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“Tell me one good thing about those people Eliot helps.”

“I can’t.”

“I thought not.”

“It’s a secret thing,” she said, forced to argue, pleading for the argument to stop right

there.

Without any notion of how merciless he was being, the Senator pressed on. “You’re

among friends now—suppose you tell us what this great secret is.”

“The secret is that they’re human,” said Sylvia.

—Kurt Vonnegut, God Bless You, Mr. Rosewater (or, Pearls Before Swine)
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Abstract

Optimal transport maps, or Brenier maps, have become widely adopted in data-driven domains

as they provide a canonical transformation between independent datasets. While many existing

methods aim for optimal statistical performance, they often fall short in practical regimes of

interest, such as when the data is high-dimensional or when the sample size is large. In this

thesis, we analyze principled algorithms for estimating optimal transport maps in precisely these

regimes. Our �rst contribution is the introduction of the entropic Brenier map, an estimator

of the Brenier map based on entropic optimal transport, which harnesses the computational

e�ciency of Sinkhorn’s matrix scaling algorithm (Sinkhorn, 1967). We prove the �rst �nite-

sample guarantees for estimating optimal transport maps using this estimator, demonstrate

that it is minimax optimal in the semi-discrete setting, and make further connections to the

statistical estimation of Schrödinger bridge between two distributions. Next, we further derive

new theoretical properties of the entropic Brenier map, such as bounds on the Lipschitz constant

of the map as well as its stability with respect to the target measures; these results also yield new

insights for the unregularized optimal transport map. For our �nal contribution, we propose a

new optimization framework for functionals de�ned over a suitable family of optimal transport

maps. As an application, we develop the �rst gradient-based algorithm for mean-�eld variational

inference that comes with end-to-end convergence guarantees.
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1 | Introduction

Optimal transport theory, �rst conceptualized by Gaspard Monge (Monge, 1781) and later

formalized by Leonid Kantorovich (Kantorovitch, 1942), has emerged as a powerful tool to address

mathematical, statistical, and computational questions that arise over the space of probability

distributions.

In its basic form, the optimal transport problem is de�ned as follows: For two probability

measures 𝑃,𝑄 over R𝑑 , let Π(𝑃,𝑄) be the set of joint measures with left-marginal 𝑃 and right-

marginal 𝑄 , called the set of couplings. For a given cost function 𝑐 : R𝑑 × R𝑑 → R, Kantorovitch

(1942) proposed to minimize the average cost of displacement between the two marginals, resulting

in the following optimization problem:

𝑊𝑐 (𝑃,𝑄) B inf
𝜋∈Π(𝑃,𝑄)

∬
𝑐 (𝑥,𝑦) d𝜋 (𝑥,𝑦) . (1.1)

As an application, Kantorovich considers the case where 𝑃 and𝑄 are discrete probability measures,

resulting in a standard resource allocation problem in which𝑊𝑐 represents the total “work” in

displacing, say, goods from factories to stores. Perhaps most striking is that (1.1) is the �rst

instance of a linear program. For his contributions, Kantorovich emerged as a pioneer of modern

mathematical programming and was awarded the Nobel Memorial Prize in Economics in 1975.

The impact of Kantorovich’s work extends far beyond problems in resource allocation. For

instance, taking 𝑐 (𝑥,𝑦) = ‖𝑥 − 𝑦‖𝑝 (𝑝-powers of the Euclidean norm for 𝑝 ≥ 1), (1.1) becomes the

1



𝑝-Wasserstein distance

𝑊𝑝 (𝑃,𝑄) B
(

inf
𝜋∈Π(𝑃,𝑄)

∬
‖𝑥 − 𝑦‖𝑝 d𝜋 (𝑥,𝑦)

)1/𝑝
, (1.2)

which metrizes weak convergence over the space of probability measures (with �nite 𝑝-moments).

This observation has allowed theWasserstein distance to not only emerge as a powerful theoretical

tool in mathematics and statistics, but due to recent computational advances, a methodological one.

The following scenario is one application of the Wasserstein distance for statistical purposes: A

practitioner has two independent sets of data which they model as coming from two distributions,

i.e., they have independent and identically distributed samples 𝑋1, . . . , 𝑋𝑛 ∼ 𝑃 and 𝑌1, . . . , 𝑌𝑛 ∼ 𝑄 .

In order to approximate the 2-Wasserstein distance between 𝑃 and 𝑄 from samples, a naive

estimator consists in plugging the empirical measures 𝑃𝑛 and 𝑄𝑛 (with 𝑃𝑛 = 𝑛−1
∑𝑛
𝑖=1 𝛿𝑋𝑖

and

𝑄𝑛 = 𝑛
−1 ∑𝑛

𝑗=1 𝛿𝑌𝑗 ) into (1.1). This results in the following linear program over the set of doubly

stochastic matrices, where the rows and columns sum to 1/𝑛:

𝑊 2
2 (𝑃𝑛, 𝑄𝑛) = min

Π∈R𝑛×𝑛+
〈𝐶,Π〉 , s.t. Π1𝑛 = 1

𝑛
1𝑛 , Π>1𝑛 = 1

𝑛
1𝑛 , (1.3)

where 𝐶𝑖 𝑗 = ‖𝑋𝑖 − 𝑌𝑗 ‖2 is an 𝑛 × 𝑛 cost matrix. To actually compute the estimator—an aspect

of the problem which was not covered in Kantorovich’s original work—the modern statistician

has numerous algorithms at their disposal.1 For example, the Hungarian algorithm can optimize

(1.3) with a runtime complexity of roughly O(𝑛3) and a space complexity of O(𝑛2) to store the

cost matrix into memory (Peyré and Cuturi, 2019). So, the practitioner is able to compute their

estimator—but how accurate is it? Under mild assumptions, a line of work demonstrates that

estimating 𝑝-Wasserstein distances with empirical measures su�ers from what is called the curse

of dimensionality (Chizat et al., 2020; Dudley, 1969; Manole and Niles-Weed, 2024), implying the
1Indeed, it was not until later that solvers were developed to solve linear programs (e.g., the simplex method due

to Dantzig (1951)).

2



following rate of estimation for 𝑝 = 2 and 𝑑 ≥ 5:

|𝑊 2
2 (𝑃,𝑄) −𝑊 2

2 (𝑃𝑛, 𝑄𝑛) | . 𝑛−2/𝑑 . (1.4)

If the right-hand side of (1.4) is to be as small as possible, the practitioner requires a procedure

that leverages as many samples as possible. The Hungarian algorithm, with an O(𝑛2) storage

capacity (and relatively slow runtime), is not amenable to scaling the number of samples past

𝑛 � 104. Thus, it appears that the e�ectiveness of the practitioner’s estimator is sti�ed due to

computational burden.

To circumvent this issue, Marco Cuturi proposed to incorporate entropic regularization to the

Wasserstein objective in order to solve an approximation to (1.3) in the large 𝑛 regime, resulting

in the following strongly convex optimization objective

min
Π∈R𝑛×𝑛+

〈𝐶,Π〉 + 𝜀
𝑛∑︁

𝑖, 𝑗=1
Π𝑖 𝑗 log(Π𝑖 𝑗 ) , s.t. Π1𝑛 = 1𝑛 1𝑛 , Π>1𝑛 = 1𝑛 1𝑛 , (1.5)

where 𝜀 > 0 denotes the regularization strength (Cuturi, 2013). This formulation is commonly

known as entropic optimal transport, due to the entropy penalization term. To solve (1.5), Cuturi

used a matrix-scaling algorithm due to Richard Sinkhorn (Sinkhorn, 1967). Sinkhorn’s algorithm,

which consists of only a few lines of code, has several bene�ts: (1) it does not require storing the

cost matrix, which eliminates the O(𝑛2) storage complexity, (2) it can take advantage of GPU-

computation, and (3) it has a runtime of O(𝑛2/𝜀) (Altschuler et al., 2017), which is signi�cantly

faster than the Hungarian algorithm for 𝑛 large. Due to the computational prowess of Sinkhorn’s

algorithm, the procedure in (1.5) has emerged as the de facto approach to estimating optimal

transport costs, even with statistical guarantees comparable to (1.4) as long as 𝜀 = 𝜀 (𝑛) is chosen

in a particular manner (where 𝜀 (𝑛) ↘ 0 as 𝑛 ↗ ∞); see Chizat et al. (2020) for example. Thus,

from both a computational and statistical perspective, the statistician appears satiated in their
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task of estimating the optimal transport cost on the basis of samples.

1.1 Going beyond distances

Over the last few years, modern statistical learning problems have experienced a considerable

shift. The statistician is no longer merely interested in estimating distances between (empirical)

distributions, but also transformations between them. We say that 𝑇 : R𝑑 → R𝑑 lies in the set of

transport maps between 𝑃 and 𝑄 , denoted 𝑇 ∈ T (𝑃,𝑄), if for 𝑋 ∼ 𝑃 , 𝑇 (𝑋 ) ∼ 𝑄 . Transport maps

arise in wide array of problems, ranging frommachine learning and generative modeling (Arjovsky

et al., 2017; Finlay et al., 2020a; Genevay et al., 2018; Grathwohl et al., 2018; Huang et al., 2021a;

Salimans et al., 2018), computer graphics (Feydy et al., 2017; Solomon et al., 2015; 2016), economics

and statistics (Carlier et al., 2016; Chernozhukov et al., 2017; Gunsilius and Xu, 2021; Torous et al.,

2024), to the applied sciences (Bunne et al., 2022; Moriel et al., 2021; Schiebinger et al., 2019; Yang

et al., 2020). A priori, there are in�nitely many possible transport maps between two distributions.

Once more, optimal transport theory can help the practitioner.

Focusing on the squared Euclidean cost, if 𝑃 and 𝑄 have �nite second moment, the following

in�nite-dimensional but non-convex optimization problem de�nes an optimal transport map

between the two marginals:

𝑇0 B argmin
𝑇∈T (𝑃,𝑄)

∫
‖𝑥 −𝑇 (𝑥)‖2 d𝑃 (𝑥) . (1.6)

Unlike (1.1), this formulation may not always have a minimizer.2 Brenier (1991) showed that if 𝑃

has a density, then there always exists 𝑇0 = ∇𝜑0, where 𝜑0 is a convex function called a Brenier

potential; and so, (1.6) is the same as (1.2) for 𝑝 = 2. We will interchangeably refer to 𝑇0 as both

the optimal transport map and Brenier map.

Thus, a widely studied analogue to the previous statistical problem is the following: Given
2Consider moving a discrete probability measure with one atom to another with two atoms—there is no map.
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𝑋1, . . . , 𝑋𝑛 ∼ 𝑃 and 𝑌1, . . . , 𝑌𝑛 ∼ 𝑄 , how can we estimate the optimal transport map from 𝑃 to 𝑄

on the basis of samples? Importantly, for these various inference problems, the practitioner wants

to know how to transport an out-of-sample, or new data-point, from the source to the target. In

other words, the statistician wants to compute an estimator 𝑇𝑛 with good statistical properties

under the following notion of risk:

E‖𝑇𝑛 −𝑇0‖2𝐿2 (𝑃) . (1.7)

There are two (broad) families of estimators which have been studied thusfar. The �rst are

plug-in estimators at the level of the Brenier potential 𝜑0 (Divol et al., 2022; Hütter and Rigollet,

2021; Vacher et al., 2024). These works make use of the fact that optimal transport maps are

gradients of Brenier potentials, which are known to be minimizers of the following semidual

functional:

𝜑0 ∈ argmin
𝜑∈𝐿1 (𝑃)

∫
𝜑 d𝑃 +

∫
𝜑∗ d𝑄 , (1.8)

where ℎ ↦→ ℎ∗ is the convex conjugate operator. Of course, we cannot optimize over all 𝐿1(𝑃) func-

tions (nor all of 𝑃 or𝑄), so one can resort to some approximating family wherein the optimization

is tractable. Thus, the practitioner optimizes

𝜑Θ ∈ argmin
𝜑∈FΘ

∫
𝜑 d𝑃𝑛 +

∫
𝜑∗ d𝑄𝑛 , (1.9)

where FΘ can (in principle) be any class of smooth functions where (1.8) can be evaluated (and

recall 𝑃𝑛 and 𝑄𝑛 are the empirical measures). The �nal estimator for the optimal transport map is

then ∇𝜑Θ.

The presence of the conjugate operator appearing in the objective function (1.9) makes this

optimization problem quite di�cult. For instance, Hütter and Rigollet (2021) consider a (large
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parametric) family of convex functions with bounded wavelet expansion, i.e., FΘ = F𝑊 . They

prove that their estimator attains the following (near-)minimax risk

E‖∇𝜑𝑊 −𝑇0‖2𝐿2 (𝑃) .log(𝑛) 𝑛
− 2(𝑠−1)

2𝑠+𝑑−4 .

While their result is elegant from a statistical perspective, their approach is realistically intractable

for any applications where 𝑑 ≥ 3, as it requires a gridding scheme. What if FΘ is something

else? Divol et al. (2022) expand upon their work by considering general function spaces, which

can consist of (large) parametric families, quadratics, Barron spaces, Reproducing Kernel Hilbert

Spaces, and more. While they too prove minimax optimal estimation rates (and recover the

results of Hütter and Rigollet (2021) in the process), their results are underwhelming from a

computational point of view. Indeed, polynomial-type conjugate oracles (required to optimize the

semidual functional) are unlikely to exist for general function classes. Some families will allow an

e�cient gradient-descent-type scheme to compute 𝜑Θ; for instance, optimizing over 𝜆 ↦→ ∑𝐽

𝑗
𝜆 𝑗𝜑 𝑗

for a �xed, �nite collection of smooth, strongly convex functions {𝜑 𝑗 }𝐽𝑗=1. These estimating classes

are rather restrictive, and the resulting computational complexity is rather infeasible for modern

tasks involving optimal transport.

A second approach to estimating optimal transport maps consists of plug-in estimators at the

level of the densities 𝑃 and𝑄 , where we perform the estimation through a two-stage process (Deb

et al., 2021; Manole et al., 2024a). First, we use the data (recall 𝑋1, . . . , 𝑋𝑛 ∼ 𝑃 , and 𝑌1, . . . , 𝑌𝑛 ∼ 𝑄)

to construct estimators 𝑃𝑛 and 𝑄̂𝑛 of the densities that more sophisticated than empirical measures,

such as kernel density estimators (KDEs). Then, from the estimated densities, one could draw as

many samples as desired (that is, fresh samples 𝑋 ′1, . . . , 𝑋
′
𝑛 ∼ 𝑃𝑛 and also 𝑌 ′1, . . . , 𝑌

′
𝑛 ∼ 𝑄̂𝑛) and �nd

the optimal matching in the sense of (1.3). The resulting map is the �nal estimator. This approach

comes with several drawbacks, namely that sampling from high-dimensional KDEs is non-trivial,

and that, in order to bene�t from the smoothness properties of these estimators, an exorbitant
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number of samples must be drawn which exceeds the (𝑛2) storage complexity. So, despite being a

central object in many applications, most existing estimators of optimal transport maps are, while

statistically optimal, nearly impossible to compute when 𝑑 � 1 or when 𝑛 � 103.

Collectively, these observations motivate the following question which drives our thesis:

How dowe develop procedures for estimating optimal transport maps which enjoy favorable

computational and statistical guarantees?

1.2 Contributions of this thesis

We now provide a chapter-by-chapter summary of this thesis.

Statistical estimation of optimal transport maps and beyond

Chapter 2: Entropic estimation of optimal transport maps

In this �rst chapter, we develop and study a tractable, scalable non-parametric estimator of

the optimal transport map based on the entropic optimal transport problem

OT𝜀 (𝑃,𝑄) B min
𝜋∈Π(𝑃,𝑄)

∬
‖𝑥 − 𝑦‖2 d𝜋 (𝑥,𝑦) + 𝜀 KL(𝜋 ‖𝑃 ⊗ 𝑄) , (1.10)

where KL(·‖·) is the Kullback–Leibler divergence, or relative entropy, between 𝜋 and the product

measure; the minimizer is called the optimal entropic coupling, denoted 𝜋𝜀 . (Note that (1.10) is the

population analogue to (1.5).)

Our �rst contribution is an entropic analogue of Brenier’s theorem. We show that our

estimator—the barycentric projection of the optimal entropic coupling, denoted 𝑇𝜀 (𝑥) = E𝜋𝜀 [𝑌 |𝑋 =

𝑥]—can be characterized as a gradient �eld of entropic potentials. Moreover, on the basis of sam-

ples, our estimator is easy to compute using Sinkhorn’s algorithm, and extends to out-of-sample
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points.

As a result, unlike current approaches for map estimation, which are slow to evaluate when

the dimension or number of samples is large, our approach is parallelizable and extremely e�cient

even for massive data sets. Under smoothness assumptions on the optimal map, we show that our

estimator enjoys comparable statistical performance to other estimators in the literature, but with

much lower computational cost.

We showcase the e�cacy of our proposed estimator through numerical examples, even ones

not explicitly covered by our assumptions. By virtue of Lepski’s method, we propose a modi�ed

version of our estimator that is adaptive to the smoothness of the underlying optimal transport

map. Our proofs are based on a modi�ed duality principle for entropic optimal transport and on a

method for approximating optimal entropic plans due to Pal (2024).

It is worth mentioning that in the years since we developed this estimator, there has been a

�urry of follow-up works and applications surrounding the entropic Brenier map in both statistical

and theoretical circles. For instance, in the case of 𝜀 > 0, the community has established various

central limit theorems (Goldfeld et al., 2024a;b; Sadhu et al., 2024; 2025) for the entropic Brenier

map, estimators for di�erent costs or applications (Baptista et al., 2024; Cuturi et al., 2022; Klein

et al., 2024; Masud et al., 2023; Werenski et al., 2023), conceived more practical estimators (Kassraie

et al., 2024), made use of them in generative modeling (Haviv et al., 2024), and more.

