and defined ¥ = AA" for d = 5, which is
fixed once and for all. We computed the optimal a* = 1/+/Ly, since the potential is a Gaussian.
For the remaining hyper-parameters of our model, we chose J = 28, a step-size h = 10~ (for both
A and v), ran for 2000 iterations, and initialized at 20 = 145 € R the all-ones matrix, and
0 =0, € R% At each step, we computed S\ by pushing forward 10,000 samples, computing
the empirical covariance, and computing the Bures—Wasserstein distance to Zj.

We now compute the fact that Sy is diagonal with components 1/(%7!);; for i € [d]. Recall
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the KL divergence between two Gaussians with mean zero is given by

KLON (0, A) [N (0,3)) = %[tr(Z_lA) ~ d+logdet(s) - log det(A)] .

Now, we impose that A is a diagonal matrix with entries A;; = a; for some a; > 0. In this case, up

to constants denoted by C, the above reads
d
1 -1
KL(N (. A)IN(0.2) = = 3 [(57)ia: ~ log(a))] + C.
i=1
Taking the derivative in a;, we see that the optimality conditions yield
1/(E i =af
for every i € [d], which completes the calculation.

F.4.3 BAYESIAN LOGISTIC REGRESSION

We first randomly drew 0* ~ N(0,1;) in d = 20 as the ground truth parameter. Further,
we let n = 100 and randomly generated X € R™ as in the non-isotropic Gaussian experiment
(here, X takes the role of A), but we divided the matrix by Ay (X" X) for normalization purposes.

Subsequently, Y; was generated for each i independently according to

Y; | X; ~ Bern(exp(0'X)),
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where X; is a row of X. Using this data, and assuming an improper (Lebesgue) prior on 6, the

potential of the posterior is given by
V() = ) [log(1+exp(07X)) - Y 07X;]

i=1

With access to V and VV, we ran standard Langevin Monte Carlo (LMC) for 5000 iterations
with a step size of h = 1072, where we generated 2000 samples.

For the hyperparameters of our model, we chose J = 28, « = 0.1, a step size h = 1072
for the A iterates, and h, = 107! for updating v, and ran for 2000 iterations. We initialized at
A = 14,/(Jd) € R?, and 0¥ = 0; € R%. The final histograms were generated using 2000

samples from both the mean-field VI algorithm and LMC.

F.5 PROOFS FOR SECTION 7.7

In this section, we derive the gradient flows in Section 7.7.

Proof of Theorem 7.36. We refer to Lambert et al. (2022, Appendix F) for the relevant background.

The first variation of the functional ¥ (P) := KL(up||7) is given by

OF (P) : (A, 0) — /(V +logpup+1)duy, = / log Hp duj +1. (F.10)
Vi1

Therefore, the Wasserstein gradient is given by

VuF (P)(40) = (Q7'V; / log = dpye. ¥, / log £ dju, ) (F.11)

These terms are further computed as follows. First,

s / log 'U;P dpry = 9y, / log P o o dp = /(V log % o T, T> dp.

T
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Similarly, we have

VU/log‘%dy&o:/Vlog'%POTa’”dp.

This concludes the proof. m]

Proof of Theorem 7.37. This theorem follows from the expression of the first variation computed

in (F.10), see Lambert et al. (2022, Appendix H). O

275



BIBLIOGRAPHY

Ahidar-Coutrix, A., Le Gouic, T., and Paris, Q. (2020). Convergence rates for empirical barycenters
in metric spaces: curvature, convexity and extendable geodesics. Probab. Theory Related Fields,

177(1-2):323-368.

Albergo, M. S., Boffi, N. M., Lindsey, M., and Vanden-Eijnden, E. (2024). Multimarginal generative
modeling with stochastic interpolants. In The Twelfth International Conference on Learning

Representations.

Albergo, M. S. and Vanden-Eijnden, E. (2022). Building normalizing flows with stochastic inter-

polants. arXiv preprint arXiv:2209.15571.

Altschuler, J., Bach, F., Rudi, A., and Niles-Weed, J. (2019). Massively scalable sinkhorn distances

via the nystrom method. Advances in neural information processing systems, 32.

Altschuler, J., Chewi, S., Gerber, P., and Stromme, A. (2021). Averaging on the Bures—Wasserstein
manifold: dimension-free convergence of gradient descent. Advances in Neural Information

Processing Systems, 34.

Altschuler, J., Weed, J., and Rigollet, P. (2017). Near-linear time approximation algorithms for
optimal transport via Sinkhorn iteration. In Advances in Neural Information Processing Systems

30.

276



Altschuler, J. M., Niles-Weed, J., and Stromme, A. J. (2022). Asymptotics for semidiscrete entropic

optimal transport. SIAM Journal on Mathematical Analysis, 54(2):1718-1741.

Ambrosio, L., Gigli, N., and Savaré, G. (2008). Gradient flows in metric spaces and in the space of
probability measures. Lectures in Mathematics ETH Ziirich. Birkhduser Verlag, Basel, second

edition.

Anari, N, Jain, V., Koehler, F., Pham, H. T, and Vuong, T.-D. (2021a). Entropic independence i: Mod-
ified log-Sobolev inequalities for fractionally log-concave distributions and high-temperature

Ising models. arXiv preprint arXiv:2106.04105.

Anari, N, Liu, K., and Gharan, S. O. (2021b). Spectral independence in high-dimensional expanders

and applications to the hardcore model. SIAM Journal on Computing, (0):FOCS20-1.

Andoni, A, Naor, A., and Neiman, O. (2015). Snowflake universality of Wasserstein spaces. arXiv

preprint arXiv:1509.08677.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial networks.

Proceedings of the 34th International Conference on Machine Learning, 70:214-223.

Arnese, M. and Lacker, D. (2024). Convergence of coordinate ascent variational inference for

log-concave measures via optimal transport. arXiv preprint arXiv:2404.08792.

Aurenhammer, F., Hoffmann, F., and Aronov, B. (1998). Minkowski-type theorems and least-squares

clustering. Algorithmica, 20(1):61-76.

Austin, T. (2019). The structure of low-complexity Gibbs measures on product spaces. Ann. Probab.,

47(6):4002-4023.

Backhoff-Veraguas, J., Fontbona, J., Rios, G., and Tobar, F. (2022). Bayesian learning with Wasser-

stein barycenters. ESAIM Probab. Stat., 26:436—-472.

277



Bakry, D., Gentil, I, and Ledoux, M. (2014). Analysis and geometry of Markov diffusion operators,
volume 348 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of

Mathematical Sciences]. Springer, Cham.

Bansil, M. and Kitagawa, J. (2022). Quantitative stability in the geometry of semi-discrete optimal

transport. International Mathematics Research Notices, 2022(10):7354-7389.

Baptista, R., Pooladian, A.-A., Brennan, M., Marzouk, Y., and Niles-Weed, J. (2024). Conditional
simulation via entropic optimal transport: Toward non-parametric estimation of conditional

brenier maps. arXiv preprint arXiv:2411.07154.