This chapter is based o�

“Entropic estimation of optimal transport maps”, in submission (2021), with Jonathan

Niles-Weed.
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Chapter 3: Minimax estimation of discontinuous optimal transport maps:

The semi-discrete case

The analysis of the previous chapter for estimating optimal transport maps from data (and

essentially all prior work, such as Deb et al. (2021); Divol et al. (2022); Hütter and Rigollet (2021);

Manole et al. (2024a); Vacher et al. (2024)) heavily relies on the assumption that the underlying

optimal transport map is Lipschitz. In particular, this assumption excludes any examples where

the Brenier map may be discontinuous (which is likely the case in real-world scenarios, in view

of the so-called manifold hypothesis (Brown et al., 2022)). As a �rst step towards developing

estimation procedures for discontinuous maps, we now consider the important special case where

the data distribution 𝑄 is a discrete measure supported on a �nite number of points in R𝑑 . We

revisit the entropic Brenier map estimator from Chapter 2 and demonstrate that it converges

at the minimax-optimal rate of 𝑛−1/2 in the semidiscrete case, where the rate is independent of

dimension. We stress that other standard map estimation techniques both lack �nite-sample

guarantees in this setting and provably su�er from the curse of dimensionality. We con�rm these

results in numerical experiments, and provide experiments for other settings, not covered by our

theory, which indicate that the entropic estimator is a promising methodology in the general

discontinuous setting.

The contents of this chapter follow from

“Minimax estimation of discontinuous optimal transport maps: The semi-discrete

case”, in the 40th International Conference on Machine Learning (ICML 2023), with

Vincent Divol and Jonathan Niles-Weed

Chapter 4: Plug-in estimation of Schrödinger bridges

In this chapter, we consider another family of transport maps based on dynamic transport.

These methods (such as �ow matching (Albergo and Vanden-Eijnden, 2022; Lipman et al., 2022;
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Liu et al., 2022b) and denoising di�usion probabilistic models (Song et al., 2020)) have quickly

emerged as powerful approaches to perform generative modeling on complex, high-dimensional

distributions. Among this class of algorithms is the Schrödinger bridge between two distributions

(Léonard, 2014; Schrödinger, 1932), which is essentially the “optimal” di�usion path between two

probability measures.

We propose and analyze an estimator for the Schrödinger bridge between two probability

distributions. Unlike existing approaches (De Bortoli et al., 2021), our method does not require

iteratively simulating forward and backward di�usions or training neural networks to �t unknown

drifts. Instead, we show that the potentials obtained from solving the static entropic optimal

transport problem between the source and target samples can be modi�ed to yield a natural

plug-in estimator of the time-dependent drift that de�nes the bridge between two measures.

Under minimal assumptions, we show that our proposal, which we call the Sinkhorn bridge,

provably estimates the Schrödinger bridge with a rate of convergence that depends on the intrinsic

dimensionality of the target measure. Our approach combines results from the areas of sampling,

and theoretical and statistical entropic optimal transport.

This chapter is based on the following article

“Plug-in estimation of Schrödinger bridges”, to appear in SIAM Journal of Mathematics

and Data Science (2025), with Jonathan Niles-Weed.

Interlude: Theoretical properties of entropic Brenier maps

A major contribution of this thesis is the introduction of the entropic transport map, or entropic

Brenier map, from Chapter 2:

𝑥 ↦→ 𝑇𝜀 (𝑥) B E𝜋𝜀 [𝑌 |𝑋 = 𝑥] ,
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where recall 𝜋𝜀 is the optimal entropic coupling between two measures 𝑃 and 𝑄 . Unlike the

optimal transport map, the entropic Brenier map always uniquely exists under mild conditions

(e.g., if the marginals have �nite second moment), is de�ned for all 𝑥 ∈ R𝑑 , and is automatically

analytic in the interior of the domain of the source measure.

In this part of the thesis, we ask how we can exploit this newfound regularity of the entropic

Brenier map, and simultaneously address theoretical questions pertaining to its unregularized

counterpart (in the limit 𝜀 ↘ 0 regime).

Chapter 5: An entropic generalization of Caffarelli’s contraction

theorem via covariance ineqalities

Many applications of the optimal transport map hinge on its regularity properties, such as its

Lipschitz constant. Though, there are only a few instances when the Lipschitz constant of ∇𝜑0

can be precisely gleaned from the source and target measures. One such result is due to Ca�arelli

(2000): If 𝑃 ∝ exp(−𝑉 ) and 𝑄 ∝ exp(−𝑊 ) with ∇2𝑉 � 𝛽𝑉 𝐼 and ∇2𝑊 � 𝛼𝑊 𝐼 � 0, then

‖∇2𝜑0‖op ≤
√︁
𝛽𝑉 /𝛼𝑊 . (1.11)

These types of Lipschitz estimates for transport maps have their use in transferring functional

inequalities. As an example, suppose 𝑃 satis�es what is known as a Poincaré inequality: there

exists a constant C𝑃 such that for any smooth function 𝑓

Var𝑃 (𝑓 ) ≤ C𝑃E𝑋∼𝑃 ‖∇𝑓 (𝑋 )‖2 .

If we write (∇𝜑0)♯𝑃 = 𝑄 , with ∇𝜑0 uniformly 𝐿-Lipschitz, then one can easily show that𝑄 satis�es

a Poincaré inequality with constant C𝑄 ≤ 𝐿2C𝑃 .

The usual proof of Ca�arelli’s contraction theorem follows PDE-style arguments; see the
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following survey by Kolesnikov (2011). In this chapter, we provide another (shorter) proof, based

on the entropic Brenier map. We show that, under the usual Ca�arelli assumptions stated above,

‖∇2𝜑𝜀 ‖op ≤
1
2
(√︃

4𝛽𝑉 /𝛼𝑊 + 𝛽2𝑉 𝜀2 − 𝛽𝑉 𝜀
)
. (1.12)

The bound in (1.12) is tight as it is realized by Gaussians. Our proof of this result is a few lines

and relies on two twin covariance inequalities: the Brascamp–Lieb inequality and Cramér–Rao

inequalities. Taking the 𝜀 ↘ 0 limit, we recover Ca�arelli’s seminal result; to our knowledge, this

is the shortest proof of this result. As an application, we prove a generalization of Ca�arelli’s

statement a result due to Valdimarsson.

It is worth mentioning that in the years since our result was �rst made available, there have

been numerous extensions. Conforti (2024) obtains results of a similar �avor to (1.12) but under

weaker assumptions than strong log-concavity (though, they are unable to take the 𝜀 ↘ 0 limit

in these cases) using techniques from stochastic calculus. More recently, Gozlan and Sylvestre

(2025) have strengthened our technique to encompass more general conditions on the measures

(for instance, they prove global Hölder estimates instead of Lipschitz estimates, or estimates when

𝑃 is Cauchy), and a further improvement of our generalization of Valdimarsson’s result.

The content of this chapter is based o� the following article

“An entropic generalization of Ca�arelli’s contraction theorem via covariance inequal-

ities”, in Comptes Rendues Mathématique (2023), with Sinho Chewi.

Chapter 6: Tight stability bounds for entropic Brenier maps

We now turn our attention to another long-standing question in the optimal transport com-

munity: for a �xed source measure 𝜌 , is the mapping 𝜇 ↦→ 𝑇
𝜇

0 Hölder continuous with respect

to the 2-Wasserstein distance? In other words, do there exist constants 𝐶, 𝛽 > 0 such that for all
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probability measures 𝜇, 𝜈 with �nite second moments,

‖𝑇 𝜇0 −𝑇
𝜈
0 ‖𝐿2 (𝜌) ≤ 𝐶𝑊

𝛽

2 (𝜇, 𝜈) ? (1.13)

Since the inequality𝑊2(𝜇, 𝜈) ≤ ‖𝑇 𝜇0 −𝑇 𝜈0 ‖𝐿2 (𝜌) always holds, (1.13) would imply that the mapping

𝜇 ↦→ 𝑇
𝜇

0 is a bi-Hölder embedding of the Wasserstein space into 𝐿2(𝜌). We call such an inequality

a stability bound. A result of this type was �rst proven in the article by Gigli (2011), and has

since received much attention in the optimal transport community (Delalande and Mérigot, 2023;

Letrouit and Mérigot, 2024; Manole et al., 2024a; Mérigot et al., 2020).

The goal of this chapter is two-fold. First, we prove analogous stability results for the embed-

ding given by entropic Brenier maps i.e., 𝜇 ↦→ 𝑇
𝜇
𝜀 . A second, more ambitious question, is to see if

stability bounds for the entropic Brenier map can yield new results for Brenier maps (much like in

the Ca�arelli setting). To this end, a corollary of our main result is the following stability bound

for entropic Brenier maps between 𝜌, 𝜇, 𝜈 which are assumed to lie in 𝐵(0, 𝑅):

‖𝑇 𝜇𝜀 −𝑇 𝜈𝜀 ‖𝐿2 (𝜌) ≤ (1 + 2𝑅2/𝜀)𝑊2(𝜇, 𝜈) ,

Moreover, we give an example which demonstrates that, in generality, this result is tight. Armed

with this result, we then prove the following stability bound for the unregularized Brenier maps

‖𝑇 𝜇0 −𝑇
𝜈
0 ‖𝐿2 (𝜌) .𝑊

1/3
2 (𝜇, 𝜈) ,

where we restrict 𝜇, 𝜈 to be �nitely supported in a ball of radius 𝑅 with lower-bounded weights.

The content of this chapter is based o� the following article

“Tight stability for entropic Brenier maps”, in International Mathematics Research

Notices (2025), with Vincent Divol and Jonathan Niles-Weed
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Optimization over the Wasserstein space

Chapter 7: Algorithms for mean-field variational inference via

polyhedral optimization in the Wasserstein space

In this �nal chapter, we study optimization problems that take place over (subsets of) the

Wasserstein space: the metric space of (absolutely continuous) probability measures over R𝑑

endowed with the 2-Wasserstein distance.

First, we develop a theory of �nite-dimensional polyhedral subsets over the Wasserstein space

and optimization of functionals over them via �rst-order methods. As an application of our theory,

we turn to a widely studied in�nite-dimensional optimization problem over the space of probability

distributions: mean-�eld variational inference (MFVI) (Blei et al., 2017; Wainwright and Jordan,

2008). In MFVI, the practitioner seeks to approximate an unnormalized posterior density 𝜋 over

R𝑑 by the closest product measure in the sense of the Kullback–Leibler divergence:

𝜋★ = argmin
𝜇∈P(R)⊗𝑑

KL(𝜇‖𝜋) .

When 𝜋 is strongly log-concave and log-smooth, we provide (1) approximation rates certifying

that 𝜋★ is close to the minimizer 𝜋★� of the KL divergence over a polyhedral set P�,

𝜋★� = argmin
𝜇∈P�

KL(𝜇‖𝜋) .

and (2) an algorithm for minimizing KL(·‖𝜋) over P� based on accelerated gradient descent over

R𝑑 . As a byproduct of our analysis, we obtain the �rst end-to-end analysis for gradient-based

algorithms for MFVI. We also discuss the implementation of our algorithm, with code available

here.

These results are from
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“Algorithms for mean-�eld variational inference via polyhedral optimization in the

Wasserstein space”, to appear in Foundations of Computational Mathematics (2025+)

and a preliminary abstract was accepted to the Conference on Learning Theory (COLT

2024), with Roger Jiang and Sinho Chewi.

Additional contributions

I had the (immense!) pleasure of taking part of many other collaborations during my PhD

which, in the interest of preserving my sanity, did not make it into this thesis:

• “Wasserstein �ow matching: Generative modeling over families of distributions” in the

Fourty-second International Conference on Machine Learning (ICML 2025), with Doron Haviv,

Dana Pe’er, and Brandon Amos;

• “Conditional simulation via entropic optimal transport: Toward non-parametric estimation

of conditional Brenier maps”, in the 28th International Conference on Arti�cial Intelligence

and Statistics (AISTATS 2025), with Ricardo Baptista, Michael Brennan, Youssef Marzouk,

and Jonathan Niles-Weed;

• “Estimation of optimal transport maps in general function spaces”, to appear in the Annals

of Statistics (2025), with Vincent Divol and Jonathan Niles-Weed;

• “Progressive entropic optimal transport solvers”, in the 38th Conference on Neural Information

Processing Systems (NeurIPS 2024), with Parnian Kassraie, James Thornton, Jonathan Niles-

Weed, and Marco Cuturi;

• “Learning costs for structured Monge displacements”, in the 38th Conference on Neural

Information Processing Systems (NeurIPS 2024), with Michal Klein, Pierre Ablin, Eugene

Ndiaye, Jonathan Niles-Weed, and Marco Cuturi;
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• “Neural optimal transport with Lagrangian costs”, in the 40th International Conference on

Uncertainty in Arti�cial Intelligence (UAI 2024), with Carles Domingo-Enrich, Ricky Tian-Qi

Chen, and Brandon Amos;

• “Multisample �ow matching: Straightening �ows with minibatch couplings”, in the 40th

International Conference on Machine Learning (ICML 2023), with Heli Ben-Hamu, Carles

Domingo-Enrich, Brandon Amos, Yaron Lipman, and Ricky Tian-Qi Chen;

• “An explicit expansion of the Kullback–Leibler divergence along its Fisher–Rao gradient

�ow”, in Transactions on Machine Learning Research (2023), with Carles Domingo-Enrich;

• “Debiaser beware: Pitfalls of centering regularized transport maps”, in the 39th International

Conference on Machine Learning (ICML 2022), with Jonathan Niles-Weed and Marco Cuturi.

All remaining errors are my own.

1.3 Background

We henceforth denote the space of probability measures with �nite second moments by P2(R𝑑).

The class of such measures with densities (with respect to Lebesgue measure) are denoted by

P2,ac(R𝑑). The support of a probability measure 𝜇 is given by supp(𝜇).

1.3.1 Optimal transport for the qadratic cost

For 𝑃,𝑄 ∈ P2(R𝑑), we de�ne the set of couplings between 𝑃 and 𝑄 by

Π(𝑃,𝑄) B {𝜋 ∈ P(R𝑑 × R𝑑) | 𝜋 (𝐴 × R𝑑) = 𝑃 (𝐴), 𝜋 (R𝑑 ×𝐴) = 𝑄 (𝐴)} . (1.14)

The optimal transport distance under the squared-Euclidean cost, or the 2-Wasserstein distance,

between 𝑃 (the source measure) and𝑄 (the target measure) is given by the following optimization
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problem

1
2𝑊

2
2 (𝑃,𝑄) B inf

𝜋∈Π(𝑃,𝑄)

∬
1
2 ‖𝑥 − 𝑦‖

2 d𝜋 (𝑥,𝑦) . (1.15)

This optimization problem is commonly known as the Kantorovich formulation of optimal trans-

port (Kantorovitch, 1942). As 𝑃,𝑄 are assumed to have �nite-second moments, a minimizer to

(1.15) is always guaranteed to exist (Villani, 2009). We call this minimizer the optimal (transport)

coupling between 𝑃 and𝑄 , and is denoted by 𝜋0. Though, importantly, uniqueness of the minimizer

cannot be asserted from the sole assumption that the marginals have �nite-second moments.

It is natural to view view (1.15) as an convex program (albeit in�nite-dimensional). Thus, we

can obtain a “dual” optimization problem,

1
2𝑊

2
2 (𝑃,𝑄) = sup

(𝑓 ,𝑔)∈F
D𝑃𝑄

0 (𝑓 , 𝑔) , (1.16)

where F B {(𝑓 , 𝑔) : 𝑓 ∈ 𝐿1(𝑃), 𝑔 ∈ 𝐿1(𝑄)}, and

D𝑃𝑄

0 (𝑓 , 𝑔) B
∫

𝑓 d𝑃 +
∫

𝑔 d𝑄 s.t. 𝑓 (𝑥) + 𝑔(𝑦) ≤ 1
2 ‖𝑥 − 𝑦‖

2 ,

the constraint holds 𝑃 ⊗ 𝑄 almost everywhere. If the marginals have �nite-second moments, then

there exists a maximizing pair of Kantorovich potentials (𝑓0, 𝑔0) to (1.16) (see Villani, 2009).3

We require a �nal formulation of the 2-Wasserstein distance based on transport maps, which

are vector-valued functions𝑇 : R𝑑 → R𝑑 with𝑇 ∈ T (𝑃,𝑄) such that they satisfy the pushforward

property.4 The optimal transport map between 𝑃 and𝑄 is the solution to the following optimization
3These potentials are de�ned up to a translation: for 𝑐 ∈ R, (𝑓0 + 𝑐, 𝑔0 − 𝑐) gives the same objective value in (1.16)

as the original pair (𝑓0, 𝑔0).
4We say that 𝑇 ∈ T (𝑃,𝑄) if for 𝑋 ∼ 𝑃 , then 𝑇 (𝑋 ) ∼ 𝑄
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problem, called the Monge problem (Monge, 1781)

𝑇0 B argmin
𝑇∈T (𝑃,𝑄)

∫
1
2 ‖𝑥 −𝑇 (𝑥)‖

2 d𝑃 (𝑥) . (1.17)

In contrast to the primal Kantorovich formulation of the 2-Wasserstein distance (recall (1.15)): (1)

(1.17) is a non-convex optimization problem and (2) a minimizer 𝑇0 may not even be de�ned for

arbitrary measures with �nite second moment, whereas 𝜋0 will at least exist (though possibly not

unique).

The following theorem, due to Brenier (1991), uni�es the solutions to the Kantorovich primal

and dual problems, and the Monge problem by assuming that the source measure has a density.

Theorem 1.1 (Brenier’s theorem). For 𝑃 ∈ P2,ac(R𝑑) and𝑄 ∈ P(R𝑑), let (𝑓0, 𝑔0) denote the optimal

Kantorovich potentials which solve (1.16), and de�ne

𝜑0 B
1
2 ‖ · ‖

2 − 𝑓0 , 𝜓0 B
1
2 ‖ · ‖

2 − 𝑔0 , (1.18)

to be corresponding Brenier potentials. Then the (𝑃-a.e. unique) optimal transport map 𝑇0 between

𝑃 and 𝑄 exists (𝑃-a.e.) and is given by the gradient of a convex function 𝜑0. In other words, 𝑇0

minimizes (1.17) and is given by

𝑇0 B ∇𝜑0 , (1.19)

Moreover, we can write the optimal plan as d𝜋0(𝑥,𝑦) = d𝑃 (𝑥)𝛿{𝑇0 (𝑥)} (𝑦).

If 𝑄 also has a density, we can similarly write the optimal transport map from 𝑄 to 𝑃 (or the

inverse optimal transport map) as

(𝑇0)−1 = ∇𝜓0 , (1.20)
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which holds𝑄-a.e., and𝜓0 is also convex. Analogously, the optimal transport coupling can be expressed

as d𝜋0(𝑥,𝑦) = d𝑄 (𝑦)𝛿{(𝑇0)−1 (𝑦)} (𝑥).