Basu, S., Kolouri, S., and Rohde, G. K. (2014). Detecting and visualizing cell phenotype differences
from microscopy images using transport-based morphometry. Proceedings of the National

Academy of Sciences, 111(9):3448-3453.

Bauerschmidt, R., Bodineau, T., and Dagallier, B. (2023). Stochastic dynamics and the Polchinski

equation: an introduction. arXiv preprint arXiv:2307.07619.
Beck, A. (2017). First-order methods in optimization. SIAM.

Benamou, J.-D. and Brenier, Y. (2000). A computational fluid mechanics solution to the Monge-

Kantorovich mass transfer problem. Numerische Mathematik, 84(3):375-393.

Berman, R. J. (2021). Convergence rates for discretized Monge—Ampeére equations and quantitative

stability of optimal transport. Foundations of Computational Mathematics, 21(4):1099-1140.

Bernton, E., Ghosal, P., and Nutz, M. (2022). Entropic optimal transport: Geometry and large

deviations. Duke Mathematical Journal, 171(16):3363—3400.

Bernton, E., Heng, J., Doucet, A., and Jacob, P. E. (2019). Schrodinger bridge samplers. arXiv

preprint arXiv:1912.13170.

278



Bhattacharya, A., Pati, D., and Yang, Y. (2023). On the convergence of coordinate ascent variational

inference. arXiv preprint arXiv:2306.01122.

Bigot, J., Gouet, R., Klein, T., and Lopez, A. (2017). Geodesic PCA in the Wasserstein space by

convex PCA. Ann. Inst. Henri Poincaré Probab. Stat., 53(1):1-26.

Bing, X., Bunea, F., and Niles-Weed, J. (2023). Estimation and inference for the Wasserstein distance

between mixing measures in topic models. arXiv preprint 2206.12768.

Birgé, L. (2001). An alternative point of view on lepski’s method. Lecture Notes-Monograph Series,

pages 113-133.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational inference: a review for

statisticians. Journal of the American Statistical Association, 112(518):859-877.

Bobkov, S. G. and Gotze, F. (1999). Exponential integrability and transportation cost related to

logarithmic Sobolev inequalities. 7. Funct. Anal., 163(1):1-28.

Bobkov, S. G. and Ledoux, M. (2000). From Brunn-Minkowski to Brascamp-Lieb and to logarithmic

Sobolev inequalities. Geom. Funct. Anal., 10(5):1028-1052.
Bogachev, V. 1. (2007). Measure Theory, volume 1. Springer Science & Business Media.

Boissard, E., Le Gouic, T., and Loubes, J.-M. (2015). Distribution’s template estimate with Wasser-

stein metrics. Bernoulli, 21(2):740-759.

Bonneel, N., Peyré, G., and Cuturi, M. (2016). Wasserstein barycentric coordinates: histogram

regression using optimal transport. ACM Trans. Graph., 35(4):71-1.

Boucheron, S., Lugosi, G., and Massart, P. (2013). Concentration inequalities. Oxford University

Press, Oxford. A nonasymptotic theory of independence, With a foreword by Michel Ledoux.

279



Brascamp, H. J. and Lieb, E. H. (1976). On extensions of the Brunn—-Minkowski and Prékopa-
Leindler theorems, including inequalities for log concave functions, and with an application to

the diffusion equation. j. Functional Analysis, 22(4):366—389.

Brenier, Y. (1991). Polar factorization and monotone rearrangement of vector-valued functions.

Comm. Pure Appl. Math., 44(4):375-417.

Brown, B. C., Caterini, A. L., Ross, B. L., Cresswell, J. C., and Loaiza-Ganem, G. (2022). The union
of manifolds hypothesis and its implications for deep generative modelling. arXiv preprint

arXiv:2207.02862.

Bubeck, S. (2015). Convex optimization: Algorithms and complexity. Foundations and Trends® in

Machine Learning, 8(3-4):231-357.

Bunne, C., Hsieh, Y.-P., Cuturi, M., and Krause, A. (2023a). The Schrodinger bridge between
Gaussian measures has a closed form. In International Conference on Artificial Intelligence and

Statistics, pages 5802-5833. PMLR.

Bunne, C., Papaxanthos, L., Krause, A., and Cuturi, M. (2022). Proximal optimal transport modeling
of population dynamics. In International Conference on Artificial Intelligence and Statistics, pages

6511-6528. PMLR.

Bunne, C., Stark, S. G., Gut, G., Del Castillo, J. S., Levesque, M., Lehmann, K.-V., Pelkmans, L.,
Krause, A., and Ratsch, G. (2023b). Learning single-cell perturbation responses using neural

optimal transport. Nature methods, 20(11):1759-1768.

Bures, D. (1969). An extension of Kakutani’s theorem on infinite product measures to the tensor
product of semifinite w*-algebras. Transactions of the American Mathematical Society, 135:199—

212.

280



Caffarelli, L. A. (1992). Boundary regularity of maps with convex potentials. Communications on

pure and applied mathematics, 45(9):1141-1151.

Caffarelli, L. A. (1996). Boundary regularity of maps with convex potentials—ii. Annals of mathe-

matics, 144(3):453-496.

Caffarelli, L. A. (2000). Monotonicity properties of optimal transportation and the FKG and related

inequalities. Communications in Mathematical Physics, 214(3):547-563.

Cai, T., Cheng, ]J., Craig, N., and Craig, K. (2020). Linearized optimal transport for collider events.

Physical Review D, 102(11):116019.

Carlier, G., Chernozhukov, V., and Galichon, A. (2016). Vector quantile regression: An optimal

transport approach. The Annals of Statistics, 44(3):1165-1192.

Carlier, G., Chizat, L., and Laborde, M. (2024). Displacement smoothness of entropic optimal

transport.

Carlier, G., Duval, V., Peyré, G., and Schmitzer, B. (2017). Convergence of entropic schemes for

optimal transport and gradient flows. SIAM Journal on Mathematical Analysis, 49(2):1385-1418.

Cazelles, E., Seguy, V., Bigot, J., Cuturi, M., and Papadakis, N. (2018). Geodesic PCA versus log-PCA

of histograms in the Wasserstein space. SIAM 7. Sci. Comput., 40(2):B429-B456.

Chen, R. T., Rubanova, Y., Bettencourt, J., and Duvenaud, D. K. (2018). Neural ordinary differential

equations. Advances in neural information processing systems, 31.

Chen, R. T. Q., Amos, B., and Nickel, M. (2022a). Semi-discrete normalizing flows through

differentiable tessellation. In Advances in Neural Information Processing Systems.

Chen, S., Chewi, S., Li, J, Li, Y., Salim, A., and Zhang, A. R. (2022b). Sampling is as easy as
learning the score: Theory for diffusion models with minimal data assumptions. arXiv preprint

arXiv:2209.11215.

281



Chen, T., Liu, G.-H., and Theodorou, E. A. (2021a). Likelihood training of Schrodinger bridge using

forward-backward SDEs theory. arXiv preprint arXiv:2110.11291.