From their de�nition and (1.16), it can be shown that the (forward) Brenier potential 𝜑0

minimizes the following version of the Kantorovich dual objective

1
2𝑊

2
2 (𝑃,𝑄) = 1

2𝑀2(𝑃 +𝑄) − min
𝜑∈𝐿1 (𝑃)

S𝑃𝑄0 (𝜑)

B 1
2𝑀2(𝑃 +𝑄) −

(
min

𝜑∈𝐿1 (𝑃)

∫
𝜑 d𝑃 +

∫
𝜑∗ d𝑄

)
,

(1.21)

where 𝜑∗ is the convex conjugate operator. In fact, 𝜑0 and𝜓0 are convex conjugates of one another

in the sense that

𝜑0(𝑥) = sup
𝑦

{〈𝑥,𝑦〉 −𝜓0(𝑦)} , 𝜓0(𝑦) = sup
𝑥

{〈𝑥,𝑦〉 − 𝜑0(𝑥)} . (1.22)

Thus, when all quantities are well-de�ned, we can write ∇𝜓0 = ∇𝜑∗0 = (∇𝜑0)−1 by standard results

in convex analysis.

1.3.2 Entropic optimal transport for the qadratic cost

Let 𝑃,𝑄 ∈ P2(R𝑑). For a �xed parameter 𝜀 > 0, the entropic optimal transport problem between

𝑃 and 𝑄 is

OT𝜀 (𝑃,𝑄) B inf
𝜋∈Π(𝑃,𝑄)

∬
1
2 ‖𝑥 − 𝑦‖

2 d𝜋 (𝑥,𝑦) + 𝜀KL(𝜋 ‖𝑃 ⊗ 𝑄) , (1.23)

where we de�ne the Kullback–Leibler divergence as

KL(𝜋 ‖𝑃 ⊗ 𝑄) B
∫

log
( d𝜋 (𝑥,𝑦)
d𝑃 (𝑥) d𝑄 (𝑦)

)
d𝜋 (𝑥,𝑦) ,
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whenever 𝜋 admits a density with respect to 𝑃 ⊗ 𝑄 , and +∞ otherwise. Note that when 𝜀 = 0,

(1.23) reduces to (1.15). The entropic optimal transport problem was introduced to the machine

learning community by Cuturi (2013) as a numerical scheme for approximating the 2-Wasserstein

distance on the basis of samples.

An important consequence of the added regularization is that (1.23) is a strictly convex problem,

and thus always admits a unique minimizer whenever 𝑃 and 𝑄 have �nite second moments

(Genevay, 2019). We call this minimizer the optimal entropic plan, written 𝜋𝜀 ∈ Π(𝑃,𝑄).

As with the unregularized Kantorovich problem (1.16), a dual formulation of (1.23) exists

OT𝜀 (𝑃,𝑄) = sup
(𝑓 ,𝑔)∈F

D𝑃𝑄
𝜀 (𝑓 , 𝑔) (1.24)

where

D𝑃𝑄
𝜀 (𝑓 , 𝑔) B

∫
𝑓 d𝑃 +

∫
𝑔 d𝑄 − 𝜀

∬ (
𝑒
(𝑓 (𝑥)+𝑔(𝑦)−12 ‖𝑥−𝑦‖

2)/𝜀 − 1
)
d𝑃 (𝑥) d𝑄 (𝑦) . (1.25)

Interestingly, as 𝜀 → 0, we see that D𝑃𝑄
𝜀 converges to the objective in (1.16), where the limit of

the third term above becomes the hard constraint on the potentials. As with the primal problem,

the assumption that 𝑃 and 𝑄 have �nite second moments ensures that there exists a unique

maximizing pair (𝑓𝜀, 𝑔𝜀) to (1.24), which we call entropic Kantorovich potentials; see Genevay

(2019); Nutz (2021) for more details on this point. As with the maximizers to (1.16), these functions

are de�ned up to a constant translation.

The primal and dual optima are intimately connected through the following relationship due

to Csiszár (1975):

d𝜋𝜀 (𝑥,𝑦) = exp
( 𝑓𝜀 (𝑥) + 𝑔𝜀 (𝑦) − 1

2 ‖𝑥 − 𝑦‖
2

𝜀

)
d𝑃 (𝑥) d𝑄 (𝑦) . (1.26)

Finally, we mention that, although 𝑓𝜀 and 𝑔𝜀 are only a priori de�ned almost everywhere on the
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support of 𝑃 and 𝑄 , they can be extended to all of R𝑑 (see Mena and Niles-Weed (2019); Nutz and

Wiesel (2021)) via the optimality conditions

1 =
∫

𝑒 (𝑓𝜀 (𝑥)+𝑔𝜀 (𝑦)−‖𝑥−𝑦‖
2/2)/𝜀 d𝑄 (𝑦) ∀𝑥 ∈ R𝑑 , (1.27)

1 =
∫

𝑒 (𝑓𝜀 (𝑥)+𝑔𝜀 (𝑦)−‖𝑥−𝑦‖
2/2)/𝜀 d𝑃 (𝑥) ∀𝑦 ∈ R𝑑 . (1.28)

Since (𝑓𝜀, 𝑔𝜀) are only unique up to adding a constant to 𝑓𝜀 and subtracting the same constant

from 𝑔𝜀 . Unless speci�ed otherwise, we will always assume the normalization convention∫
𝑓𝜀 d𝑃 =

∫
𝑔𝜀 d𝑄 .

1.3.3 Other notation

Basic definitions. The square-root of the determinant of a matrix is 𝐽 (·) :=
√︁
det(·). For 𝑥 ∈ R𝑑

and 𝑟 > 0, we write 𝐵𝑟 (𝑥) for the Euclidean ball of radius 𝑟 centered at 𝑥 . We denote the maximum

and minimum of 𝑎 and 𝑏 by 𝑎 ∨ 𝑏 and 𝑎 ∧ 𝑏, respectively. We use the symbols 𝑐 and 𝐶 to denote

positive constants whose value may change from line to line, and write 𝑎 . 𝑏 and 𝑎 � 𝑏 if there

exists constants 𝑐,𝐶 > 0 such that 𝑎 ≤ 𝐶𝑏 and 𝑐𝑏 ≤ 𝑎 ≤ 𝐶𝑏, respectively.

Function classes. For 𝛼 ≥ 0 and a closed set Ω, we write ℎ ∈ C𝛼 (Ω) if there exists an open

set𝑈 ⊇ Ω and a function 𝑔 : 𝑈 → R such that 𝑔 |Ω = ℎ and such that 𝑔 possesses b𝛼c continuous

derivatives and whose b𝛼cth derivative is (𝛼 − b𝛼c)-Hölder smooth.

We write third total derivative of 𝑓 at 𝑥 in the direction 𝑦 ∈ R𝑑 as

𝑑3𝑓 (𝑥 ;𝑦) :=
𝑑∑︁

𝑖, 𝑗,𝑘=1

𝜕3𝑓 (𝑥)
𝜕𝑦𝑖𝜕𝑦 𝑗 𝜕𝑦𝑘

𝑦𝑖𝑦 𝑗𝑦𝑘 .

Space of probability measures and divergences. For a function 𝑓 and a probability measure 𝜌 ,

we write ‖ 𝑓 ‖2
𝐿2 (𝜌) B E𝑋∼𝜌 ‖ 𝑓 (𝑋 )‖

2 . Similarly, we write Var𝜌 (𝑓 ) B E𝑋∼𝜌 [(𝑓 (𝑋 ) −E𝑋∼𝜌 [𝑓 (𝑋 )])2]

21



for the variance of 𝑓 with respect to 𝜌 .

A probability measure is called 𝜎2-subGaussian if for some 𝜎2 > 0,

E exp(𝜆>(𝑌 − E𝑌 )) ≤ exp(‖𝜆‖2𝜎2/2) , for all 𝜆 ∈ R𝑑 .

If a measure 𝜌 possesses a density with respect to the Lebesgue measure, we denote its

di�erential entropy byH(𝜌) =
∫
log(d𝜌) d𝜌 .

We will use several divergences throughout this thesis apart from the Kullback–Leibler diver-

gence. For instance, the total variation distance, as well as the 𝜒-squared divergence and (squared)

Hellinger distance, between two probability measures 𝑃 � 𝑄 are given by

TV(𝑃,𝑄) = sup
𝐴∈B(R𝑑 )

|𝑃 (𝐴) −𝑄 (𝐴) | , (1.29)

𝜒2(𝑃 ‖𝑄) =
∫ (

1 − d𝑃
d𝑄

)2
d𝑄 , (1.30)

H2(𝑃,𝑄) = 1
2

∫ (√
d𝑃 −

√︁
d𝑄

)2
. (1.31)
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Part I

Statistical estimation of optimal transport

maps and beyond
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2 | Entropic estimation of optimal

transport maps

2.1 Introduction

The goal of optimal transport is to �nd a map between two probability distributions that

minimizes the squared Euclidean transportation cost. This formulation leads to what is known as

the Monge problem (Monge, 1781):

min
𝑇∈T (𝑃,𝑄)

∫
‖𝑥 −𝑇 (𝑥)‖2 d𝑃 (𝑥) , (2.1)

where T (𝑃,𝑄) is the family of admissible transport maps from 𝑃 to 𝑄 , i.e., for 𝑋 ∼ 𝑃 , 𝑇 (𝑋 ) ∼

𝑄 . Due to their versatility and mathematical simplicity, optimal transport maps have found a

wide range of uses in statistics and machine learning, (Arjovsky et al., 2017; Carlier et al., 2016;

Chernozhukov et al., 2017; Courty et al., 2014; 2017; Finlay et al., 2020a; Huang et al., 2021a;

Makkuva et al., 2020; Onken et al., 2021; Wang et al., 2010), computer graphics (Feydy et al., 2017;

Solomon et al., 2015; 2016), and computational biology (Schiebinger et al., 2019; Yang et al., 2020),

among other �elds.

Of course, in these applied works, rarely are 𝑃 and𝑄 known exactly but rather the practitioner

deals with samples 𝑋1, . . . , 𝑋𝑛 ∼ 𝑃 and 𝑌1, . . . , 𝑌𝑛 ∼ 𝑄 = (𝑇0)♯𝑃 , and the goal is to estimate the
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optimal transport map 𝑇0 on the basis of the data. Hütter and Rigollet (2021) �rst investigated this

question and proposed an estimator 𝑇𝑛 which achieves

E‖𝑇𝑛 −𝑇0‖2𝐿2 (𝑃) . 𝑛
− 2𝛼

2𝛼−2+𝑑 log3(𝑛) , (2.2)

if 𝑇0 ∈ C𝛼 , 𝑃 and 𝑄 are compactly supported, and satisfy additional technical assumptions.

Moreover, they showed that the rate in (2.2) is minimax optimal up to logarithmic factors. Though

statistically optimal, their estimator is impractical to compute if 𝑑 > 3, since it relies on a

gridding scheme whose computational cost scales exponentially in the dimension. Recently, Deb

et al. (2021) and Manole et al. (2024a) proposed plugin estimators that also achieve the minimax

estimation rate. Though simpler to compute than the estimator of Hütter and Rigollet (2021), these

estimators require at least 𝑂 (𝑛3) time to compute and cannot easily be parallelized, making them

an unfavorable choice when the number of samples is large.

In this chapter, we adopt a di�erent approach by leveraging recent advances in computational

optimal transport based on entropic regularization (Peyré and Cuturi, 2019), which replaces (2.1) by

inf
𝜋∈Π(𝑃,𝑄)

∬
1
2
‖𝑥 − 𝑦‖2 d𝜋 (𝑥,𝑦) + 𝜀 KL(𝜋 ‖𝑃 ⊗ 𝑄) , (2.3)

where Π(𝑃,𝑄) denotes the set of couplings between 𝑃 and 𝑄 and KL(·‖·) denotes the Kullback–

Leibler divergence. This approach, which was popularized by Cuturi (2013), has been instrumental

in the adoption of optimal transport methods in the machine learning community because it leads

to a problem that can be solved by Sinkhorn’s algorithm Sinkhorn (1967), whose time complexity

scales quadratically in the number of samples (Altschuler et al., 2017). Moreover, Sinkhorn’s al-

gorithm is amenable to parallel implementation on GPUs, making it very attractive for large-scale

problems (Altschuler et al., 2019; Feydy et al., 2020; 2019; Genevay et al., 2018).
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2.1.1 Contributions

The e�ciency and popularity of Sinkhorn’s algorithm raise the tantalizing question of whether

it is possible to use this practical technique to develop estimators of optimal transport maps with

convergence guarantees. We develop such a procedure.

Under suitable technical assumptions on 𝑃 and 𝑄 , we show that our estimator 𝑇 enjoys the

rate

E‖𝑇 −𝑇0‖2𝐿2 (𝑃) . 𝑛
− (𝛼+1)

2(𝑑+𝛼+1) log𝑛

if the inverse map 𝑇 −10 is C𝛼 and 𝛼 ∈ (1, 3]. This rate is worse than that in (2.2), but our empirical

results show that our estimator nevertheless outperforms all other estimators proposed in the

literature in terms of both computational and statistical performance. The estimator we analyze

was originally suggested by Seguy et al. (2018), who also showed consistency of the entropic plan

in the large-𝑛 limit if the regularization parameter is taken to zero su�ciently fast. However, to

our knowledge, our work o�ers the �rst �nite-sample convergence guarantees for this proposal.

Our estimator is de�ned as the barycentric projection (Ambrosio et al., 2008) of the entropic

optimal coupling between the empirical measures arising from the samples. The barycentric

projection has been leveraged in other works on map estimation as a straightforward way of

obtaining a function from a coupling between two probability measures (Deb et al., 2021). However,

in the context of entropic optimal transport, this operation has a more canonical interpretation in

light of Brenier’s theorem (Brenier, 1991). Brenier’s result says that the optimal transport map

𝑇0 = ∇𝜑0 can be realized as the gradient of the function which solves the dual problem to (2.1).

We show in Proposition 2.3 that the barycentric projection of the entropic optimal coupling

is the gradient of the function which solves the dual problem to (2.3). In addition to providing

a connection to the classical theory of optimal transport, this observation provides a canonical

extension 𝑇 to out-of-sample points. Moreover, since Sinkhorn’s algorithm computes solutions to

the dual of (2.3), this interpretation shows that computing 𝑇 is no more costly than solving (2.3).
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Moreover, we propose a variant of our estimator that is adaptive in the sense that the smoothness

parameter need not be explicitly known to the practitioner.

We analyze𝑇 by employing a strategy pioneered by Pal (2024) for understanding the structure

of the optimal entropic coupling. This technique compares the solution to (2.3) to a coupling

whose conditional laws are Gaussian, with mean and covariance characterized by the solution

to (1.17). To leverage this comparison, we employ a duality principle in conjuction with an upper

bound reminiscent of the short-time expansions of the value of (2.3) developed by Conforti and

Tamanini (2021) and Chizat et al. (2020) (see Theorem 2.2).

2.1.2 Notation

A constant is a quantity whose value may depend on the smoothness parameters appearing in

assumptions (E1) to (E3), the set Ω, and the dimension, but on no other quantities. We denote the

maximum and minimum of 𝑎 and 𝑏 by 𝑎 ∨ 𝑏 and 𝑎 ∧ 𝑏, respectively. We use the symbols 𝑐 and 𝐶

to denote positive constants whose value may change from line to line, and write 𝑎 . 𝑏 and 𝑎 � 𝑏

if there exists constants 𝑐,𝐶 > 0 such that 𝑎 ≤ 𝐶𝑏 and 𝑐𝑏 ≤ 𝑎 ≤ 𝐶𝑏, respectively.

Our proofs based on empirical process theory will consider suprema over uncountable col-

lections of random variables; however, since all the processes in question are separable, these

suprema are still measurable (Giné and Nickl, 2021, Section 2.1).

2.1.3 Remaining background on entropic optimal transport

Throughout this chapter, we make use of the existing notation and conventions from Sec-

tion 1.3.2. However, our proofs rely on a modi�ed version of the duality relation given in (1.24),

in which the supremum is taken over a larger set of functions. Though it is a straightforward

consequence of Fenchel’s inequality, we have not encountered this statement explicitly in the

literature, so we highlight it here.
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Proposition 2.1. Assume 𝑃 and 𝑄 possess �nite second moments, and let 𝜋𝜀 be the optimal entropic

plan for 𝑃 and 𝑄 . Then

OT𝜀 (𝑃,𝑄) = sup
𝜂∈𝐿1 (𝜋𝜀 )

∫
𝜂 d𝜋𝜀 − 𝜀

∬
𝑒 (𝜂 (𝑥,𝑦)−

1
2 ‖𝑥−𝑦‖

2)/𝜀 d𝑃 (𝑥) d𝑄 (𝑦) + 𝜀 . (2.4)

Comparing this proposition with (1.24), we see that we can always take 𝜂 (𝑥,𝑦) = 𝑓 (𝑥) + 𝑔(𝑦),

in which case (2.4) reduces to (1.24). The novelty in Proposition 2.1 therefore arises in showing

that the quantity on the right side of (2.4) is still bounded above by OT𝜀 (𝑃,𝑄). We give the short

proof of Proposition 2.1 in Appendix A.3.

Several recent works have bridged the regularized and unregularized optimal transport regimes,

with particular interest in the setting where 𝜀 → 0. Convergence of 𝜋𝜀 to 𝜋0 was studied by Carlier

et al. (2017) and Léonard (2012), and recent work has quanti�ed the convergence of the plans

(Bernton et al., 2022; Ghosal et al., 2022; Hundrieser et al., 2024a; Klatt et al., 2020) and the potentials

(Altschuler et al., 2022; Masud et al., 2023; Nutz and Wiesel, 2021; Rigollet and Stromme, 2022)

in certain settings. Convergence of OT𝜀 (𝑃,𝑄) to 1
2𝑊

2
2 (𝑃,𝑄) has attracted signi�cant research

interest: under mild conditions, Pal (2024) proves a �rst-order convergence result for general

convex costs (replacing 1
2 ‖ · ‖

2), and a second order expansion was subsequently obtained by

Chizat et al. (2020) and Conforti and Tamanini (2021). We also rely on the following bound which

we provide a short proof of in Appendix A.1.