Chen, Y. and Eldan, R. (2022). Localization schemes: a framework for proving mixing bounds for
Markov chains. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science—FOCS

2022, pages 110-122. IEEE Computer Soc., Los Alamitos, CA.

Chen, Y., Georgiou, T. T., and Pavon, M. (2016). On the relation between optimal transport
and Schrodinger bridges: A stochastic control viewpoint. Journal of Optimization Theory and

Applications, 169:671-691.

Chen, Y., Georgiou, T. T., and Pavon, M. (2021b). Stochastic control liaisons: Richard Sinkhorn

meets Gaspard Monge on a Schrodinger bridge. Siam Review, 63(2):249-313.

Chen, Y., Georgiou, T. T., and Tannenbaum, A. (2019). Optimal transport for Gaussian mixture

models. IEEE Access, 7:6269-6278.

Chen, Y., Goldstein, M., Hua, M., Albergo, M. S., Boffi, N. M., and Vanden-Eijnden, E. (2024).
Probabilistic forecasting with stochastic interpolants and Follmer processes. arXiv preprint

arXiv:2403.13724.

Chernozhukov, V., Galichon, A., Hallin, M., and Henry, M. (2017). Monge—-Kantorovich depth,

quantiles, ranks and signs. The Annals of Statistics, 45(1):223-256.

Chewi, S. (2024). Log-concave sampling. Book draft available at https://chewisinho.github.
io.

Chewi, S., Clancy, J., Le Gouic, T., Rigollet, P., Stepaniants, G., and Stromme, A. J. (2021). Fast
and smooth interpolation on Wasserstein space. In Banerjee, A. and Fukumizu, K., editors,

Proceedings of the 24th International Conference on Artificial Intelligence and Statistics, volume

130 of Proceedings of Machine Learning Research, pages 3061-3069. PMLR.

282


https://chewisinho.github.io
https://chewisinho.github.io

Chewi, S., Maunu, T., Rigollet, P., and Stromme, A. (2020). Gradient descent algorithms for Bures—
Wasserstein barycenters. In Abernethy, J. and Agarwal, S., editors, Proceedings of Thirty Third
Conference on Learning Theory, volume 125 of Proceedings of Machine Learning Research, pages

1276-1304. PMLR.

Chewi, S. and Pooladian, A.-A. (2023). An entropic generalization of Caffarelli’s contraction

theorem via covariance inequalities. Comptes Rendus. Mathématique, 361(G9):1471-1482.

Chiarini, A., Conforti, G., Greco, G., and Tamanini, L. (2022). Gradient estimates for the
Schrodinger potentials: Convergence to the Brenier map and quantitative stability. arXiv

preprint arXiv:2207.14262.

Chizat, L., Peyré, G., Schmitzer, B., and Vialard, F.-X. (2018). An interpolating distance between

optimal transport and Fisher-Rao metrics. Found. Comput. Math., 18(1):1-44.

Chizat, L., Roussillon, P., Léger, F., Vialard, F.-X., and Peyré, G. (2020). Faster Wasserstein distance
estimation with the Sinkhorn divergence. Advances in Neural Information Processing Systems,

33:2257-2269.

Chizat, L., Zhang, S., Heitz, M., and Schiebinger, G. (2022). Trajectory inference via mean-field

Langevin in path space. Advances in Neural Information Processing Systems, 35:16731-16742.

Colombo, M., Figalli, A., and Jhaveri, Y. (2017). Lipschitz changes of variables between perturbations

of log-concave measures. Ann. Sc. Norm. Super. Pisa CI. Sci. (5), 17(4):1491-1519.

Conforti, G. (2024). Weak semiconvexity estimates for schrodinger potentials and logarithmic
sobolev inequality for schrodinger bridges. Probability Theory and Related Fields, 189(3):1045-

1071.

Conforti, G., Durmus, A., and Greco, G. (2023). Quantitative contraction rates for Sinkhorn

algorithm: Beyond bounded costs and compact marginals. arXiv preprint arXiv:2304.04451.

283



Conforti, G. and Tamanini, L. (2021). A formula for the time derivative of the entropic cost and

applications. Journal of Functional Analysis, 280(11):108964.

Cordero-Erausquin, D. (2017). Transport inequalities for log-concave measures, quantitative forms,

and applications. Canad. J. Math., 69(3):481-501.

Courty, N., Flamary, R., and Tuia, D. (2014). Domain adaptation with regularized optimal transport.

In ECML PKDD, pages 274-289.

Courty, N., Flamary, R., Tuia, D., and Rakotomamonjy, A. (2017). Optimal transport for domain

adaptation. IEEE Trans. Pattern Anal. Mach. Intell., 39(9):1853—-1865.

Csiszar, L. (1975). I-divergence geometry of probability distributions and minimization problems.

Ann. Probability, 3:146—158.

Cuesta-Albertos, J. A., Matran-Bea, C., and Tuero-Diaz, A. (1996). On lower bounds for the

L?-Wasserstein metric in a Hilbert space. J. Theoret. Probab., 9(2):263-283.

Cuturi, M. (2013). Sinkhorn distances: Lightspeed computation of optimal transport. Advances in

Neural Information Processing Systems, 26.

Cuturi, M. and Doucet, A. (2014). Fast computation of Wasserstein barycenters. In International

Conference on Machine Learning, pages 685-693. PMLR.

Cuturi, M., Meng-Papaxanthos, L., Tian, Y., Bunne, C., Davis, G., and Teboul, O. (2022). Optimal

transport tools (ott): A jax toolbox for all things wasserstein. arXiv preprint arXiv:2201.12324.

Dalalyan, A. S., Karagulyan, A., and Riou-Durand, L. (2022). Bounding the error of discretized
Langevin algorithms for non-strongly log-concave targets. J. Mach. Learn. Res., 23:Paper No.

235, 38.

284



Daniels, M., Maunu, T., and Hand, P. (2021). Score-based generative neural networks for large-scale

optimal transport. Advances in neural information processing systems, 34:12955-12965.

Dantzig, G. B. (1951). Application of the simplex method to a transportation problem. Activity

analysis and production and allocation.

De Bortoli, V., Thornton, J., Heng, J., and Doucet, A. (2021). Diffusion Schrédinger bridge with
applications to score-based generative modeling. Advances in Neural Information Processing

Systems, 34:17695-17709.

Deb, N., Ghosal, P., and Sen, B. (2021). Rates of estimation of optimal transport maps using plug-in
estimators via barycentric projections. Advances in Neural Information Processing Systems,

34:29736-29753.

del Barrio, E., Gonzalez-Sanz, A., and Loubes, J.-M. (2022a). Central limit theorems for semidiscrete

Wasserstein distances. arXiv preprint arXiv:2202.06380.

del Barrio, E., Gonzalez-Sanz, A., Loubes, J.-M., and Niles-Weed, ]J. (2022b). An improved central
limit theorem and fast convergence rates for entropic transportation costs. arXiv preprint

arXiv:2204.09105.

del Barrio, E. and Loubes, J.-M. (2019). Central limit theorems for empirical transportation cost in

general dimension. Ann. Probab., 47(2):926-951.