Theorem 2.2. Suppose 𝑃 and 𝑄 have bounded densities with compact support. Then

OT𝜀 (𝑃,𝑄) −
1
2
𝑊 2

2 (𝑃,𝑄) + 𝜀 log((2𝜋𝜀)𝑑/2) ≤ −
𝜀

2
(H (𝑃) + H (𝑄)) + 𝜀

2

8
𝐼0(𝑃,𝑄) , (2.5)

where 𝐼0(𝑃,𝑄) is the integrated Fisher information along Wasserstein geodesics, given by

𝐼0(𝑃,𝑄) B
∫ 1

0

∫
‖∇ log 𝑃𝑡 (𝑥)‖2 d𝑃𝑡 (𝑥) d𝑡 , (2.6)
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where 𝑃𝑡 B ((1 − 𝑡)id + 𝑡𝑇0)♯𝑃 .

2.2 Estimator and main results

Given the optimal entropic plan 𝜋𝜀 between 𝑃 and𝑄 , we de�ne its barycentric projection to be

𝑇𝜀 (𝑥) :=
∫

𝑦 d𝜋𝑥𝜀 (𝑦) = E𝜋𝜀 [𝑌 | 𝑋 = 𝑥] . (2.7)

A priori, this map is only de�ned 𝑃-almost everywhere, making it unsuitable for evaluation outside

the support of 𝑃 . In particular, since we will study the barycentric projection obtained from the

optimal entropic plan between empirical measures, this de�nition does not extend outside the

sample points. However, the duality relations (recall (1.27) and (1.28)) implies that we may de�ne

a version of the conditional density of 𝑌 given 𝑋 = 𝑥 for all 𝑥 ∈ R𝑑 by

d𝜋𝑥𝜀 (𝑦) = 𝑒
1
𝜀
(𝑓𝜀 (𝑥)+𝑔𝜀 (𝑦)− 1

2 ‖𝑥−𝑦‖
2) d𝑄 (𝑦) = 𝑒

1
𝜀
(𝑔𝜀 (𝑦)− 1

2 ‖𝑥−𝑦‖
2) d𝑄 (𝑦)∫

𝑒
1
𝜀
(𝑔𝜀 (𝑦 ′)− 1

2 ‖𝑥−𝑦 ′‖2) d𝑄 (𝑦′)
,

where (𝑓𝜀, 𝑔𝜀) are the optimal entropic potentials. This furnishes an extension of 𝑇𝜀 to all of R𝑑 by

𝑇𝜀 (𝑥) B
∫
𝑦𝑒

1
𝜀
(𝑔𝜀 (𝑦)− 1

2 ‖𝑥−𝑦‖
2) d𝑄 (𝑦)∫

𝑒
1
𝜀
(𝑔𝜀 (𝑦)− 1

2 ‖𝑥−𝑦‖2) d𝑄 (𝑦)
.

We call 𝑇𝜀 the entropic map between 𝑃 and 𝑄 , though we stress that (𝑇𝜀)♯𝑃 ≠ 𝑄 in general. This

natural de�nition is motivated by the following observation, which shows that the entropic map

can also be de�ned as the map obtained by replacing the optimal potential in Brenier’s theorem

by its entropic counterpart. To this end, write

(𝜑𝜀,𝜓𝜀) B
( 1
2 ‖ · ‖

2 − 𝑓𝜀, 12 ‖ · ‖
2 − 𝑔𝜀

)
(2.8)
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to be entropic Brenier potentials, and observe that

𝑇𝜀 (𝑥) B
∫
𝑦𝑒

1
𝜀
(𝑥>𝑦−𝜓𝜀 (𝑦)) d𝑄 (𝑦)∫

𝑒
1
𝜀
(𝑥>𝑦−𝜓𝑒𝑝𝑠 (𝑦)) d𝑄 (𝑦)

. (2.9)

Proposition 2.3. Let (𝜑𝜀,𝜓𝜀) be optimal entropic Brenier potentials in the sense of (2.8), and let 𝑇𝜀

be the entropic map. Then 𝑇𝜀 = ∇𝜑𝜀 .

Proof. The dual optimality conditions (1.27) implies

𝑓𝜀 (𝑥) = −𝜀 log
∫

𝑒 (𝑔𝜀 (𝑦)−
1
2 ‖𝑥−𝑦‖

2)/𝜀 d𝑄 (𝑦) .

Taking the gradient of this expression yields

∇𝑓𝜀 (𝑥) = −𝜀
∫
(−(𝑥 − 𝑦)/𝜀)𝑒 (𝑔𝜀 (𝑦)− 1

2 ‖𝑥−𝑦‖
2)/𝜀 d𝑄 (𝑦)∫

𝑒 (𝑔𝜀 (𝑦)−
1
2 ‖𝑥−𝑦‖2)/𝜀 d𝑄 (𝑦)

= 𝑥 −
∫
𝑦𝑒 (𝑔𝜀 (𝑦)−

1
2 ‖𝑥−𝑦‖

2)/𝜀 d𝑄 (𝑦)∫
𝑒 (𝑔𝜀 (𝑦)−

1
2 ‖𝑥−𝑦‖2)/𝜀 d𝑄 (𝑦)

= 𝑥 −𝑇𝜀 (𝑥) .

�

We write 𝑃𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝛿𝑋𝑖

and 𝑄𝑛 = 1
𝑛

∑𝑛
𝑖=1 𝛿𝑌𝑖 for the empirical distributions corresponding

to the samples from 𝑃 and 𝑄 , respectively. Our proposed estimator is 𝑇𝜀,(𝑛,𝑛) , the entropic map

between 𝑃𝑛 and 𝑄𝑛 , which can be written explicitly as

𝑇𝜀,(𝑛,𝑛) (𝑥) =
1
𝑛

∑𝑛
𝑖=1𝑌𝑖𝑒

1
𝜀
(𝑔𝜀,(𝑛,𝑛) (𝑌𝑖 )− 1

2 ‖𝑥−𝑌𝑖 ‖
2)

1
𝑛

∑𝑛
𝑖=1 𝑒

1
𝜀
(𝑔𝜀,(𝑛,𝑛) (𝑌𝑖 )− 1

2 ‖𝑥−𝑌𝑖 ‖2)
, (2.10)

where 𝑔𝜀,(𝑛,𝑛) is the optimal entropic potential corresponding to 𝑄𝑛 in the optimal entropic plan

between 𝑃𝑛 and𝑄𝑛 , which can be obtained as part of the output of Sinkhorn’s algorithm (see Peyré

and Cuturi, 2019). In other words, once the optimal entropic potential is found, the map 𝑇𝜀,(𝑛,𝑛) (𝑥)

can therefore be evaluated in linear time. We discuss these computational aspects thoroughly in
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Section 2.4. As in standard nonparametric estimation (Tsybakov, 2009), the optimal choice of 𝜀

will be dictated by the smoothness of the target function.

Remark 2.4. We brie�y take a moment to discuss the applicability of our estimator in a wider

statistical context. A body of work (e.g., Chernozhukov et al., 2017; Hallin et al., 2021) studies

the estimation of multivariate ranks and quantiles through inverse optimal transport maps. For

this purpose, it is important that estimators of transport maps be invertible. We remark that

the entropic map as de�ned above has this property since it is strongly monotone, in the sense

that (𝑇𝜀 (𝑥) −𝑇𝜀 (𝑦))>(𝑥 − 𝑦) > 0 (see Rigollet and Stromme, 2022, Proposition 10). However, our

procedure also gives rise to an even simpler estimator for the inverse transport map, namely the

map 𝑇 inv
𝜀 B id − ∇𝑔𝜀 . By interchanging the roles of 𝑃 and 𝑄 in our assumptions, we can provide

both computational and statistical guarantees for this map as well.

To prove quantitative rates of convergence for 𝑇𝜀,(𝑛,𝑛) , we make the following regularity

assumptions on 𝑃 and 𝑄 :

(E1) 𝑃,𝑄 ∈ P𝑎𝑐 (Ω) for a compact set Ω, with densities satisfying 𝑝 (𝑥), 𝑞(𝑥) ≤ 𝑀 and 𝑞(𝑥) ≥

𝑚 > 0 for all 𝑥 ∈ Ω,

(E2) 𝜑0 ∈ C2(Ω) and 𝜑∗0 ∈ C𝛼+1(Ω) for 𝛼 > 1,

(E3) 𝑇0 = ∇𝜑0, with 𝜇𝐼 � ∇2𝜑0(𝑥) � 𝐿𝐼 for 𝜇, 𝐿 > 0 for all 𝑥 ∈ Ω,

In what follows, all constants may depend on the dimension, the set Ω,𝑀 ,𝑚, 𝜇, 𝐿, and ‖𝜑∗0 ‖C𝛼+1 .

The above assumptions are qualitatively similar to those that have appeared in previous works

on the estimation of optimal transport maps.

(E1) is a standard assumption in the statistical analysis of optimal transport map estimation.

(It is present in the works of, e.g., Deb et al. (2021); Hütter and Rigollet (2021); Manole et al.

(2024a); Vacher et al. (2024).) All of these works require that 𝑃 and 𝑄 be compactly supported.

Some of the tools we employ extend beyond the compact support setting; for example, Conforti
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and Tamanini (2021) show that the expansion presented in Theorem 2.2 continues to hold for

unbounded measures under suitable moment assumptions. However, our proofs require strong a

priori bounds on the optimal transport map as well as on the entropic coupling for the random

empirical measures 𝑃𝑛 and 𝑄𝑛 , which do not have clear analogues in the non-compact setting.

(E3) is also standard, and in prior work it has often been assumed implicitly as a consequence

of a strengthened form of (E1). Ca�arelli’s regularity theory (Ca�arelli, 1992) guarantees that if

we assume that the set Ω in (E1) is convex and that the density 𝑝 is also bounded below, then 𝑇0

is continuous; if we further assume that 𝑝, 𝑞 ∈ 𝐶𝛽 (Ω) for any 𝛽 > 0, then (E3) holds. (E3) can

therefore be viewed as being only slightly stronger than (E1), so long as Ω is convex. (E3) plays a

crucial role in this and prior work, since, as was originally noticed by Ambrosio (see Gigli, 2011),

this assumption guarantees stability of the optimal transport map, as a function of the source and

target measures.

Our most unusual assumption is (E2). Prior work analyzes estimators for𝑇0 under the assump-

tion that 𝜑0 ∈ C𝛼+1(Ω) for 𝛼 > 1, with rates that depend on 𝛼 . For technical reasons, our proofs

require a Laplace expansion in the “target space” corresponding to the dual Brenier potential 𝜑∗0 .

Consequently, we instead assume that 𝜑∗0 ∈ C𝛼+1(Ω), so that our rates depend on the smoothness

of the inverse map𝑇0. We elaborate on this point further in the discussions surrounding Lemma 2.9.

Our main result is the following.

Theorem 2.5. Under assumptions (E1) to (E3), the entropic map 𝑇 = 𝑇𝜀,(𝑛,𝑛) from 𝑃𝑛 to 𝑄𝑛 with

regularization parameter 𝜀 � 𝑛− 1
𝑑+𝛼+1 satis�es

E‖𝑇 −𝑇0‖2𝐿2 (𝑃) . (1 + 𝐼0(𝑃,𝑄))𝑛
− (𝛼+1)

2(𝑑+𝛼+1) log𝑛 ,

where 𝛼 = 𝛼 ∧ 3.

When 𝑑 → ∞ and 𝛼 → 1, we formally obtain the rate 𝑛−(1+𝑜 (1))/𝑑 . By contrast, Hütter and

Rigollet (2021) show that, up to logarithmic factors, the rate 𝑛−2(1+𝑜 (1))/𝑑 is minimax optimal in
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this setting. Theorem 2.5 therefore falls short of the minimax rate by a factor of approximately 2

in the exponent; however, our numerical experiments in Section 2.4 show that 𝑇 is competitive

with minimax-optimal estimators in practice.

To analyze our estimator, we adopt a two-step approach. We �rst consider the one-sample

setting and show that the entropic map 𝑇𝜀,𝑛 between 𝑃 and 𝑄𝑛 is close to 𝑇0 in expectation. We

prove the following.

Theorem 2.6. Under assumptions (E1) to (E3) there exists a constant 𝜀0 > 0 such that for 𝜀 ≤ 𝜀0,

the entropic map 𝑇𝜀,𝑛 between 𝑃 and 𝑄𝑛 satis�es

E‖𝑇𝜀,𝑛 −𝑇0‖2𝐿2 (𝑃) . 𝜀
1−𝑑/2 log(𝑛)𝑛−1/2 + 𝜀 (𝛼+1)/2 + 𝜀2𝐼0(𝑃,𝑄) ,

with 𝛼 = 𝛼 ∧ 3. Choosing 𝜀 � 𝑛− 1
𝑑+𝛼−1 , we get the one-sample estimation rate

E‖𝑇𝜀,𝑛 −𝑇0‖2𝐿2 (𝑃) . (1 + 𝐼0(𝑃,𝑄))𝑛
− 𝛼+1

2(𝑑+𝛼−1) .

Remark 2.7. It can happen that 𝐼0(𝑃,𝑄) is in�nite, so the bounds of Theorem 2.5 and 2.6 are

sometimes vacuous. However, Chizat et al. (2020) prove that 𝐼0(𝑃,𝑄) ≤ 𝐶 for a positive constant

𝐶 when 𝑃 and 𝑄 satisfy (E1) to (E3) for 𝛼 ≥ 2. Therefore, in this range for 𝛼 , we obtain the rates

in the theorems above without additional restrictions.

As a corollary to Theorem 2.6, we have the following population-level estimate between 𝑇𝜀

and 𝑇0, which is potentially of independent interest.

Corollary 2.8. Assume (E1) to (E3), then

‖𝑇𝜀 −𝑇0‖2𝐿2 (𝑃) = ‖∇𝜑𝜀 − ∇𝜑0‖
2
𝐿2 (𝑃) . 𝜀

2𝐼0(𝑃,𝑄) + 𝜀 (𝛼+1)/2, (2.11)

where 𝛼 = 3 ∧ 𝛼 .
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The proof of Theorem 2.6 is technical, and our approach is closely inspired by Pal (2024) and

empirical process theory arguments developed by Genevay et al. (2019) and Mena and Niles-Weed

(2019). We give a summary of our argument here, and carry out the details in the following section.

Following Pal (2024), we de�ne the divergence 𝐷 [𝑦 |𝑥∗] := −𝑥>𝑦+𝜑0(𝑥)+𝜑∗0 (𝑦), where𝜑0 solves

the semidual (1.21). Though this quantity is a function of 𝑥 and 𝑦, it is notationally convenient

to write it in a way that highlights its dependence on 𝑥∗ := 𝑇0(𝑥). Indeed, we rely throughout on

the following fact

Lemma 2.9. Under assumptions (E2) and (E3), for any 𝑥 ∈ supp(𝑃), we have

𝐷 [𝑦 |𝑥∗] = 1
2
(𝑦 − 𝑥∗)>∇2𝜑∗0 (𝑥∗) (𝑦 − 𝑥∗) + 𝑜 (‖𝑦 − 𝑥∗‖2) as 𝑦 → 𝑥∗ , (2.12)

as well as the non-asymptotic bound

1
2𝐿
‖𝑦 − 𝑥∗‖2 ≤ 𝐷 [𝑦 |𝑥∗] ≤ 1

2𝜇
‖𝑦 − 𝑥∗‖2 . (2.13)

Proof. This follows directly from Taylor’s theorem and the fact that ∇𝜑∗0 (𝑥∗) = 𝑇 −10 (𝑥∗) = 𝑥 . �

We then de�ne a conditional probability density in terms of this divergence:

𝑞𝑥𝜀 (𝑦) =
1

𝑍𝜀 (𝑥)Λ𝜀
𝑒
−1
𝜀
𝐷 [𝑦 |𝑥∗] , 𝑍𝜀 (𝑥) :=

1
Λ𝜀

∫
exp

(
−1
𝜀
𝐷 [𝑦 |𝑥∗]

)
𝑑𝑦, (2.14)

for Λ𝜀 = (2𝜋𝜀)𝑑/2. By virtue of (2.12), if 𝜑∗0 is su�ciently smooth, then 𝑞𝑥𝜀 will be approximately

Gaussian with mean 𝑥∗ and covariance 𝜀∇2𝜑∗0 (𝑥∗)−1 = 𝜀∇2𝜑0(𝑥). We quantify this approximation

via Laplace’s method; details appear in Appendix A.2. Using variational arguments, reminiscent

of those employed by Bobkov and Götze (1999) in the study of transportation inequalities, we

then compare the measure 𝜋𝜀,𝑛 to the measure 𝑞𝑥𝜀 (𝑦) d𝑦 d𝑃 (𝑥) and compute accurate estimates of

𝑇𝜀,𝑛 via Laplace’s method.
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A similar but much simpler argument establishes the following bound in the two-sample case.

Theorem 2.10. Let𝑇𝜀,(𝑛,𝑛) be the entropic map from 𝑃𝑛 to𝑄𝑛 , and let𝑇𝜀,𝑛 be as in Theorem 2.6. Under

assumptions (E1) to (E3), for 𝜀 ≤ 1, 𝑇𝜀,(𝑛,𝑛) satis�es

E‖𝑇𝜀,(𝑛,𝑛) −𝑇𝜀,𝑛‖2𝐿2 (𝑃) . 𝜀
−𝑑/2 log(𝑛)𝑛−1/2 .

Combining Theorem 2.6 and 2.10 yields our main result.

Proof of Theorem 2.5. We have

E‖𝑇𝜀,(𝑛,𝑛) −𝑇0‖2𝐿2 (𝑃) . E‖𝑇𝜀,(𝑛,𝑛) −𝑇𝜀,𝑛‖
2
𝐿2 (𝑃) + E‖𝑇𝜀,𝑛 −𝑇0‖

2
𝐿2 (𝑃)

. 𝜀−𝑑/2 log(𝑛)𝑛−1/2 + 𝜀 (𝛼+1)/2 + 𝜀2𝐼0(𝑃,𝑄) .