Delalande, A. (2022). Nearly tight convergence bounds for semi-discrete entropic optimal transport.

In International Conference on Artificial Intelligence and Statistics, pages 1619-1642. PMLR.

Delalande, A. and Mérigot, Q. (2023). Quantitative stability of optimal transport maps under

variations of the target measure. Duke Mathematical Journal.

Delon, J. and Desolneux, A. (2020). A Wasserstein-type distance in the space of Gaussian mixture

models. SIAM J. Imaging Sci., 13(2):936-970.

285



Diao, M. Z., Balasubramanian, K., Chewi, S., and Salim, A. (2023). Forward-backward Gaussian
variational inference via JKO in the Bures—Wasserstein space. In International Conference on

Machine Learning, pages 7960-7991. PMLR.

Divol, V., Niles-Weed, J., and Pooladian, A.-A. (2022). Optimal transport map estimation in general

function spaces. arXiv preprint arXiv:2212.03722.

Divol, V., Niles-Weed, J., and Pooladian, A.-A. (2025). Tight stability bounds for entropic brenier

maps. International Mathematics Research Notices, 2025(7):rnaf078.

Domke, J. (2020). Provable smoothness guarantees for black-box variational inference. In Interna-

tional Conference on Machine Learning, pages 2587-2596. PMLR.

Domke, J., Gower, R., and Garrigos, G. (2023). Provable convergence guarantees for black-box
variational inference. In Oh, A., Neumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine,
S., editors, Advances in Neural Information Processing Systems, volume 36, pages 66289-66327.

Curran Associates, Inc.

Dudley, R. M. (1969). The speed of mean Glivenko—-Cantelli convergence. The Annals of Mathe-

matical Statistics, 40(1):40-50.

Dvurechensky, P., Gasnikov, A., and Kroshnin, A. (2018). Computational optimal transport:
Complexity by accelerated gradient descent is better than by Sinkhorn’s algorithm. arXiv

preprint arXiv:1802.04367.

Eckstein, S. and Nutz, M. (2023). Convergence rates for regularized optimal transport via quanti-

zation. Mathematics of Operations Research.

Eldan, R. (2018). Gaussian-width gradient complexity, reverse log-Sobolev inequalities and nonlin-

ear large deviations. Geom. Funct. Anal., 28(6):1548-1596.

286



Eldan, R. and Gross, R. (2018). Decomposition of mean-field Gibbs distributions into product

measures. Electron. J. Probab., 23:Paper No. 35, 24.

Eldan, R., Lehec, J., and Shenfeld, Y. (2020). Stability of the logarithmic Sobolev inequality via the

Follmer process.

Fathi, M., Gozlan, N., and Prod’homme, M. (2020). A proof of the Caffarelli contraction theorem

via entropic regularization. Calculus of Variations and Partial Differential Equations, 59(3):1-18.

Feydy, J., Charlier, B., Vialard, F.-X., and Peyré, G. (2017). Optimal transport for diffeomorphic
registration. In International Conference on Medical Image Computing and Computer-Assisted

Intervention, pages 291-299. Springer.

Feydy, J., Glaunes, A., Charlier, B., and Bronstein, M. (2020). Fast geometric learning with symbolic

matrices. Advances in Neural Information Processing Systems, 33:14448-14462.

Feydy, J., Séjourné, T., Vialard, F.-X., Amari, S.-i., Trouvé, A., and Peyré, G. (2019). Interpolating
between optimal transport and mmd using Sinkhorn divergences. In The 22nd International

Conference on Artificial Intelligence and Statistics, pages 2681-2690. PMLR.

Finlay, C., Gerolin, A., Oberman, A. M., and Pooladian, A.-A. (2020a). Learning normalizing flows

from Entropy-Kantorovich potentials. arXiv preprint arXiv:2006.06033.

Finlay, C., Jacobsen, J.-H., Nurbekyan, L., and Oberman, A. (2020b). How to train your neural
ODE: the world of Jacobian and kinetic regularization. In International Conference on Machine

Learning, pages 3154-3164. PMLR.

Flamary, R., Courty, N., Gramfort, A., Alaya, M. Z., Boisbunon, A., Chambon, S., Chapel, L.,
Corenflos, A., Fatras, K., Fournier, N., Gautheron, L., Gayraud, N. T., Janati, H., Rakotomamonyjy,
A., Redko, L, Rolet, A., Schutz, A., Seguy, V., Sutherland, D. J., Tavenard, R., Tong, A., and Vayer,

T. (2021). Pot: Python optimal transport. Journal of Machine Learning Research, 22(78):1-8.

287



Follmer, H. (1985). An entropy approach to the time reversal of diffusion processes. In Stochastic
differential systems (Marseille-Luminy, 1984), volume 69 of Lect. Notes Control Inf. Sci., pages

156-163. Springer, Berlin.

Forrow, A., Hitter, J.-C., Nitzan, M., Rigollet, P., Schiebinger, G., and Weed, J. (2019). Statistical
optimal transport via factored couplings. In The 22nd International Conference on Artificial

Intelligence and Statistics, pages 2454-2465. PMLR.

Fortet, R. (1940). Résolution d’un systéme d’équations de m. Schrodinger. Journal de Mathématiques

Pures et Appliquées, 19(1-4):83-105.

Frank, M. and Wolfe, P. (1956). An algorithm for quadratic programming. Naval Research Logistics

Quarterly, 3(1-2):95-110.

Gelbrich, M. (1990). On a formula for the L? Wasserstein metric between measures on Euclidean

and Hilbert spaces. Mathematische Nachrichten, 147(1):185-203.

Genevay, A. (2019). Entropy-regularized optimal transport for machine learning. PhD thesis, Paris

Sciences et Lettres (ComUE).

Genevay, A., Chizat, L., Bach, F., Cuturi, M., and Peyré, G. (2019). Sample complexity of Sinkhorn
divergences. In The 22nd international conference on artificial intelligence and statistics, pages

1574-1583. PMLR.

Genevay, A., Peyré, G., and Cuturi, M. (2018). Learning generative models with Sinkhorn diver-
gences. In International Conference on Artificial Intelligence and Statistics, pages 1608—1617.

PMLR.

Gentil, I., Léonard, C., Ripani, L., and Tamanini, L. (2020). An entropic interpolation proof of the

HWTI inequality. Stochastic Processes and their Applications, 130(2):907-923.

288



Ghosal, P., Nutz, M., and Bernton, E. (2022). Stability of entropic optimal transport and Schrédinger

bridges. Journal of Functional Analysis, 283(9):109622.

Ghosal, P. and Sen, B. (2022). Multivariate ranks and quantiles using optimal transport: consistency,

rates and nonparametric testing. The Annals of Statistics, 50:1012-1037.

Gigli, N. (2011). On Holder continuity-in-time of the optimal transport map towards measures

along a curve. Proceedings of the Edinburgh Mathematical Society, 54(2):401-409.