Choosing 𝜀 � 𝑛− 1
𝑑+𝛼+1 yields the bound. �

2.2.1 One-sample estimates

In this section, we prove Theorem 2.6, which relates 𝑇0 to the entropic map between 𝑃 and 𝑄𝑛:

𝑇𝜀,𝑛 (𝑥) =
∫
𝑦𝑒

1
𝜀
(𝑔𝜀,𝑛 (𝑦)− 1

2 ‖𝑥−𝑦‖
2) d𝑄𝑛 (𝑦)∫

𝑒
1
𝜀
(𝑔𝜀,𝑛 (𝑦)− 1

2 ‖𝑥−𝑦‖2) d𝑄𝑛 (𝑦)
=

∫
𝑦 d𝜋𝑥𝜀,𝑛 (𝑦) ,

where 𝜋𝜀,𝑛 is the optimal entropic plan for 𝑃 and 𝑄𝑛. We stress that since 𝑇𝜀,𝑛 is based on the

entropic map from 𝑃 to 𝑄𝑛 , the second equality holds for 𝑃-almost every 𝑥 .

Our main tool is the following inequality, which allows us to compare 𝜋𝜀,𝑛 to the measure

constructed from the conditional densities 𝑞𝑥𝜀 . The proof relies crucially on Proposition 2.1 and on

the second order-expansion provided in Theorem 2.2.
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Proposition 2.11. Assume (E1) to (E3), and let 𝑎 ∈ [𝐿𝜀, 1] for 𝜀 ≤ 1. Then

E
{

sup
ℎ:Ω→R𝑑

∬ (
ℎ(𝑥)>(𝑦 −𝑇0(𝑥)) − 𝑎‖ℎ(𝑥)‖2

)
d𝜋𝜀,𝑛 (𝑥,𝑦)

−
∬
(𝑒ℎ(𝑥)> (𝑦−𝑇0 (𝑥))−𝑎‖ℎ(𝑥)‖2 − 1)𝑞𝑥𝜀 (𝑦) d𝑦 d𝑃 (𝑥)

}
. 𝜀𝐼0(𝑃,𝑄) + 𝜀 (𝛼−1)/2 + 𝜀−𝑑/2 log(𝑛)𝑛−1/2 ,

where the supremum is taken over all ℎ ∈ 𝐿2(𝑃).

Proof. Given ℎ ∈ 𝐿2(𝑃), write

𝑗ℎ (𝑥,𝑦) = ℎ(𝑥)>(𝑦 −𝑇0(𝑥)) − 𝑎‖ℎ(𝑥)‖2 .

Choosing 𝜂 (𝑥,𝑦) = 𝜀 ( 𝑗ℎ (𝑥,𝑦) + log(𝑞𝑥𝜀 (𝑦)/𝑞(𝑦))) + ‖𝑥 − 𝑦‖2/2 and applying Proposition 2.1 with

the measures 𝑃 and 𝑄𝑛 , we obtain

sup
ℎ:Ω→R𝑑

∫
𝑗ℎ d𝜋𝜀,𝑛 +

∫
log

𝑞𝑥𝜀 (𝑦)𝑒
1
2𝜀 ‖𝑥−𝑦‖

2

𝑞(𝑦) d𝜋𝜀,𝑛 (𝑥,𝑦)

−
∬

𝑒 𝑗ℎ (𝑥,𝑦)
𝑞𝑥𝜀 (𝑦)
𝑞(𝑦) d𝑄𝑛 (𝑦) d𝑃 (𝑥) + 1 ≤ 𝜀

−1OT𝜀 (𝑃,𝑄𝑛) .

We �rst expand
∬

log 𝑞𝑥𝜀 (𝑦)𝑒
1
2𝜀 ‖𝑥−𝑦 ‖

2

𝑞(𝑦) d𝜋𝜀,𝑛 (𝑥,𝑦), where we use the fact that 𝜋𝜀,𝑛 has marginals 𝑃

and 𝑄𝑛: ∬
log

𝑞𝑥𝜀 (𝑦)𝑒
1
2𝜀 ‖𝑥−𝑦‖

2

𝑞(𝑦) d𝜋𝜀,𝑛 (𝑥,𝑦)

=
1
𝜀

∬ [
𝑓0(𝑥) + 𝑔0(𝑦) + 𝜀 log

(
1

𝑍𝜀 (𝑥)Λ𝜀

)
− 𝜀 log(𝑞(𝑦))

]
d𝜋𝜀,𝑛 (𝑥,𝑦)

=
1
𝜀

( ∫
𝑓0(𝑥) d𝑃 (𝑥) +

∫
𝑔0(𝑦) d𝑄𝑛 (𝑦)

)
− log(Λ𝜀)

−
∫

log(𝑍𝜀 (𝑥)) d𝑃 (𝑥) −
∫

log(𝑞(𝑦)) d𝑄𝑛 (𝑦) ,
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where (𝑓0, 𝑔0) solve (1.16). Replacing 𝑄𝑛 by 𝑄 yields

∬
log

𝑞𝑥𝜀 (𝑦)𝑒
1
2𝜀 ‖𝑥−𝑦‖

2

𝑞(𝑦) d𝜋𝜀,𝑛 (𝑥,𝑦) =
1
2𝜀
𝑊 2

2 (𝑃,𝑄) − log(Λ𝜀) −
∫

log(𝑍𝜀 (𝑥)) d𝑃 (𝑥)

− H (𝑄) +
∫
(𝑔0/𝜀 − log(𝑞)) (d𝑄𝑛 − d𝑄).

A change of variables (see Pal, 2024, Lemma 3(iv)) implies

H(𝑄) − H (𝑃)
2

=

∫
log 𝐽 (∇2𝜑∗0 (𝑥∗)) d𝑃 (𝑥) ,

where we recall that 𝑥∗ = 𝑇0(𝑥). Substituting this identity into the preceding expression yields

∬
log

𝑞𝑥𝜀 (𝑦)𝑒
1
2𝜀 ‖𝑥−𝑦‖

2

𝑞(𝑦) d𝜋𝜀,𝑛 (𝑥,𝑦) =
1
2𝜀
𝑊 2

2 (𝑃,𝑄) − log(Λ𝜀) −
1
2
(H (𝑄) + H (𝑃))

+
∫
(𝑔0/𝜀 − log(𝑞)) (d𝑄𝑛 − d𝑄)

−
∫

log(𝑍𝜀 (𝑥) 𝐽 (∇2𝜑∗0 (𝑥∗))) d𝑃 (𝑥) .

We therefore obtain

sup
ℎ:Ω→R𝑑

∫
𝑗ℎ d𝜋𝜀,𝑛 −

∬
𝑒 𝑗ℎ (𝑥,𝑦)

𝑞𝑥𝜀 (𝑦)
𝑞(𝑦) d𝑄𝑛 (𝑦) d𝑃 (𝑥) + 1

≤ 𝜀−1
(
OT𝜀 (𝑃,𝑄𝑛) −

1
2
𝑊 2

2 (𝑃,𝑄) + 𝜀 log(Λ𝜀) +
𝜀

2
(H (𝑄) + H (𝑃))

)
+ Δ1 ,

where Δ1 :=
∫
(𝑔0/𝜀−log(𝑞)) (d𝑄−d𝑄𝑛)+

∫
log(𝑍𝜀 (𝑥) 𝐽 (∇2𝜑∗0 (𝑥∗))) d𝑃 (𝑥). Applying Theorem 2.2,

we may further bound

sup
ℎ:Ω→R𝑑

∫
𝑗ℎ d𝜋𝜀,𝑛 −

∬
𝑒 𝑗ℎ (𝑥,𝑦)

𝑞𝑥𝜀 (𝑦)
𝑞(𝑦) d𝑄𝑛 (𝑦) d𝑃 (𝑥) + 1 ≤

𝜀

8
𝐼0 + Δ1 + Δ2 ,

where Δ2 := 𝜀−1(OT𝜀 (𝑃,𝑄𝑛) − OT𝜀 (𝑃,𝑄)). Now we turn our attention to the second term on the
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left side. Since

∬
𝑒 𝑗ℎ (𝑥,𝑦)

𝑞𝑥𝜀 (𝑦)
𝑞(𝑦) d𝑄 (𝑦) d𝑃 (𝑥) =

∬
supp(𝑄)

𝑒 𝑗ℎ (𝑥,𝑦)𝑞𝑥𝜀 (𝑦) d𝑦 d𝑃 (𝑥)

≤
∬

𝑒 𝑗ℎ (𝑥,𝑦)𝑞𝑥𝜀 (𝑦) d𝑦 d𝑃 (𝑥) ,

we have

sup
ℎ:Ω→R𝑑

∫
𝑗ℎ d𝜋𝜀,𝑛 −

∬
(𝑒 𝑗ℎ (𝑥,𝑦) − 1)𝑞𝑥𝜀 (𝑦) d𝑦 d𝑃 (𝑥) ≤

𝜀

8
𝐼0 + Δ1 + Δ2 + Δ3 ,

where

Δ3 := sup
ℎ:Ω→R𝑑

∬
𝑒 𝑗ℎ (𝑥,𝑦)

𝑞𝑥𝜀 (𝑦)
𝑞(𝑦) d𝑃 (𝑥) (d𝑄𝑛 − d𝑄) (𝑦)

and where we have used the fact that 𝑞𝑥𝜀 (𝑦) is a probability density.

It therefore remains only to show that

E[Δ1 + Δ2 + Δ3] . 𝜀 (𝛼−1)/2 + 𝜀−𝑑/2 log(𝑛)𝑛−1/2 .

First, a Laplace expansion (Corollary A.3) implies

EΔ1 =

∫
log(𝑍𝜀 (𝑥) 𝐽 (∇2𝜑∗0 (𝑥∗))) d𝑃 (𝑥) . 𝜀 (𝛼−1)/2

Second, known results on the �nite-sample convergence of the Sinkhorn divergence (Corol-

lary A.10) yield

EΔ2 . (𝜀−1 + 𝜀−𝑑/2) log(𝑛)𝑛−1/2 ,

It therefore remains to bound Δ3, which an empirical process theory argument (Proposition A.5)

shows

EΔ3 . 𝜀
−𝑑/2𝑛−1/2
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as long as 𝑎 ∈ [𝐿𝜀, 1].

We obtain that

E[Δ1 + Δ2 + Δ3] . 𝜀 (𝛼−1)/2 + (𝜀−1 + 𝜀−𝑑/2) log(𝑛)𝑛−1/2 + 𝜀−𝑑/2𝑛−1/2 ,

and since 𝜀 ≤ 1, we obtain the bound

E[Δ1 + Δ2 + Δ3] . 𝜀 (𝛼−1)/2 + 𝜀−𝑑/2𝑛−1/2 log(𝑛) ,

as desired. �

To exploit Proposition 2.11, we show that we can choose a function ℎ for which the left side of

the above expression scales like ‖𝑇𝜀,𝑛 −𝑇0‖2𝐿2 (𝑃) .

We �rst establish three lemmas, whose proofs are deferred.

Lemma 2.12. Fix 𝑥 ∈ supp(𝑃), and write 𝑦𝑥 =
∫
𝑦𝑞𝑥𝜀 (𝑦) d𝑦. There exists a positive constant 𝐶 ,

independent of 𝑥 , such that for all 𝜀 ∈ (0, 1) and ‖𝑣 ‖2 ≤ 1,

∫
𝑒 (𝑣
> (𝑦−𝑦𝑥 ))2/(𝐶𝜀)𝑞𝑥𝜀 (𝑦) d𝑦 ≤ 2 .

In probabilistic language, Lemma 2.12 implies that if 𝑌 𝑥 is a random variable with density 𝑞𝑥𝜀 ,

then 𝜀−1/2(𝑌 𝑥 − E𝑌 𝑥 ) is subgaussian (Vershynin, 2018). By applying standard moment bounds for

subgaussian random variables, we then arrive at the following result.

Lemma 2.13. There exists a positive constant 𝐶 such that if 𝑎 ≥ 𝐶𝜀, then for any ℎ : R𝑑 → R𝑑 we

have ∬
𝑒ℎ(𝑥)

> (𝑦−𝑇0 (𝑥))−𝑎‖ℎ(𝑥)‖2𝑞𝑥𝜀 (𝑦) d𝑦 d𝑃 (𝑥) ≤
∫

𝑒
1
4𝜀 ‖𝑦

𝑥−𝑇0 (𝑥)‖2 d𝑃 (𝑥) .

Finally, we show by an application of Laplace’s method that 𝑦𝑥 is close to 𝑇0(𝑥).
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Lemma 2.14. Assume (E1) to (E3). For all 𝑥 ∈ supp(𝑃),

‖𝑦𝑥 −𝑇0(𝑥)‖2 . 𝜀𝛼∧2 .

With these lemmas in hand, we can complete the proof.

Proof of Theorem 2.6. We may assume 𝜀0 ≤ 1. Since 𝑒𝑡 − 1 ≤ 2𝑡 for 𝑡 ∈ [0, 1], Lemma 2.14 implies

that as long as 𝜀0 is su�ciently small, for 𝜀 ≤ 𝜀0,

𝑒
1
4𝜀 ‖𝑦

𝑥−𝑇0 (𝑥)‖2 − 1 . 𝜀 (𝛼−1)∧1 ≤ 𝜀 (𝛼−1)/2 ,

where the last inequality holds for 𝛼 ≥ 1 and 𝜀 ≤ 1. Combining this fact with Lemma 2.13, we

obtain that for any ℎ : R𝑑 → R𝑑 and 𝑎 ≥ 𝐶𝜀,

∬
(𝑒ℎ(𝑥)> (𝑦−𝑇0 (𝑥))−𝑎‖ℎ(𝑥)‖2 − 1)𝑞𝑥𝜀 (𝑦) d𝑦 d𝑃 (𝑥) . 𝜀 (𝛼−1)/2 .

For a su�ciently small constant 𝜀0, the interval [𝐶𝜀, 1] is non-empty for 𝜀 ≤ 𝜀0, so combining

this fact with Proposition 2.11 yields that for 𝑎 ∈ [𝐶𝜀, 1] and 𝜀 ≤ 𝜀0,

E sup
ℎ:Ω→R𝑑

∬ (
ℎ(𝑥)>(𝑦 −𝑇0(𝑥)) − 𝑎‖ℎ(𝑥)‖2

)
d𝜋𝜀,𝑛 (𝑥,𝑦) . 𝜀𝐼0 + 𝜀 (𝛼−1)/2 + 𝜀−𝑑/2 log(𝑛)𝑛−1/2 .

(2.15)

If we pick ℎ(𝑥) = 1
2𝑎 (𝑇𝜀,𝑛 (𝑥) −𝑇0(𝑥)), the integral on the left side equals

1
2𝑎
E

∬ (
(𝑇𝜀,𝑛 (𝑥) −𝑇0(𝑥))>(𝑦 −𝑇0(𝑥)) −

1
2
‖𝑇𝜀,𝑛 (𝑥) −𝑇0(𝑥)‖2

)
d𝜋𝜀,𝑛 (𝑥,𝑦) (2.16)

By de�nition,𝑇𝜀,𝑛 (𝑥) =
∫
𝑦 d𝜋𝑥𝜀,𝑛 (𝑦), so disintegrating 𝜋𝜀,𝑛 (𝑥,𝑦) and recalling that the �rst marginal

40



of 𝜋𝜀,𝑛 is 𝑃 yields

∬ (
𝑇𝜀,𝑛 (𝑥) −𝑇0(𝑥))>(𝑦 −𝑇0(𝑥)) −

1
2
‖𝑇𝜀,𝑛 (𝑥) −𝑇0(𝑥)‖2

)
d𝜋𝜀,𝑛 (𝑥,𝑦)

=

∫
1
2
‖𝑇𝜀,𝑛 (𝑥) −𝑇0(𝑥)‖2 d𝑃 (𝑥) =

1
2
‖𝑇𝜀,𝑛 −𝑇0‖2𝐿2 (𝑃) .

Combining this with (2.15) and (2.16) and picking 𝑎 = 𝐶𝜀 yields

E‖𝑇𝜀,𝑛 −𝑇0‖2𝐿2 (𝑃) . 𝜀
2𝐼0 + 𝜀 (𝛼+1)/2 + 𝜀1−𝑑/2 log(𝑛)𝑛−1/2 ,

as desired. �

2.2.2 Two-sample estimates

We now turn our attention to the two-sample case. Let 𝜋𝜀,(𝑛,𝑛) be the optimal entropic plan

between 𝑃𝑛 and 𝑄𝑛 and (𝑓𝜀,(𝑛,𝑛), 𝑔𝜀,(𝑛,𝑛)) the corresponding entropic potentials. We aim to show

that

E‖𝑇𝜀,(𝑛,𝑛) −𝑇𝜀,𝑛‖2𝐿2 (𝑃) . (𝜀
−1 + 𝜀−𝑑/2) log(𝑛)𝑛−1/2 .

As in Section 2.2.1, we proceed via duality arguments, but our task is considerably simpli�ed

by the fact that the measure 𝑄𝑛 remains �xed in passing from 𝑇𝜀,(𝑛,𝑛) to 𝑇𝜀,𝑛 . Let us write

𝛾 (𝑥,𝑦) = 𝑒 1
𝜀
(𝑓𝜀,(𝑛,𝑛) (𝑥)+𝑔𝜀,(𝑛,𝑛) (𝑦)− 1

2 ‖𝑥−𝑦‖
2) =

𝑒
1
𝜀
(𝑔𝜀,(𝑛,𝑛) (𝑦)− 1

2 ‖𝑥−𝑦‖
2)

1
𝑛

∑𝑛
𝑖=1 𝑒

1
𝜀
(𝑔𝜀,(𝑛,𝑛) (𝑌𝑖 )− 1

2 ‖𝑥−𝑌𝑖 ‖2)

for the 𝑃𝑛 ⊗ 𝑄𝑛 density of 𝜋𝜀,(𝑛,𝑛) , where the second equality holds 𝑃𝑛 ⊗ 𝑄𝑛 almost everywhere

and furnishes an extension of 𝛾 to all 𝑥 ∈ R𝑑 .

We employ the following analogue of Proposition 2.11, which does not require the full force

of assumptions (E1) to (E3).
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Proposition 2.15. The support of 𝑃 and 𝑄 lies in Ω, then

E
{

sup
𝜒 :Ω×Ω→R

∬
𝜒 (𝑥,𝑦) d𝜋𝜀,𝑛 (𝑥,𝑦) −

∬
(𝑒 𝜒 (𝑥,𝑦) − 1)𝛾 (𝑥,𝑦) d𝑃 (𝑥) d𝑄𝑛 (𝑦)

}
. (𝜀−1 + 𝜀−𝑑/2) log(𝑛)𝑛−1/2 ,

where the supremum is taken over all 𝜒 ∈ 𝐿1(𝜋𝜀,𝑛).

The proof of Theorem 2.10 is now straightforward.

Proof. As in the proof of Theorem 2.6, consider

𝜒 (𝑥,𝑦) = ℎ(𝑥)>(𝑦 −𝑇𝜀,(𝑛,𝑛) (𝑥)) − 𝑎‖ℎ(𝑥)‖2

for ℎ and 𝑎 to be speci�ed. By de�nition of 𝑇𝜀,(𝑛,𝑛) , we have

∫
ℎ(𝑥)>(𝑦 −𝑇𝜀,(𝑛,𝑛) (𝑥))𝛾 (𝑥,𝑦) d𝑄𝑛 (𝑦) = ℎ(𝑥)>

(∫
𝑦𝛾 (𝑥,𝑦) d𝑄𝑛 (𝑦) −𝑇𝜀,(𝑛,𝑛) (𝑥)

)
= ℎ(𝑥)>

(
1
𝑛

∑𝑛
𝑖=1𝑌𝑖𝑒

1
𝜀
(𝑔𝜀,(𝑛,𝑛) (𝑌𝑖 )−𝑐 (𝑥,𝑌𝑖 ))

1
𝑛

∑𝑛
𝑖=1 𝑒

1
𝜀
(𝑔𝜀,(𝑛,𝑛) (𝑌𝑖 )−𝑐 (𝑥,𝑌𝑖 ))

−𝑇𝜀,(𝑛,𝑛) (𝑥)
)
= 0

for all 𝑥 ∈ R𝑑 . Moreover, since Ω is compact, by the Cauchy-Schwarz inequality, there exists a

constant 𝐶 such that

|ℎ(𝑥)>(𝑦 −𝑇𝜀,(𝑛,𝑛) (𝑥)) | ≤ 𝐶 ‖ℎ(𝑥)‖ ∀𝑦 ∈ Ω .

Hoe�ding’s inequality therefore implies that if 𝑎 ≥ 𝐶2/2, then this choice of 𝜒 satis�es

∬
(𝑒 𝜒 (𝑥,𝑦) − 1)𝛾 (𝑥,𝑦) d𝑄𝑛 (𝑦) d𝑃 (𝑥) ≤ 0 .

Choosing ℎ(𝑥) = 1
2𝑎 (𝑇𝜀,𝑛 (𝑥) −𝑇𝜀,(𝑛,𝑛) (𝑥)), we conclude as in the proof of Theorem 2.6 that for
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𝜀 ≤ 1,
1
4𝑎
E‖𝑇𝜀,𝑛 −𝑇𝜀,(𝑛,𝑛) ‖2𝐿2 (𝑃) . (𝜀

−1 + 𝜀−𝑑/2) log(𝑛)𝑛−1/2 . 𝜀−𝑑/2 log(𝑛)𝑛−1/2 ,

and picking 𝑎 to be a su�ciently large constant yields the claim. �

2.3 Adaptive estimation

In Theorems 2.5 and 2.6, the optimal choice of the regularization parameter 𝜀 depends on 𝑛, 𝑑 ,

and 𝛼 . Although the number of samples and dimension are obviously known to the practitioner,

the smoothness of the transport map is often not known a priori. However, Lepski’s method (see

Birgé, 2001) can be used to obtain a data-driven method of choosing 𝜀, which gives rise to an

estimator that adapts to the unknown smoothness parameter 𝛼 .

For notational convenience, for any 𝛼 > 1, let 𝑠 := 𝛼 + 1 be the smoothness of the conjugate

Brenier potential 𝜑∗0 . We assume that 𝑠 ∈ [2 + 𝜄, 4] for some 𝜄 > 0 su�ciently small and �xed. Let

S be the following discrete subset

S B {2 + 𝜄 = 𝑠min = 𝑠1 < 𝑠2 < · · · < 𝑠𝑁 = 𝑠max = 4} ,

where 𝑠 𝑗 − 𝑠 𝑗−1 � (log𝑛)−1, and set

𝜀𝑠 = (𝑛/log𝑛)−1/2(𝑑+𝑠) , 𝜓𝑛 (𝑠) = (𝜀𝑠)𝑠 = (𝑛/log𝑛)−𝑠/2(𝑑+𝑠) . (2.17)

To calibrate our choice of 𝜀, we rely on sample splitting. Let D := {(𝑋𝑖, 𝑌𝑖)}𝑛𝑖=1 denote our initial

dataset, and let D′ denote an independent copy of D. Denote by 𝑃 ′𝑛 and 𝑄′𝑛 the empirical measures

arising from D′. Our choice of smoothness parameter is given by the following rule:

𝑠 B max{𝑠 ∈ S : ‖𝑇𝜀𝑠 −𝑇𝜀𝑠 ′ ‖
2
𝐿2 (𝑃 ′𝑛) ≤ 𝐾𝜓𝑛 (𝑠

′) ,∀ 𝑠′ ≤ 𝑠, 𝑠′ ∈ S} , (2.18)
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for a positive constant 𝐾 . The following theorem shows that choosing 𝜀 = 𝜀𝑠 gives rise to an

adaptive estimator.

Theorem 2.16. Suppose (E1) to (E3) holds, with 𝑋1, . . . , 𝑋𝑛 ∼ 𝑃 and 𝑌1, . . . , 𝑌𝑛 ∼ 𝑄 , resulting in

D = {(𝑋𝑖, 𝑌𝑖)}b𝑛/2c𝑖=1 and a hold-out set D′. Suppose 𝑠 is chosen according to (2.18) for 𝐾 su�ciently

large, with 𝜀 = 𝜀𝑠 chosen as in (2.17). The resulting estimator𝑇𝜀𝑠 exhibits a risk in 𝐿
2(𝑃) that matches

Theorem 2.5 up to log factors.

The proof of Theorem 2.16 uses standard ideas and is deferred to Appendix A.5.

2.4 Computational aspects

Our reason for studying the entropic map as an optimal transport map estimator arises from its

strong computational bene�ts, which are a consequence of the e�ciency of Sinkhorn’s algorithm

for entropic optimal transport (see Peyré and Cuturi, 2019). In this section, we compare the

computational complexity of the entropic map to the estimators of Hütter and Rigollet (2021),

Deb et al. (2021), and Manole et al. (2024a) in the two-sample setting. Finally, we perform several

experiments that demonstrate the computational advantages of our procedure. Throughout this

section, we use 𝑂̃ to hide poly-logarithmic factors in the sample size 𝑛.

2.4.1 Estimator complexities from prior work

We �rst describe the wavelet-based estimator proposed by Hütter and Rigollet (2021). Recall

that this estimator is minimax optimal for all 𝛼 > 1. The implementation of this estimator requires

various discretization and approximation schemes. The authors of that work use a numerical

implementation of the Daubechies wavelets to approximate the optimal Brenier potential, and

then compute its convex conjugate by means of a discrete Legendre transform on a discrete grid.

The gradient of the resulting potential is then obtained using �nite di�erences, and this is extended
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to data outside the grid by linear interpolation. Though computing this estimator takes time that

scales only linearly in the sample size 𝑛, the main bottleneck of this approach from a computational

standpoint is the computation of the Legendre transform on the grid, which requires at least 𝑐𝑁𝑑

operations, where 𝑁 denotes the resolution of the grid. Since this resolution needs to be chosen

�ne enough to be negligible, the exponential dependence in 𝑑 makes this approach prohibitively

expensive in most applications.

Another estimator recently analyzed in the literature by Manole et al. (2024a) is the “1-Nearest

Neighbor” estimator, which we denote by 𝑇 1NN
(𝑛,𝑛) , which achieves the minimax rate when 𝑇0 is

bi-Lipschitz (i.e., 𝛼 = 1 and (E3) is satis�ed) over a compact domain Ω. The estimator takes the form

𝑇 1NN
(𝑛,𝑛) (𝑥) =

𝑛∑︁
𝑖, 𝑗=1
(𝑛𝜋𝑖 𝑗 )1𝑉𝑖 (𝑥)𝑌𝑗 , (2.19)

where 1 is the indicator function for a set, and (𝑉𝑖)𝑛𝑖=1 are the Voronoi regions generated by (𝑋𝑖)𝑛𝑖=1,

i.e.,

𝑉𝑖 = {𝑥 ∈ Ω : ‖𝑥 − 𝑋𝑖 ‖ ≤ ‖𝑥 − 𝑋 𝑗 ‖, ∀𝑗 ≠ 𝑖},

and 𝜋 is the optimal coupling that solves (1.15) when the measures are the empirical measures

𝑃𝑛 and 𝑄𝑛 . Solving for 𝜋 can be done through the Hungarian algorithm, and has time complexity

O(𝑛3). However, unlike the wavelet estimator described above, computing this estimator does

not require constructing a grid whose size scales exponentially with dimension.

For the 𝛼 > 1 case, both Manole et al. (2024a) and Deb et al. (2021) propose estimators based on

density estimation. For these approaches, the idea is to construct nonparametric density estimates

of the measures 𝑃 and𝑄 , resample points from these densities, and �nally perform the appropriate

matching using the Hungarian algorithm once again. Though tractable in low dimensions, this

approach is limited by the di�culty of sampling from nonparametric density estimates, which

typically requires time scaling exponentially in the dimension 𝑑 .

In short, prior estimators proposed in the literature either have runtime scaling exponentially
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in 𝑑 (in the case of the wavelet estimator or estimators based on nonparametric density estimation)

or cubicly in 𝑛 (in the case of the 1NN estimator). By contrast, in the following section, we show

that our estimator can be computed in nearly O(𝑛2) time.

2.4.2 Computational complexity of the entropic map

We now turn to the computational analysis of our estimator, which has the closed-form

representation

𝑇𝜀,(𝑛,𝑛) (𝑥) =
∑𝑛
𝑖=1𝑌𝑖𝑒

1
𝜀
(𝑔𝜀,(𝑛,𝑛) (𝑌𝑖 )− 1

2 ‖𝑥−𝑌𝑖 ‖
2)∑𝑛

𝑖=1 𝑒
1
𝜀
(𝑔𝜀,(𝑛,𝑛) (𝑌𝑖 )− 1

2 ‖𝑥−𝑌𝑖 ‖2)
. (2.20)

The computational burden of our estimator falls on computing the optimal entropic potential

evaluated at the data 𝑔𝜀,(𝑛,𝑛) (𝑌𝑖). Indeed, once we have this potential, it is clear that the remainder

of (2.20) can be computed in O(𝑛) time.

The leading approach to compute optimal entropic potentials in practice is Sinkhorn’s al-

gorithm (Peyré and Cuturi, 2019; Sinkhorn, 1967), an alternating minimization algorithm that

computes approximations of the entropic potentials by iteratively updating 𝑓 and 𝑔 so that they

satisfy one of the two dual optimality conditions given in (1.27) and (1.28). Explicitly, de�ning

𝑓 (0) = 0, Sinkhorn’s algorithm performs the updates

𝑔(𝑘) (𝑦) = −𝜀 log 1
𝑛

𝑛∑︁
𝑖=1

𝑒
1
𝜀
(𝑓 (𝑘) (𝑋𝑖 )− 1

2 ‖𝑋𝑖−𝑦‖2)

𝑓 (𝑘+1) (𝑥) = −𝜀 log 1
𝑛

𝑛∑︁
𝑗=1

𝑒
1
𝜀
(𝑔 (𝑘) (𝑌𝑗 )− 1

2 ‖𝑥−𝑌𝑗 ‖
2) .

until termination. Since it is only necessary to compute 𝑓 (𝑘) and 𝑔(𝑘) on the support of 𝑃𝑛 and 𝑄𝑛 ,

respectively, each iteration can be implemented in O(𝑛2) time.

Note that this update rule guarantees that

∫
𝑒

1
𝜀
(𝑓 (𝑘) (𝑥)+𝑔 (𝑘) (𝑦)− 1

2 ‖𝑥−𝑦‖
2) d𝑃𝑛 (𝑥) = 1
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for all 𝑦 at each iteration. By contrast, the other optimality condition (1.27) is not satis�ed at each

iteration, though Sinkhorn (1967) showed that

∫
𝑒

1
𝜀
(𝑓 (𝑘) (𝑥)+𝑔 (𝑘) (𝑦)− 1

2 ‖𝑥−𝑦‖
2) d𝑄𝑛 (𝑦) → 1

as 𝑘 →∞, and therefore that the iterates of Sinkhorn’s algorithm converge to optimal entropic

potentials.

To analyze the running time of our estimator, we will leverage recent analyses of the conver-

gence rate of Sinkhorn’s algorithm (Altschuler et al., 2017; Cuturi, 2013; Dvurechensky et al., 2018)

to explicitly quantify the error incurred by terminating after a �nite number of steps. For 𝑘 ≥ 0,

we consider the entropic map estimator obtained after 𝑘 iterates of Sinkhorn’s algorithm:

𝑇 (𝑘) (𝑥) =
∑𝑛
𝑖=1𝑌𝑖𝑒

1
𝜀
(𝑔 (𝑘) (𝑌𝑖 )− 1

2 ‖𝑥−𝑌𝑖 ‖
2)∑𝑛

𝑖=1 𝑒
1
𝜀
(𝑔 (𝑘) (𝑌𝑖 )− 1

2 ‖𝑥−𝑌𝑖 ‖2)
. (2.21)

Despite the fact that 𝑔(𝑘) is not an entropic potential for the original problem, the following

theorem shows that 𝑇 (𝑘) is nevertheless an acceptable estimator if 𝑘 is su�ciently large.

Theorem 2.17. Suppose assumptions (E1) to (E3) hold, and we choose 𝜀 as in Theorem 2.5. Then for

any 𝑘 & 𝑛7/(𝑑+𝛼+1) log𝑛,

E‖𝑇 (𝑘) −𝑇0‖2𝐿2 (𝑃) . (1 + 𝐼0(𝑃,𝑄))𝑛
− (𝛼+1)

2(𝑑+𝛼+1) log𝑛 ,

where 𝛼 = 3 ∧ 𝛼 . In particular, an estimator achieving the same rate as the estimator in Theorem 2.5

can be computed in Õ(𝑛2+7/(𝑑+𝛼+1)) = 𝑛2+𝑜𝑑 (1) time.
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Proof. We begin by decomposing the error and applying Theorem 2.6:

E‖𝑇 (𝑘) −𝑇0‖2𝐿2 (𝑃) . E‖𝑇
(𝑘) −𝑇𝜀,𝑛‖2𝐿2 (𝑃) + E‖𝑇𝜀,𝑛 −𝑇0‖

2
𝐿2 (𝑃)

. E‖𝑇 (𝑘) −𝑇𝜀,𝑛‖2𝐿2 (𝑃) + 𝜀
1−𝑑/2 log(𝑛)𝑛−1/2 + 𝜀 (𝛼+1)/2 + 𝜀2𝐼0(𝑃,𝑄) .

We proceed almost exactly as in Theorem 2.10, and consider

𝜒 (𝑥,𝑦) = ℎ(𝑥)>
(
𝑦 −𝑇 (𝑘) (𝑥)

)
− 𝑎‖ℎ(𝑥)‖2,

for ℎ : R𝑑 → R𝑑 and 𝑎 to be speci�ed. For 𝑥 ∈ R𝑑 , 𝑦 ∈ supp(𝑄𝑛), de�ne

𝛾 (𝑥,𝑦) =
exp

(
1
𝜀
(𝑔(𝑘) (𝑦) − 1

2 ‖𝑥 − 𝑦‖
2)

)
1
𝑛

∑𝑛
𝑖=1 exp

( 1
𝜀
(𝑔(𝑘) (𝑌𝑖) − 1

2 ‖𝑥 − 𝑌𝑖 ‖2)
) . (2.22)

By construction,
∫
𝛾 (𝑥,𝑦) d𝑄𝑛 (𝑦) = 1 for all 𝑥 ∈ R𝑑 , and 𝑇 (𝑘) (𝑥) =

∫
𝑦𝛾 (𝑥,𝑦) d𝑄𝑛 (𝑦). There-

fore, for any ℎ : R𝑑 → R𝑑 ,

∫
ℎ(𝑥)>

(
𝑦 −𝑇 (𝑘) (𝑥)

)
𝛾 (𝑥,𝑦) d𝑄𝑛 (𝑦) = 0

for all 𝑥 ∈ R𝑑 . Moreover, since Ω is compact, there exists a constant 𝐶 such that

|ℎ(𝑥)>(𝑦 −𝑇 (𝑘) (𝑥)) | ≤ 𝐶 ‖ℎ(𝑥)‖ ∀𝑥,𝑦 ∈ Ω .

Hoe�ding’s inequality therefore implies that for 𝑎 su�ciently large, this choice of 𝜒 satis�es

∬
(𝑒 𝜒 (𝑥,𝑦) − 1)𝛾 (𝑥,𝑦) d𝑄𝑛 d𝑃 (𝑥) ≤ 0 .
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Now, de�ne a probability measure 𝑃 with the same support as 𝑃𝑛 by setting

d𝑃 (𝑥)
d𝑃𝑛 (𝑥)

=

∫
𝑒

1
𝜀
(𝑓 (𝑘) (𝑥)+𝑔 (𝑘) (𝑦)− 1

2 ‖𝑥−𝑦‖
2) d𝑄𝑛 (𝑦) , (2.23)

and let

𝑓 (𝑘+1) (𝑥) = −𝜀 log 1
𝑛

𝑛∑︁
𝑖=1

exp
(
𝜀−1(𝑔(𝑘) (𝑌𝑖) − 1

2 ‖𝑥 − 𝑌𝑖 ‖
2)

)
. (2.24)

We claim that 𝛾 (𝑥,𝑦) = exp( 1
𝜀
(𝑓 (𝑘+1) (𝑥) +𝑔(𝑘) (𝑦) − 1

2 ‖𝑥 −𝑦‖
2) is the 𝑃 ⊗𝑄𝑛 density of the optimal

entropic plan between 𝑃 and 𝑄𝑛. We have already observed that
∫
𝛾 (𝑥,𝑦) d𝑄𝑛 (𝑦) = 1 for all

𝑥 ∈ R𝑑 by construction, so it su�ces to note that for all 𝑦 ∈ supp(𝑄𝑛),∫
𝛾 (𝑥,𝑦) d𝑃 (𝑥) =

∫
𝑒𝜀
−1 (𝑔 (𝑘) (𝑦)− 1

2 ‖𝑥−𝑦‖
2)∫

𝑒𝜀
−1 (𝑔 (𝑘) (𝑦 ′)− 1

2 ‖𝑥−𝑦 ′‖2) d𝑄𝑛 (𝑦′)
d𝑃 (𝑥)

=

∫
𝑒𝜀
−1 (𝑓 (𝑘) (𝑥)+𝑔 (𝑘) (𝑦)− 1

2 ‖𝑥−𝑦‖
2)∫

𝑒𝜀
−1 (𝑓 (𝑘) (𝑥)+𝑔 (𝑘) (𝑦 ′)− 1

2 ‖𝑥−𝑦 ′‖2) d𝑄𝑛 (𝑦′)
d𝑃 (𝑥)

=

∫
𝑒𝜀
−1 (𝑓 (𝑘) (𝑥)+𝑔 (𝑘) (𝑦)−𝑐 (𝑥,𝑦)) d𝑃𝑛 (𝑥) = 1 .