Giné, E. and Nickl, R. (2021). Mathematical foundations of infinite-dimensional statistical models.

Cambridge university press.

Goldfeld, Z., Kato, K., Rioux, G., and Sadhu, R. (2024a). Limit theorems for entropic optimal

transport maps and sinkhorn divergence. Electronic Journal of Statistics, 18(1):980-1041.

Goldfeld, Z., Kato, K., Rioux, G., and Sadhu, R. (2024b). Statistical inference with regularized

optimal transport. Information and Inference: A Journal of the IMA, 13(1):iaad056.

Gonzalez-Sanz, A., Loubes, J.-M., and Niles-Weed, J. (2022). Weak limits of entropy regularized

optimal transport; potentials, plans and divergences. arXiv preprint arXiv:2207.07427.

Gozlan, N. and Juillet, N. (2020). On a mixture of Brenier and Strassen theorems. Proc. Lond. Math.

Soc. (3), 120(3):434-463.

Gozlan, N. and Sylvestre, M. (2025). Global regularity estimates for optimal transport via entropic

regularisation. arXiv preprint arXiv:2501.11382.
Graf, S. and Luschgy, H. (2007). Foundations of quantization for probability distributions. Springer.

Grathwohl, W, Chen, R. T., Bettencourt, J., Sutskever, I., and Duvenaud, D. (2018). Ffjord: Free-form

continuous dynamics for scalable reversible generative models. arXiv preprint arXiv:1810.01367.

289



Greco, G., Noble, M., Conforti, G., and Durmus, A. (2023). Non-asymptotic convergence bounds
for Sinkhorn iterates and their gradients: a coupling approach. In The Thirty Sixth Annual

Conference on Learning Theory, pages 716-746. PMLR.

Groppe, M. and Hundrieser, S. (2024). Lower complexity adaptation for empirical entropic optimal

transport. Journal of Machine Learning Research, 25(344):1-55.

Gunsilius, F., Hsieh, M. H., and Lee, M. J. (2024). Tangential wasserstein projections. Journal of

Machine Learning Research, 25(69):1-41.

Gunsilius, F. and Xu, Y. (2021). Matching for causal effects via multimarginal optimal transport.

arXiv preprint arXiv:2112.04398.

Gushchin, N., Kolesov, A., Mokrov, P., Karpikova, P., Spiridonov, A., Burnaev, E., and Korotin, A.
(2023). Building the bridge of Schrédinger: A continuous entropic optimal transport benchmark.

Advances in Neural Information Processing Systems, 36:18932-18963.

Hallin, M., Del Barrio, E., Cuesta-Albertos, ]J., and Matran, C. (2021). Distribution and quantile

functions, ranks and signs in dimension d: A measure transportation approach.

Haviv, D., Pooladian, A.-A., Pe’er, D., and Amos, B. (2024). Wasserstein flow matching: Generative

modeling over families of distributions. arXiv preprint arXiv:2411.00698.

Hiriart-Urruty, J.-B. and Lemaréchal, C. (2004). Fundamentals of convex analysis. Springer Science

& Business Media.

Huang, C.-W., Chen, R. T. Q., Tsirigotis, C., and Courville, A. (2021a). Convex potential flows: uni-
versal probability distributions with optimal transport and convex optimization. In International

Conference on Learning Representations.

Huang, H. (2024). One-step data-driven generative model via Schrédinger bridge. arXiv preprint

arXiv:2405.12453.

290



Huang, ]., Jiao, Y., Kang, L., Liao, X., Liu, J., and Liu, Y. (2021b). Schrédinger-Follmer sampler:

Sampling without ergodicity. arXiv preprint arXiv:2106.10880.

Hundrieser, S., Klatt, M., and Munk, A. (2024a). Limit distributions and sensitivity analysis for
empirical entropic optimal transport on countable spaces. The Annals of Applied Probability,

34(1B):1403-1468.

Hundrieser, S., Staudt, T., and Munk, A. (2024b). Empirical optimal transport between different
measures adapts to lower complexity. In Annales de I'Institut Henri Poincare (B) Probabilites et

statistiques, volume 60, pages 824-846. Institut Henri Poincaré.
Hitter, J.-C. and Mao, C. (2017). Notes on adaptive estimation with Lepski’s method.

Hiitter, J.-C. and Rigollet, P. (2021). Minimax estimation of smooth optimal transport maps. The

Annals of Statistics, 49(2):1166—1194.

Jaggi, M. (2013). Revisiting Frank—Wolfe: projection-free sparse convex optimization. In Interna-

tional Conference on Machine Learning, pages 427-435. PMLR.

Jain, V., Risteski, A., and Koehler, F. (2019). Mean-field approximation, convex hierarchies, and the
optimality of correlation rounding: a unified perspective. In STOC’19—Proceedings of the 51st

Annual ACM SIGACT Symposium on Theory of Computing, pages 1226-1236. ACM, New York.

Janati, H., Muzellec, B., Peyré, G., and Cuturi, M. (2020). Entropic optimal transport between
unbalanced Gaussian measures has a closed form. Advances in Neural Information Processing

Systems, 33.

Jordan, R., Kinderlehrer, D., and Otto, F. (1998). The variational formulation of the Fokker-Planck

equation. SIAM J. Math. Anal., 29(1):1-17.

Kantorovitch, L. (1942). On the translocation of masses. C. R. (Doklady) Acad. Sci. URSS (N.S.),

37:199-201.

291



Kassraie, P., Pooladian, A.-A., Klein, M., Thornton, J., Niles-Weed, J., and Cuturi, M. (2024).
Progressive entropic optimal transport solvers. Advances in Neural Information Processing

Systems, 37:19561-19590.

Kato, K. (2024). Large deviations for dynamical Schrodinger problems. arXiv preprint

arXiv:2402.05100.

Kawakita, G., Kamiya, S., Sasai, S., Kitazono, J., and Oizumi, M. (2022). Quantifying brain state

transition cost via Schrédinger bridge. Network Neuroscience, 6(1):118—-134.

Kent, C., Blanchet, J., and Glynn, P. (2021). Frank—Wolfe methods in probability space. arXiv

preprint arXiv:2105.05352.

Khurana, V., Kannan, H., Cloninger, A., and Moosmiiller, C. (2023). Supervised learning of sheared
distributions using linearized optimal transport. Sampling Theory, Signal Processing, and Data

Analysis, 21(1):1.

Kim, K., Oh, J., Wu, K., Ma, Y., and Gardner, J. (2023). On the convergence of black-box variational
inference. In Oh, A., Neumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine, S., editors,
Advances in Neural Information Processing Systems, volume 36, pages 44615-44657. Curran

Associates, Inc.

Kim, Y.-H. and Milman, E. (2012). A generalization of Caffarelli’s contraction theorem via (reverse)

heat flow. Mathematische Annalen, 354(3):827-862.