Therefore (𝑓 (𝑘+1), 𝑔(𝑘)) satisfy (1.28), so 𝛾 is indeed the 𝑃 ⊗𝑄𝑛 density of the optimal entropic plan

between the two measures.

Applying Proposition A.4, we obtain for any 𝜀 ≤ 1

E sup
ℎ:R𝑑→R𝑑

∬
ℎ(𝑥)>

(
𝑦 −𝑇 (𝑘) (𝑥)

)
− 𝑎‖ℎ(𝑥)‖2 d𝜋𝜀,𝑛 . 𝜀−1𝛿 + 𝜀−𝑑/2 log(𝑛)𝑛−1/2 , (2.25)

where 𝛿 := TV(𝑃, 𝑃𝑛). Choosing ℎ(𝑥) = 1
2𝑎

(
𝑇𝜀,𝑛 (𝑥) −𝑇 (𝑘) (𝑥)

)
, we conclude as in Theorem 2.10,

resulting in

E‖𝑇 (𝑘) −𝑇𝜀,𝑛‖2𝐿2 (𝑃) . 𝜀
−1𝛿 + 𝜀−𝑑/2 log(𝑛)𝑛−1/2 .
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All together, we have

E‖𝑇 (𝑘) −𝑇0‖2𝐿2 (𝑃) . 𝜀
−1𝛿 + 𝜀−𝑑/2 log(𝑛)𝑛−1/2 + 𝜀 (𝛼+1)/2 + 𝜀2𝐼0(𝑃,𝑄) .

The �rst term will be negligible if 𝛿 . 𝜀3.

By de�nition, 𝑃 is the �rst marginal of the joint distribution with density

𝑒
1
𝜀
(𝑓 (𝑘) (𝑥)+𝑔 (𝑘) (𝑦)− 1

2 ‖𝑥−𝑦‖
2) .

with respect to 𝑃𝑛 ⊗ 𝑄𝑛 . By Altschuler et al. (2017, Theorem 2), if 𝑘 satis�es

𝑘 & 𝛿−2 log(𝑛 ·max
𝑖, 𝑗

𝑒
1
2𝜀 ‖𝑥𝑖−𝑦 𝑗 ‖

2) & 𝛿−2𝜀−1 log𝑛 ,

then TV(𝑃, 𝑃𝑛) ≤ 𝛿 . Choosing 𝛿 = 𝜀3 � 𝑛−3/(𝑑+𝛼+1) yields the claim. �

Remark 2.18. A surprising feature of Theorem 2.17 is that the necessary number of iterations

decreases with the dimension 𝑑 . This re�ects the fact that when 𝑑 is large, the optimal choice of 𝜀

is also larger, and it is well established both theoretically and empirically that the performance of

Sinkhorn’s algorithm improves considerably as 𝜀 increases (Altschuler et al., 2017; Cuturi, 2013).

2.4.3 Empirical performance

We test two implementations of Sinkhorn’s algorithm, one from the Python Optimal Transport

(POT) library (Flamary et al., 2021), and an implementation that uses the KeOps library optimized

for GPUs. Both implementations employ log-domain stabilization to avoid numerical over�ow

issues arising from the small choice of 𝜀.

For simplicity, we employ the same experimental setup as Hütter and Rigollet (2021). We

generate i.i.d. samples from a source distribution 𝑃 , which we always take to be [−1, 1]𝑑 , and from
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(a) 𝑇0(𝑥) = exp(𝑥) coordinate-wise (b) 𝑇0(𝑥) = 3𝑥2sign(𝑥) coordinate-wise

Figure 2.1: Visualization of 𝑇𝜀 and 𝑇0(𝑥) in 2 dimensions.

a target distribution 𝑄 = (𝑇0)♯𝑃 , where we de�ne 𝑇0 : R𝑑 → R𝑑 to be an optimal transport map

obtained by applying a monotone scalar function coordinate-wise.1

In Figure 2.1, we visualize the output of our estimator in 𝑑 = 2. The �gures depict the e�ect of

evaluating the estimator 𝑇𝜀 and the true map 𝑇0 on additional test points 𝑋 ′1, . . . , 𝑋
′
𝑚 drawn i.i.d.

from 𝑃 .

2.4.3.1 Comparison to a tractable minimax estimator

Among the previously discussed estimators, the 1-Nearest Neighbor estimator analyzed in

Manole et al. (2024a) is the most tractable, and the only one remotely comparable to our method.

As discussed in Section 2.4.1, this approach uses the Hungarian algorithm which has a runtime

of 𝑂 (𝑛3). However, since it is not parallelizable, we compare its performance to the non-parallel

CPU implementation of Sinkhorn’s algorithm from the POT library.

We perform a simple experiment comparing our approach to theirs: let 𝑃 = [−1, 1]𝑑 and let

𝑇0(𝑥) = exp(𝑥), acting coordinate-wise. We vary 𝑑 and 𝑛, and track runtime performance of
1Note that any component-wise monotone function is the gradient of a convex function.
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both estimators, as well as the Mean Squared Error (MSE) of the map estimate2, averaged over

20 runs. For our estimator, we choose 𝜀 as suggested by Theorem 2.5. We observe that in 𝑑 = 2,
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(a)MSE comparison
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(b) Runtime comparison

Figure 2.2: Dashed lines are our estimator, solid lines are 𝑇 1NN, and 𝑇0(𝑥) = exp(𝑥)

the MSE of the two estimators are comparable, though our error deteriorates for large 𝑛, which

re�ects our slightly sub-optimal estimation rate. However, as 𝑑 increases to moderate dimensions,

our estimator consistently outperforms 𝑇 1NN in both MSE and runtime with the choice of 𝜀 in

Theorem 2.5. For both estimators, the CPU runtime begins to become signi�cant (on the order of

seconds) when 𝑛 exceeds 1500.

2.4.3.2 Parallel estimation on massive data sets

Figure 2.2 makes clear that computation of both estimators slows for 𝑛 � 103 when imple-

mented on a CPU. However, Sinkhorn’s algorithm can be easily parallelized. Unlike the 1-Nearest

Neighbor estimator—and all other transport map estimators of which we are aware—our proposal

therefore runs extremely e�ciently on GPUs. We again average performance over 20 runs, and

choose 𝜀 as in the previous example, with 𝑇0 again as the exponential map (coordinate-wise). We
2We calculate MSE by performing Monte Carlo integration over the space [−1, 1]𝑑 .
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see in Figure 2.3 that even when 𝑛 = 104 and 𝑑 = 10, it takes roughly a third of a second to perform

the optimization.
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(a)MSE comparison
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(b) Runtime comparison

Figure 2.3: Performance of a parallel implementation of our estimator on large data sets.
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3 | Minimax estimation of

discontinuous optimal transport

maps: The semidiscrete case

3.1 Introduction

In this chapter, we revisit the task of estimating optimal transport maps, i.e., minimizers of the

following non-convex, in�nite-dimensional optimization problem1

∇𝜑0 = argmin
𝑇∈T (𝑃,𝑄)

∫
‖𝑥 −𝑇 (𝑥)‖2 d𝑃 (𝑥) ,

on the basis of �xed data 𝑋1, . . . , 𝑋𝑛 ∼ 𝑃 and 𝑌1, . . . , 𝑌𝑛 ∼ 𝑄 .

Recall that the �rst �nite-sample analysis of this problem was performed by Hütter and Rigollet

(2021), who proposed an estimator for ∇𝜑0 under the assumption that 𝜑0 is 𝑠+1-times continuously

di�erentiable, for 𝑠 > 1. They showed that a wavelet-based estimator 𝜑W satis�es

E‖∇𝜑W − ∇𝜑0‖2𝐿2 (𝑃) . 𝑛
− 2𝑠

2𝑠+𝑑−2 log2(𝑛) ,

1T (𝑃,𝑄) is the set of transport maps from 𝑃 to 𝑄 .
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and that this rate is minimax optimal up to logarithmic factors. Their analysis requires that

𝑃 and 𝑄 have bounded densities with compact support Ω ⊆ R𝑑 , and that 𝜑0 be both strongly

convex and smooth. Implementing the estimator 𝜑W is computationally challenging even in

moderate dimensions, and is practically infeasible for 𝑑 > 3. Follow up works (Deb et al., 2021;

Divol et al., 2022; Manole et al., 2024a; Pooladian and Niles-Weed, 2021; Vacher et al., 2024) have

proposed alternative estimators which improve upon 𝜑W either in computational e�ciency or in

the generality in which they apply. Though these subsequent works go signi�cantly beyond the

setting considered by Hütter and Rigollet (2021), none have eliminated the crucial assumption

that 𝜑0 is smooth, i.e., that the transport map ∇𝜑0 is Lipschitz.

There are two estimators proposed in this line of work that are particularly practical and worth

highlighting. Manole et al. (2024a) study the 1-Nearest Neighbor estimator 𝑇1NN. This estimator is

obtained by solving the empirical optimal transport problem between the samples, which is then

extended to a function de�ned on R𝑑 using a projection scheme; see Section 3.3 for more details.

Given 𝑛 samples from the source and target measures in R𝑑 , 𝑇1NN has a runtime of O(𝑛3) via the

Hungarian Algorithm (see Peyré and Cuturi, 2019, Chapter 3), and, for 𝑑 ≥ 5, achieves the rate

E‖𝑇1NN − ∇𝜑0‖2𝐿2 (𝑃) . 𝑛
− 2
𝑑 (3.1)

whenever the optimal Brenier potential𝜑0 is smooth and strongly convex, and undermild regularity

conditions on 𝑃 . Recall that in the previous chapter, we conducted a statistical analysis of an

estimator originally proposed by Seguy et al. (2018) based on entropic optimal transport. The

e�ciency of Sinkhorn’s algorithm for large-scale problems (Cuturi, 2013; Peyré and Cuturi, 2019)

makes this estimator attractive from a computational perspective, and we also gave statistical

guarantees, though these fall short of being minimax-optimal.

Despite this progress, none of the aforementioned results can be applied in situations where

∇𝜑0 is not Lipschitz. And in practice, even requiring the continuity of the transport map can be
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far too stringent. It is indeed too much to hope for that an underlying data distribution (e.g. over

the space of images) has one single connected component; this is supported by recent work

that stipulates that the underlying data distribution is the union of disjoint manifolds of varying

intrinsic dimension (Brown et al., 2022). In such a setting, the transport map ∇𝜑0 will not be

continuous, demonstrating the need of considering the problem of the statistical estimation of

discontinuous transport maps to get closer to real-world situations.

As a �rst step, we choose to focus on the case where the target distribution 𝑄 =
∑𝐽

𝑗=1 𝑞 𝑗𝛿𝑦 𝑗 is

discrete while the source measure 𝑃 has full support, often called the semi-discrete setting in the

optimal transport literature. In this setting, the optimal transport map ∇𝜑0 is constant over regions

known as Laguerre cells (each cell corresponding to a di�erent atom of the discrete measure),

while displaying discontinuities on their boundaries (see Section 3.1.3 for more details). Figure 3.1

provides such an example. Semi-discrete optimal transport therefore provides a natural class of

discontinuous transport maps. We focus on this setting for two reasons. First, it has garnered a

Figure 3.1: An illustration of a semi-discrete optimal transport map. The support of 𝑃 , the whole rectangle,
is partitioned into regions, each of which is transported to one of the atoms of the discrete target measure
𝑄 . The resulting map is discontinuous at the boundaries of each cell.

lot of attention in recent years, in both computational and theoretical circles (see, e.g., Altschuler

et al., 2022; Chen et al., 2022a; Mérigot et al., 2021), due in particular to its connection with the
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quantization problem (Graf and Luschgy, 2007). Second, the semi-discrete setting is intriguing

from a statistical perspective: existing results show that statistical estimation problems involving

semi-discrete optimal transport can escape the curse of dimensionality (del Barrio et al., 2022a; del

Barrio and Loubes, 2019; Forrow et al., 2019; Hundrieser et al., 2024b). For example, Hundrieser

et al. (2024b, Theorem 3.2) show that if 𝑃𝑛 and𝑄𝑛 are empirical measures consisting of i.i.d. samples

from 𝑃 and 𝑄 , then the semi-discrete assumption implies

E|𝑊 2
2 (𝑃,𝑄) −𝑊 2

2 (𝑃𝑛, 𝑄𝑛) | . 𝑛−1/2 .

These results o�er the tantalizing possibility that semi-discrete transport maps can be estimated

at the rate 𝑛−1/2, in sharp contrast to the dimension-dependent rates obtained in bounds such

as (3.1). However, the optimal rates of estimation for semi-discrete transport maps are not known,

and no estimators with �nite-sample convergence guarantees exist.

3.1.1 Main Contributions

We show that the computationally e�cient estimator 𝑇𝜀 from Chapter 2 provably estimates

discontinuous semi-discrete optimal transport maps at the optimal rate. More precisely, our

contributions are the following:

1. For 𝑄 discrete and 𝑃 with full support on a compact, convex set, we show that 𝑇𝜀 achieves

the following dimension-independent convergence rate to the optimal transport map (see

Theorem 3.2)

E‖𝑇𝜀 − ∇𝜑0‖2𝐿2 (𝑃) . 𝑛
−1/2 , (3.2)

when the regularization parameter 𝜀 � 𝑛−1/2. We further show (Proposition 3.13) that this

rate is minimax optimal.

2. As a by-product of our analysis, we give new parametric rates of convergence to the entropic

57



Brenier map 𝑇𝜀 , a result which improves exponentially on prior work in the dependence on

𝜀 (see Theorem 3.8 and Remark 3.9).

3. Our proof technique requires several new results, including a novel stability bound for the

entropic Brenier maps (Proposition 3.10), and a new stability result for the entropic dual

Brenier potentials in the semi-discrete case (Proposition 3.12).

4. We show that, unlike 𝑇𝜀 , the 1-Nearest-Neighbor estimator is provably suboptimal in the

semi-discrete setting (see Proposition 3.14) by exhibiting a discrete measure 𝑄 such that the

risk su�ers from the curse of dimensionality:

E‖𝑇1NN − ∇𝜑0‖2𝐿2 (𝑃) & 𝑛
−1/𝑑 .

5. In Section 3.3, we verify our theoretical �ndings on synthetic experiments. We also show by

simulation that the entropic estimator appears to performwell even outside the semi-discrete

setting, suggesting it as a promising choice for estimating other types of discontinuous

maps.

3.1.2 Notation

The Euclidean ball centered at 𝑎 with radius 𝑟 > 0 is written as 𝐵(𝑎; 𝑟 ). The symbols 𝐶

and 𝑐 denote positive constants whose value may change from line to line. Write 𝑎 . 𝑏 and

𝑎 � 𝑏 if there exist constants 𝑐,𝐶 > 0 such that 𝑎 ≤ 𝐶𝑏 and 𝑐𝑏 ≤ 𝑎 ≤ 𝐶𝑏, respectively. For an

integer 𝑁 ∈ N, we let [𝑁 ] B {1, . . . , 𝑁 }. For a function 𝑓 and a probability measure 𝜌 , we write

‖ 𝑓 ‖2
𝐿2 (𝜌) B E𝑋∼𝜌 ‖ 𝑓 (𝑋 )‖

2 . Similarly, we write Var𝜌 (𝑓 ) B E𝑋∼𝜌 [(𝑓 (𝑋 ) − E𝑋∼𝜌 [𝑓 (𝑋 )])2] for the

variance of 𝑓 with respect to 𝜌 .

3.1.3 Background on optimal transport
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3.1.3.1 Semi-discrete optimal transport

In optimal transport, the semi-discrete setting refers to the case where 𝑃 has as density with re-

spect to the Lebesguemeasure onR𝑑 , and𝑄 is a discrete measure supported on �nitely many points.

The following theorem characterizes the optimal transport map in this situation, which exhibits a

particular structure compared to the general results in the previous section. Let [𝐽 ] B {1, . . . , 𝐽 }.

Proposition 3.1 (Aurenhammer et al., 1998). If 𝑃 ∈ Pac(Ω) and 𝑄 is a discrete measure supported

on the points 𝑦1, . . . , 𝑦𝐽 , then the optimal transport map ∇𝜑0 is given by

∇𝜑0(𝑥) B argmax
𝑗∈[𝐽 ]

{〈𝑥,𝑦 𝑗 〉 −𝜓0(𝑦 𝑗 )} , (3.3)

where𝜓0 is the convex dual to 𝜑0 in the sense of (1.22).

Here, the optimal dual Brenier potential𝜓0 can be identi�ed with a vector in R𝐽 , de�ned by

the number of atoms, and the optimal Brenier potential is consequently given by

𝜑0 B max
𝑗∈[𝐽 ]
{〈𝑥,𝑦 𝑗 〉 −𝜓0(𝑦 𝑗 )} .

Although 𝜑0 is not di�erentiable, only subdi�erentiable, we still use the gradient notation as ∇𝜑0

is well-de�ned 𝑃-almost everywhere.

The map ∇𝜑0 partitions the space into 𝐽 convex polytopes 𝐿 𝑗 B ∇𝜑−10 ({𝑦 𝑗 }) called Laguerre

cells; recall Figure 3.1. From this de�nition, it is clear that for a given 𝑥 ∈ 𝐿 𝑗 , 𝑥 ↦→ ∇𝜑0(𝑥) = 𝑦 𝑗 is

the optimal transport mapping. The di�culty in �nding this map lies in determining the cells 𝐿 𝑗 ,

or equivalently the dual variables𝜓0(𝑦 𝑗 ).