Klatt, M., Tameling, C., and Munk, A. (2020). Empirical regularized optimal transport: Statistical

theory and applications. SIAM Journal on Mathematics of Data Science, 2(2):419-443.

Klein, M., Pooladian, A.-A., Ablin, P., Ndiaye, E., Niles-Weed, J., and Cuturi, M. (2024). Learning
elastic costs to shape monge displacements. Advances in Neural Information Processing Systems,

37:108542-108565.

292



Kolesnikov, A. V. (2011). Mass transportation and contractions. arXiv preprint arXiv:1103.1479.

Kolouri, S. and Rohde, G. K. (2015). Transport-based single frame super resolution of very low
resolution face images. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 4876—-4884.

Kolouri, S., Tosun, A. B., Ozolek, J. A., and Rohde, G. K. (2016). A continuous linear optimal

transport approach for pattern analysis in image datasets. Pattern Recognition, 51:453-462.

Kuhn, D., Esfahani, P. M., Nguyen, V. A, and Shafieezadeh-Abadeh, S. (2019). Wasserstein
distributionally robust optimization: theory and applications in machine learning. In Operations

Research & Management Science in the Age of Analytics, pages 130-166. Informs.

Lacker, D. (2023). Independent projections of diffusions: gradient flows for variational inference

and optimal mean field approximations. arXiv preprint arXiv:2309.13332.

Lacker, D., Mukherjee, S., and Yeung, L. C. (2024). Mean field approximations via log-concavity.

International Mathematics Research Notices, 2024(7):6008—6042.

Lambert, M., Chewi, S., Bach, F., Bonnabel, S., and Rigollet, P. (2022). Variational inference via

Wasserstein gradient flows. Advances in Neural Information Processing Systems, 35:14434-14447.

Lavenant, H. and Zanella, G. (2024). Convergence rate of random scan coordinate ascent variational

inference under log-concavity. SIAM Journal on Optimization, 34(4):3750-3761.

Lavenant, H., Zhang, S., Kim, Y.-H., Schiebinger, G., et al. (2024). Toward a mathematical theory of

trajectory inference. The Annals of Applied Probability, 34(1A):428-500.

Le Gouic, T., Paris, Q., Rigollet, P., and Stromme, A. J. (2022). Fast convergence of empirical barycen-
ters in Alexandrov spaces and the Wasserstein space. Journal of the European Mathematical

Society, 25(6):2229-2250.

293



Ledoux, M. (2018). Remarks on some transportation cost inequalities.

Lee, D., Lee, D., Bang, D., and Kim, S. (2024). Disco: Diffusion Schrédinger bridge for molecu-
lar conformer optimization. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 38, pages 13365-13373.

Lee, H, Lu, J., and Tan, Y. (2023). Convergence of score-based generative modeling for general
data distributions. In International Conference on Algorithmic Learning Theory, pages 946—985.

PMLR.

Léonard, C. (2012). From the Schrédinger problem to the Monge—Kantorovich problem. journal of

Functional Analysis, 262(4):1879-1920.

Léonard, C. (2014). A survey of the Schrodinger problem and some of its connections with optimal

transport. Discrete Contin. Dyn. Syst., 34(4):1533-1574.

Letrouit, C. and Mérigot, Q. (2024). Gluing methods for quantitative stability of optimal transport

maps. arXiv preprint arXiv:2411.04908.

Liero, M., Mielke, A., and Savaré, G. (2016). Optimal transport in competition with reaction: the

Hellinger-Kantorovich distance and geodesic curves. SIAM J. Math. Anal., 48(4):2869-2911.

Liero, M., Mielke, A., and Savaré, G. (2018). Optimal entropy-transport problems and a new

Hellinger-Kantorovich distance between positive measures. Invent. Math., 211(3):969-1117.

Lipman, Y., Chen, R. T., Ben-Hamu, H., Nickel, M., and Le, M. (2022). Flow matching for generative

modeling. arXiv preprint arXiv:2210.02747.

Liu, G.-H., Chen, T., So, O., and Theodorou, E. (2022a). Deep generalized Schrodinger bridge.

Advances in Neural Information Processing Systems, 35:9374-9388.

294



Liu, X., Gong, C., and Liu, Q. (2022b). Flow straight and fast: Learning to generate and transfer

data with rectified flow. arXiv preprint arXiv:2209.03003.

Lu, Y., Lu, J., and Nolen, J. (2019). Accelerating Langevin sampling with birth-death. arXiv preprint

1905.09863.
Lunardi, A. (2009). Interpolation theory, volume 9. Edizioni della normale Pisa.

Makkuva, A., Taghvaei, A., Oh, S., and Lee, J. (2020). Optimal transport mapping via input convex

neural networks. In International Conference on Machine Learning, pages 6672—-6681. PMLR.

Mallasto, A., Gerolin, A., and Minh, H. Q. (2022). Entropy-regularized 2-Wasserstein distance

between Gaussian measures. Information Geometry, 5(1):289-323.

Manole, T., Balakrishnan, S., Niles-Weed, J., and Wasserman, L. (2024a). Plugin estimation of

smooth optimal transport maps. The Annals of Statistics, 52(3):966—998.

Manole, T., Bryant, P., Alison, J., Kuusela, M., and Wasserman, L. (2024b). Background modeling
for double higgs boson production: Density ratios and optimal transport. The Annals of Applied

Statistics, 18(4):2950-2978.

Manole, T. and Niles-Weed, ]J. (2024). Sharp convergence rates for empirical optimal transport

with smooth costs. The Annals of Applied Probability, 34(1B):1108-1135.

Marino, S. D. and Gerolin, A. (2020). An optimal transport approach for the Schrédinger bridge

problem and convergence of Sinkhorn algorithm. Journal of Scientific Computing, 85(2):1-28.

Masud, S. B., Werenski, M., Murphy, J. M., and Aeron, S. (2023). Multivariate soft rank via entropy-
regularized optimal transport: Sample efficiency and generative modeling. Journal of Machine

Learning Research, 24(160):1-65.

295



McCann, R. J. (1997). A convexity principle for interacting gases. Advances in mathematics,

128(1):153-179.

Mena, G. and Niles-Weed, J. (2019). Statistical bounds for entropic optimal transport: sample
complexity and the central limit theorem. Advances in Neural Information Processing Systems,

32.

Mérigot, Q., Delalande, A., and Chazal, F. (2020). Quantitative stability of optimal transport maps
and linearization of the 2-Wasserstein space. In International Conference on Artificial Intelligence

and Statistics, pages 3186-3196. PMLR.

Mérigot, Q., Santambrogio, F., and Sarrazin, C. (2021). Non-asymptotic convergence bounds for
Wasserstein approximation using point clouds. In Ranzato, M., Beygelzimer, A., Dauphin,
Y., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Processing Systems,

volume 34, pages 12810-12821. Curran Associates, Inc.

Mikulincer, D. and Shenfeld, Y. (2023). On the lipschitz properties of transportation along heat
flows. In Geometric Aspects of Functional Analysis: Israel Seminar (GAFA) 2020-2022, pages

269-290. Springer.

Mikulincer, D. and Shenfeld, Y. (2024). The Brownian transport map. Probability Theory and

Related Fields, pages 1-66.

Mokrov, P., Korotin, A., Kolesov, A., Gushchin, N., and Burnaev, E. (2023). Energy-guided entropic

neural optimal transport. arXiv preprint arXiv:2304.06094.

Monge, G. (1781). Mémoire sur la théorie des déblais et des remblais. Histoire de I’Académie Royale

des Sciences, pages 666—704.

Moriel, N., Senel, E., Friedman, N., Rajewsky, N., Karaiskos, N., and Nitzan, M. (2021). Novosparc:

296



flexible spatial reconstruction of single-cell gene expression with optimal transport. Nature

Protocols, 16(9):4177-4200.
Neeman, J. (2022). Lipschitz changes of variables via heat flow. arXiv preprint arXiv:2201.03403.

Nemirovski, A. S. and Yudin, D. B. (1983). Problem complexity and method efficiency in optimiza-
tion. Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons, Inc., New York.

Translated from the Russian and with a preface by E. R. Dawson.
Nesterov, Y. (2018). Lectures on convex optimization, volume 137. Springer.

Nesterov, Y. E. (1983). A method for solving the convex programming problem with convergence

rate O(1/k?). Dokl. Akad. Nauk SSSR, 269(3):543-547.

Nusken, N., Vargas, F., Ovsianas, A., Fernandes, D., Girolami, M., and Lawrence, N. (2022). Bayesian

learning via neural Schrédinger-Follmer flows. STATISTICS AND COMPUTING, 33.
Nutz, M. (2021). Introduction to entropic optimal transport. Lecture notes, Columbia University.

Nutz, M. and Wiesel, ]J. (2021). Entropic optimal transport: Convergence of potentials. Probability

Theory and Related Fields, pages 1-24.

Nutz, M. and Wiesel, J. (2023). Stability of Schrodinger potentials and convergence of Sinkhorn’s

algorithm. The Annals of Probability, 51(2):699-722.

Onken, D, Fung, S. W,, Li, X., and Ruthotto, L. (2021). Ot-flow: Fast and accurate continuous
normalizing flows via optimal transport. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 35, pages 9223-9232.
Otto, F. (2001). The geometry of dissipative evolution equations: the porous medium equation.

Pal, S. (2024). On the difference between entropic cost and the optimal transport cost. The Annals

of Applied Probability, 34(1B):1003-1028.

297



Panaretos, V. M. and Zemel, Y. (2016). Amplitude and phase variation of point processes. Ann.

Statist., 44(2):771-812.

Panaretos, V. M. and Zemel, Y. (2020). An invitation to statistics in Wasserstein space. Springer

Nature.

Park, S. and Thorpe, M. (2018). Representing and learning high dimensional data with the optimal
transport map from a probabilistic viewpoint. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 7864-7872.

Pavon, M., Trigila, G., and Tabak, E. G. (2021). The data-driven Schrédinger bridge. Communications

on Pure and Applied Mathematics, 74(7):1545-1573.

Peyré, G. and Cuturi, M. (2019). Computational optimal transport. Foundations and Trends® in

Machine Learning, 11(5-6):355-607.

Pooladian, A.-A., Cuturi, M., and Niles-Weed, J. (2022). Debiaser beware: Pitfalls of centering
regularized transport maps. In International Conference on Machine Learning, pages 17830-17847.

PMLR.

Pooladian, A.-A., Divol, V., and Niles-Weed, ]. (2023). Minimax estimation of discontinuous optimal
transport maps: The semi-discrete case. In International Conference on Machine Learning, pages

28128-28150. PMLR.

Pooladian, A.-A. and Niles-Weed, J. (2021). Entropic estimation of optimal transport maps. arXiv

preprint arXiv:2109.12004.

Rigollet, P. and Stromme, A. J. (2022). On the sample complexity of entropic optimal transport.

arXiv preprint arXiv:2206.13472.

Ripani, L. (2019). Convexity and regularity properties for entropic interpolations. Journal of

Functional Analysis, 277(2):368-391.

298



Rockafellar, R. T. (1997). Convex analysis. Princeton Landmarks in Mathematics. Princeton

University Press, Princeton, NJ. Reprint of the 1970 original, Princeton Paperbacks.

Sadhu, R., Goldfeld, Z., and Kato, K. (2024). Stability and statistical inference for semidiscrete

optimal transport maps. The Annals of Applied Probability, 34(6):5694-5736.

Sadhu, R., Goldfeld, Z., and Kato, K. (2025). Approximation rates of entropic maps in semidiscrete

optimal transport. Electronic Communications in Probability, 30:1-13.

Salimans, T., Zhang, H., Radford, A., and Metaxas, D. (2018). Improving GANs using optimal

transport. In International Conference on Learning Representations.
Santambrogio, F. (2015). Optimal transport for applied mathematicians. Birkduser, NY, 55(58-63):94.

Schiebinger, G., Shu, J., Tabaka, M., Cleary, B., Subramanian, V., Solomon, A., Gould, J., Liu, S., Lin,
S., Berube, P., et al. (2019). Optimal-transport analysis of single-cell gene expression identifies

developmental trajectories in reprogramming. Cell, 176(4):928-943.

Schrodinger, E. (1932). Sur la théorie relativiste de I’électron et 'interprétation de la mécanique

quantique. In Annales de 'institut Henri Poincaré, volume 2, pages 269-310.

Seguy, V., Damodaran, B. B., Flamary, R., Courty, N., Rolet, A., and Blondel, M. (2018). Large-
scale optimal transport and mapping estimation. In International Conference on Learning

Representations.

Shi, Y., De Bortoli, V., Campbell, A., and Doucet, A. (2024). Diffusion Schrodinger bridge matching.

Advances in Neural Information Processing Systems, 36.

Shi, Y., De Bortoli, V., Deligiannidis, G., and Doucet, A. (2022). Conditional simulation using

diffusion Schrodinger bridges. In Uncertainty in Artificial Intelligence, pages 1792-1802. PMLR.

299



Sinkhorn, R. (1967). A relationship between arbitrary positive matrices and doubly stochastic

matrices. The Annals of Mathematical Statistics, 35(2):876-879.

Solomon, J., De Goes, F., Peyré, G., Cuturi, M., Butscher, A., Nguyen, A., Du, T., and Guibas, L.
(2015). Convolutional Wasserstein distances: Efficient optimal transportation on geometric

domains. ACM Transactions on Graphics (TOG), 34(4):66.

Solomon, J., Peyré, G., Kim, V. G, and Sra, S. (2016). Entropic metric alignment for correspondence

problems. ACM Trans. Graph., 35(4):72:1-72:13.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Ermon, S., and Poole, B. (2020). Score-based

generative modeling through stochastic differential equations. arXiv preprint arXiv:2011.13456.

Stromme, A. (2023). Sampling from a Schrodinger bridge. In International Conference on Artificial

Intelligence and Statistics, pages 4058-4067. PMLR.

Stromme, A. J. (2024). Minimum intrinsic dimension scaling for entropic optimal transport. In

International Conference on Soft Methods in Probability and Statistics, pages 491-499. Springer.

Thornton, J., Hutchinson, M., Mathieu, E., De Bortoli, V., Teh, Y. W., and Doucet, A. (2022).

Riemannian diffusion Schrodinger bridge. arXiv preprint arXiv:2207.03024.

Tong, A., Malkin, N., Fatras, K., Atanackovic, L., Zhang, Y., Huguet, G., Wolf, G., and Bengio,
Y. (2023). Simulation-free Schrodinger bridges via score and flow matching. arXiv preprint

arXiv:2307.03672.

Torous, W., Gunsilius, F., and Rigollet, P. (2024). An optimal transport approach to estimating

causal effects via nonlinear difference-in-differences. Journal of Causal Inference, 12(1):20230004.

Tsybakov, A. B. (2009). Introduction to nonparametric estimation. Springer Series in Statistics.
Springer, New York. Revised and extended from the 2004 French original, Translated by Vladimir

Zaiats.

300



Vaart, A. W. and Wellner, J. A. (1996). Weak convergence and empirical processes with applications

to statistics. In Weak convergence and empirical processes, pages 16—28. Springer.

Vacher, A., Muzellec, B., Bach, F., Vialard, F.-X., and Rudi, A. (2024). Optimal estimation of smooth

transport maps with kernel sos. SIAM Journal on Mathematics of Data Science, 6(2):311-342.

Valdimarsson, S. I. (2007). On the Hessian of the optimal transport potential. Ann. Sc. Norm. Super.

Pisa Cl. Sci. (5), 6(3):441-456.

Vargas, F., Ovsianas, A., Fernandes, D., Girolami, M., Lawrence, N. D., and Nisken, N. (2023).

Bayesian learning via neural Schrodinger-Follmer flows. Statistics and Computing, 33(1):3.

Vargas, F., Thodoroff, P., Lamacraft, A., and Lawrence, N. (2021). Solving Schrédinger bridges via

maximum likelihood. Entropy, 23(9):1134.

Vempala, S. and Wibisono, A. (2019). Rapid convergence of the unadjusted langevin algorithm:

Isoperimetry suffices. Advances in neural information processing systems, 32.

Vershynin, R. (2018). High-dimensional probability: An introduction with applications in data science,

volume 47. Cambridge University Press.
Villani, C. (2009). Optimal transport: Old and new, volume 338. Springer.
Villani, C. (2021). Topics in optimal transportation, volume 58. American Mathematical Soc.

von Luxburg, U. and Bousquet, O. (2003). Distance-based classification with Lipschitz functions. }.

Mach. Learn. Res., 5:669—-695.

Wainwright, M. J. (2019). High-dimensional statistics: A non-asymptotic viewpoint, volume 48.

Cambridge University Press.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and variational

inference. Foundations and Trends® in Machine Learning, 1(1-2):1-305.

301



Wang, W., Ozolek, J. A., Slepcev, D., Lee, A. B, Chen, C., and Rohde, G. K. (2010). An optimal
transportation approach for nuclear structure-based pathology. IEEE transactions on medical

imaging, 30(3):621-631.

Wang, W., Slepcev, D., Basu, S., Ozolek, J. A., and Rohde, G. K. (2013). A linear optimal trans-
portation framework for quantifying and visualizing variations in sets of images. International

Journal of Computer Vision, 101:254-269.

Werenski, M., Jiang, R., Tasissa, A., Aeron, S., and Murphy, J. M. (2022). Measure estimation in the

barycentric coding model. In International Conference on Machine Learning, pages 23781-23803.

PMLR.

Werenski, M., Murphy, J. M., and Aeron, S. (2023). Estimation of entropy-regularized optimal

transport maps between non-compactly supported measures. arXiv preprint arXiv:2311.11934.

Wibisono, A. (2018). Sampling as optimization in the space of measures: the Langevin dynamics
as a composite optimization problem. In Proceedings of the 31st Conference on Learning Theory,

volume 75 of Proceedings of Machine Learning Research, pages 2093-3027. PMLR.

Wibisono, A., Wu, Y., and Yang, K. Y. (2024). Optimal score estimation via empirical bayes
smoothing. In The Thirty Seventh Annual Conference on Learning Theory, pages 4958-4991.
PMLR.

Yang, K. D., Damodaran, K., Venkatachalapathy, S., Soylemezoglu, A. C., Shivashankar, G., and
Uhler, C. (2020). Predicting cell lineages using autoencoders and optimal transport. PLoS

computational biology, 16(4):e1007828.

Yao, R. and Yang, Y. (2022). Mean field variational inference via Wasserstein gradient flow. arXiv

preprint arXiv:2207.08074.

302



Yi, M. and Liu, S. (2023). Bridging the gap between variational inference and Wasserstein gradient

flows. arXiv preprint arXiv:2310.20090.

Yim, J., Trippe, B. L., De Bortoli, V., Mathieu, E., Doucet, A., Barzilay, R., and Jaakkola, T.
(2023). Se (3) diffusion model with application to protein backbone generation. arXiv preprint

arXiv:2302.02277.

Yue, M.-C., Kuhn, D., and Wiesemann, W. (2022). On linear optimization over Wasserstein balls.

Mathematical Programming, 195(1-2):1107-1122.

Zemel, Y. and Panaretos, V. M. (2019). Fréchet means and Procrustes analysis in Wasserstein space.

Bernoulli, 25(2):932-976.

Zhang, A. Y. and Zhou, H. H. (2020). Theoretical and computational guarantees of mean field

variational inference for community detection. The Annals of Statistics, 48(5):2575-2598.

Zhu, C., Byrd, R. H., Lu, P, and Nocedal, J. (1997). Algorithm 778: L-BFGS-B: Fortran subroutines
for large-scale bound-constrained optimization. ACM Transactions on Mathematical Software

(TOMS), 23(4):550—560.

303



ProQuest Number: 32116765

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality
and completeness of the copy made available to ProQuest.

ProQuest

Part of Clarivate

Distributed by
ProQuest LLC a part of Clarivate ( 2025).
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata
associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

ProQuest LLC
789 East Eisenhower Parkway
Ann Arbor, Ml 48108 USA



	Dedication
	Acknowledgments
	Abstract
	List of Figures
	List of Appendices
	Introduction
	I Statistical estimation of optimal transport maps and beyond
	Entropic estimation of optimal transport maps
	Minimax estimation of discontinuous optimal transport maps: The semidiscrete case
	Plug-in estimation of Schrödinger bridges

	II Interlude: Theoretical properties of entropic Brenier maps
	An entropic generalization of Caffarelli’s contraction theorem via covariance inequalities
	Tight stability bounds for entropic Brenier maps

	III Optimization over the Wasserstein space
	Algorithms for mean-field variational inference via polyhedral optimization in the Wasserstein space

	Appendices
	Bibliography