When we want to place emphasis on the underlying measures, we will write 𝜑0 = 𝜑
𝑃→𝑄
0 ,

𝜓0 = 𝜓
𝑃→𝑄
0 and 𝑇0 = 𝑇

𝑃→𝑄
0 .
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3.1.3.2 Reminders for entropic optimal transport

We include some brief reminders for entropic optimal transport. For two measures 𝑃 and 𝑄

with �nite second moment, recall that the primal entropic optimal transport problem is

OT𝜀 (𝑃,𝑄) := min
𝜋∈Γ(𝑃,𝑄)

∬
1
2 ‖𝑥 − 𝑦‖

2 d𝜋 (𝑥,𝑦) + 𝜀KL(𝜋 ‖𝑃 ⊗ 𝑄) , (3.4)

where KL(𝜇‖𝜈) =
∫
log d𝜇

d𝜈 d𝜇 when 𝜇 ∈ P(Ω) is absolutely continuous with respect to 𝜈 ∈ P(Ω),

and 𝜀 > 0 is a positive number.

Equation (3.4) admits the following semi-dual formulation, which is now an unconstrained

optimization problem (Genevay, 2019; Marino and Gerolin, 2020)

OT𝜀 (𝑃,𝑄) = 1
2𝑀2(𝑃) + 1

2𝑀2(𝑄)− inf
𝜑,𝜓

( ∫
𝜑 d𝑃 +

∫
𝜓 d𝑄

+ 𝜀
∬
(𝑒 (〈𝑥,𝑦〉−𝜑 (𝑥)−𝜓 (𝑦))/𝜀 − 1) d𝑃 (𝑥) d𝑄 (𝑦)

)
,

(3.5)

where (𝜑,𝜓 ) ∈ 𝐿1(𝑃) × 𝐿1(𝑄). When 𝑃 and 𝑄 have �nite second moments, (3.4) admits a unique

minimizer, 𝜋𝜀 and we have the existence of minimizers to (3.5), which we denote as (𝜑𝜀,𝜓𝜀). We

call 𝜋𝜀 the entropic optimal plan and (𝜑𝜀,𝜓𝜀) are called entropic Brenier potentials. The following

optimality relation further relates these primal and dual solutions (Csiszár, 1975):

d𝜋𝜀 (𝑥,𝑦) := 𝑒 (〈𝑥,𝑦〉−𝜑𝜀 (𝑥)−𝜓𝜀 (𝑦))/𝜀 d𝑃 (𝑥) d𝑄 (𝑦) .

If (𝑋,𝑌 ) ∼ 𝜋𝜀 , we may de�ne the conditional probability 𝜋𝑥𝜀 of𝑌 given that𝑋 = 𝑥 , with density

d𝜋𝑥𝜀
d𝑄
(𝑦) ∝ exp ((〈𝑥,𝑦〉 −𝜓𝜀 (𝑦))/𝜀) . (3.6)

The barycentric projection of the optimal entropic coupling 𝜋𝜀 , or entropic Brenier map, is a central

object of study in several works (see e.g., del Barrio et al. (2022b); Goldfeld et al. (2024a); Pooladian
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and Niles-Weed (2021); Rigollet and Stromme (2022)), de�ned as

𝑇𝜀 (𝑥) =
∫
𝑦 d𝜋𝑥𝜀 (𝑦) = ∇𝜑𝜀 (𝑥) , (3.7)

where 𝜋𝑥𝜀 is as in (3.6). Note that this quantity is well de�ned for all 𝑥 ∈ R𝑑 as long as the source

and target measures have compact support; in particular, it applies to both discrete and continuous

measures. The second equality follows from (1.27) and the dominated convergence theorem. As

in the unregularized case, we will write 𝜑𝜀 = 𝜑
𝑃→𝑄
𝜀 ,𝜓𝜀 = 𝜓

𝑃→𝑄
𝜀 and 𝑇𝜀 = 𝑇

𝑃→𝑄
𝜀 when we want to

emphasize on the dependency with respect to the underlying measures.

3.1.3.3 Related work

Characterizing the convergence of entropic objects (e.g. potentials, cost, plans) to their un-

regularized counterparts in the 𝜀 → 0 regime has been a topic of several works in recent years.

Convergence of the costs OT𝜀 to𝑊 2
2 with precise rates was investigated by Chizat et al. (2020);

Conforti and Tamanini (2021); Pal (2024). The works of Bernton et al. (2022); Carlier et al. (2017);

Ghosal et al. (2022); Léonard (2012) study the convergence of the minimizers 𝜋𝜀 to 𝜋0 under varying

assumptions. Convergence of the potentials in a very general setting was established by Nutz and

Wiesel (2021), though without a rate of convergence in 𝜀. In the semi-discrete case, this gap was

closed by Altschuler et al. (2022) followed closely by Delalande (2022), which gave non-asymptotic

rates. The Sinkhorn Divergence, a non-negative, symmetric version of OT𝜀 , was introduced by

Genevay et al. (2018), was statistically analysed by Goldfeld et al. (2024a) and also del Barrio

et al. (2022b); Gonzalez-Sanz et al. (2022), and was connected to the entropic Brenier map by

Pooladian et al. (2022). The recent work by Rigollet and Stromme (2022) proved parametric rates

of estimation between the empirical entropic Brenier map and its population counterpart, though

with an exponentially poor dependence on the regularization parameter (see Remark 3.9). Entropic

optimal transport has also come into contact with the area of deep generative modeling through
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the following works by De Bortoli et al. (2021); Finlay et al. (2020a), among others.

3.2 Statistical performance of the entropic estimator in

the semi-discrete setting

Let 𝑃𝑛 and 𝑄𝑛 be the empirical measures associated with two 𝑛-samples from 𝑃 and 𝑄 . We

make the following regularity assumptions on 𝑃 , already introduced by Delalande (2022).

(S1) The measure 𝑃 has a compact convex support Ω ⊆ 𝐵(0;𝑅), with a density 𝑝 satisfying

0 < 𝑝min ≤ 𝑝 ≤ 𝑝max < ∞ for positive constants 𝑝min, 𝑝max and 𝑅.

For example, 𝑃 can be the uniform distribution over Ω, or a truncated Gaussian distribution.

Furthermore, we will need the following assumption on 𝑄 .

(S2) The discrete probability measure 𝑄 =
∑𝐽

𝑗=1 𝑞 𝑗𝛿𝑦 𝑗 is such that 𝑞 𝑗 ≥ 𝑞min > 0 and 𝑦 𝑗 ∈ 𝐵(0;𝑅)

for all 𝑗 ∈ [𝐽 ].

The goal of this section is to prove the following theorem:

Theorem 3.2. Let 𝑃 satisfy (S1) and let 𝑄 satisfy (S2). Let 𝑇𝜀 = 𝑇
𝑃𝑛→𝑄𝑛
𝜀 be the entropic Brenier map

de�ned from the �nite-samples. Then, for 𝜀 � 𝑛−1/2 and 𝑛 large enough,

E‖𝑇𝜀 −𝑇0‖2𝐿2 (𝑃) . 𝑛
−1/2 . (3.8)

Remark 3.3. We remark that the hidden constants in Theorem 3.8 and related results depend on

𝐽 , 𝑝min, 𝑝max, 𝑞min and 𝑅.

Remark 3.4 (Fixing the support via rounding). At present, the entropic map need not necessarily

map exactly to one of {𝑦1, . . . , 𝑦𝐽 }. In fact, 𝑇𝜀 : R𝑑 → conv({𝑌1, . . . , 𝑌𝑛}), where conv(𝐴) is the

convex hull for some set𝐴. In turn, the support of the entropic map does not in general match that
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of 𝑄 . However, this can be readily �xed with a rounding scheme. We can replace our estimator by

𝑇𝜀 which is obtained by mapping the output of 𝑇𝜀 to its nearest neighbor in the support of 𝑄—this

projection step is easy to compute, given that we essentially know the support of 𝑄 via samples.

By viewing this as a projection onto an appropriate set (namely, the set of transport maps with

codomain equal to the support of 𝑄), and applying the triangle inequality, it holds that

E‖𝑇𝜀 −𝑇0‖2𝐿2 (𝑃) ≤ 2E‖𝑇𝜀 −𝑇0‖2𝐿2 (𝑃)

but 𝑇𝜀 matches the support of 𝑄 .

Let 𝑇𝜀 = 𝑇
𝑃→𝑄
𝜀 denote the entropic Brenier map associated to 𝑃 and 𝑄 . Our proof relies on the

following bias-variance decomposition:

E‖𝑇𝜀 −𝑇0‖2𝐿2 (𝑃) . E‖𝑇𝜀 −𝑇𝜀 ‖
2
𝐿2 (𝑃) + ‖𝑇𝜀 −𝑇0‖

2
𝐿2 (𝑃) .

Following the next two results (Theorem 3.5 and Theorem 3.8) and the preceding decomposition,

the proof of Theorem 3.2 is merely a balancing act in the regularization parameter 𝜀.

Theorem 3.5. Let 𝑃 satisfy (S1) and let 𝑄 satisfy (S2). Then, for 𝜀 small enough,

‖𝑇𝜀 −𝑇0‖2𝐿2 (𝑃) . 𝜀 . (3.9)

The proof of Theorem 3.5 relies on the following qualitative picture: if a point 𝑥 belongs to

some Laguerre cell 𝐿 𝑗 , and is far away from the boundary of 𝐿 𝑗 , then the entropic optimal plan

𝜋𝜀 will send almost all of its mass towards the point 𝑦 𝑗 = 𝑇0(𝑥), sending an exponentially small

amount of mass to the other points 𝑦 𝑗 . Such a picture is correct as long as 𝑥 is at distance at least

𝜀 from the boundary of the Laguerre cell 𝐿 𝑗 , incurring a total error of order 𝜀. A rigorous proof of

Theorem 3.5 can be found in Appendix B.2.

Note that this rate is slower than the rate appearing in Corollary 2.8 in the continuous-to-
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continuous case. The following example shows that the dependency in 𝜀 is optimal in Theorem 3.5,

indicating that the presence of discontinuities necessarily a�ects the approximation properties of

the entropic Brenier map.

Example 3.6. Let 𝑃 be a probability measure on R having a symmetric bounded density 𝑝

continuous at 0, and let 𝑄 = 1
2 (𝛿−1 + 𝛿1). Following Altschuler et al. (2022, Section 3), one can

check that the entropic Brenier map in this setting is the following scaled sigmoidal function

𝑇𝜀 (𝑥) = tanh(2𝑥/𝜀) ,

whereas the optimal transport map 𝑇0(𝑥) = sign(𝑥). Then, performing a computation

‖𝑇𝜀 −𝑇0‖2𝐿2 (𝑃) = 2
∫ ∞

0
(1 − tanh(2𝑥/𝜀))2𝑝 (𝑥) d𝑥

= 𝜀

∫ ∞

0
(1 − tanh(𝑢))2𝑝 (𝑢𝜀/2) d𝑢

= 𝜀𝑝 (0) (log(4) − 1) + 𝑜 (𝜀) ,

where in the last step we invoked the dominated convergence theorem, and computed the limiting

integral.

Remark 3.7. Assumption (S1) can be relaxed for Theorem 3.5 to hold. More precisely, it can be

replaced by Assumptions 2.2 and 2.9 of Altschuler et al. (2022), that hold for unbounded measures

such as the normal distribution.

Finally, we present the sample-complexity result:

Theorem 3.8. Let 𝑃 satisfy (S1) and let 𝑄 satisfy (S2). Then, for 0 < 𝜀 ≤ 1 such that log(1/𝜀) .

𝑛/log(𝑛)

E‖𝑇𝜀 −𝑇𝜀 ‖2𝐿2 (𝑃) . 𝜀
−1𝑛−1 . (3.10)
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Remark 3.9. Rigollet and Stromme (2022) show that if 𝑃 and 𝑄 are merely compactly supported

with supp(𝑃), supp(𝑄) ⊆ 𝐵(0;𝑅), then

E‖𝑇𝜀 −𝑇𝜀 ‖2𝐿2 (𝑃) . 𝑒
𝑐𝑅2/𝜀𝜀−1𝑛−1 , (3.11)

where 𝑐 > 0 is some absolute positive constant. Thus, under the additional structural assumptions

of the semi-discrete formulation, we are able to signi�cantly improve the rate of convergence

between the empirical and population entropic Brenier maps.

The proof of Theorem 3.8 relies on a novel stability result, reminiscent of Manole et al. (2024a,

Theorem 6), which is of independent interest. We provide the proof in Appendix B.3.

Proposition 3.10. Let 𝜇, 𝜈, 𝜇′, 𝜈′ be four probability measures supported in 𝐵(0;𝑅). Then the entropic

maps 𝑇 𝜇→𝜈𝜀 and 𝑇 𝜇
′→𝜈 ′

𝜀 satisfy

𝜀

8𝑅2
‖𝑇 𝜇→𝜈𝜀 −𝑇 𝜇

′→𝜈 ′
𝜀 ‖2

𝐿2 (𝜇) ≤
∫
(𝜑𝜇

′→𝜈 ′
𝜀 − 𝜑𝜇→𝜈𝜀 ) d𝜇 +

∫
(𝜓 𝜇

′→𝜈 ′
𝜀 −𝜓 𝜇→𝜈𝜀 ) d𝜈 + 𝜀KL(𝜈 ‖𝜈′)

Remark 3.11. The right side of the bound in Proposition 3.10 is equal to

𝑆𝜀 (𝜇, 𝜈) − 𝑆𝜀 (𝜇′, 𝜈′) +
∫

𝑓
𝜇 ′→𝜈 ′
𝜀 d(𝜇′ − 𝜇) +

∫
𝑔
𝜇 ′→𝜈 ′
𝜀 d(𝜈′ − 𝜈) + 𝜀KL(𝜈 ‖𝜈′) ,

where 𝑓 𝜇
′→𝜈 ′

𝜀 = 1
2 ‖ · ‖

2 − 𝜑𝜇
′→𝜈 ′
𝜀 and 𝑔𝜇

′→𝜈 ′
𝜀 = 1

2 ‖ · ‖
2 −𝜓 𝜇

′→𝜈 ′
𝜀 . Proposition 3.10 is therefore the

entropic analogue of the stability bounds of Manole et al. (2024a, Theorem 6) and Ghosal and

Sen (2022, Lemma 5.1). Unlike those results, Proposition 3.10 allows both the source and target

measure to be modi�ed, and does not require any smoothness assumptions.
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3.2.1 Proof sketch of Theorem 3.8

To prove Theorem 3.8, we �rst consider the one-sample setting, where we assume that we

only have access to samples 𝑌1, . . . , 𝑌𝑛 ∼ 𝑄 , but we have full access to 𝑃 . We then consider the

one-sample entropic estimator 𝑇 𝑃→𝑄𝑛
𝜀 . We apply Proposition 3.10 with 𝜇 = 𝜇′ B 𝑃 , 𝜈 B 𝑄𝑛 and

𝜈′ B 𝑄 , yielding (see Corollary B.3 for details)

𝜀

8𝑅2
E‖𝑇 𝑃→𝑄𝑛

𝜀 −𝑇𝜀 ‖2𝐿2 (𝜇) ≤ E
( ∫
(𝜓𝜀 −𝜓𝑃→𝑄𝑛

𝜀 ) d(𝑄𝑛 −𝑄) + 𝜀KL(𝑄𝑛‖𝑄)
)
.

Let 𝜒2(𝑃 ‖𝑄) denote the 𝜒2-divergence between probability measure. Young’s inequality (see

Lemma B.15) and the inequality KL(𝑄𝑛‖𝑄) ≤ 𝜒2(𝑄𝑛‖𝑄) yield the following bound:

E‖𝑇 𝑃→𝑄𝑛
𝜀 −𝑇𝜀 ‖2𝐿2 (𝑃) ≤

8𝑅2

𝜀

(E[Var𝑄 (𝜓𝑃→𝑄𝑛
𝜀 −𝜓𝜀)]
2

+ E[𝜒
2(𝑄𝑛‖𝑄)]
2

)
+ 8𝑅2E[𝜒2(𝑄𝑛‖𝑄)] .

To complete our proof sketch, we use a new stability result on the entropic dual Brenier

potentials, catered for the semi-discrete setting.

Proposition 3.12. Let 𝜇 be a measure that satis�es (S1). Let 𝜈 , 𝜈′ be two discrete probability measures

supported on {𝑦1, . . . , 𝑦𝐽 }, with 𝜈′ ≥ 𝜆𝜈 for some 𝜆 > 0. Then, for 0 < 𝜀 ≤ 1,

Var𝜈 (𝜓 𝜇→𝜈
′

𝜀 −𝜓 𝜇→𝜈𝜀 ) ≤ 𝐶

𝜆2
𝜒2(𝜈′‖𝜈), (3.12)

where 𝐶 depends on 𝑅, 𝑝min and 𝑝max.

Moreover, a computation provided in Lemma B.16 shows that E[𝜒2(𝑄𝑛‖𝑄)] = 𝐽−1
𝑛
, which is

enough to conclude the proof of the one-sample case, see Appendix B.5 for details.

The two-sample setting is tackled using similar reasoning, where we ultimately prove in
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Section B.6 that the risk E‖𝑇𝜀 −𝑇 𝑃→𝑄𝑛
𝜀 ‖2

𝐿2 (𝑃) is upper bounded by

8𝑅2

𝜀
E

∫
(𝜑𝑃→𝑄𝑛
𝜀 − 𝜑𝑃𝑛→𝑄𝑛

𝜀 ) d(𝑃𝑛 − 𝑃) .

Such a quantity can again be related to the estimation of the dual potentials𝜓𝑃→𝑄𝑛
𝜀 and𝜓𝑃𝑛→𝑄𝑛

𝜀 .

Using the same reasoning as before, we expect a parametric rate of convergence for this term as

well. Merging the two results completes the proof of Theorem 3.8. We refer to Appendix B.6 for

full details.

3.3 Comparing against the 1NN estimator

3.3.1 Rate optimality of the entropic Brenier map

The upper bound of Theorem 3.8 shows that our estimator achieves the 𝑛−1/2 rate. In fact, the

following simple proposition tells us that this rate is optimal in the semi-discrete case.

Proposition 3.13. Let 𝑃 be the uniform distribution on [−1/2, 1/2]𝑑 and for any 𝐽 ≥ 2, let Q𝐽

denote the space of of probability measures with at most 𝐽 atoms, supported on [−1/2, 1/2]𝑑 . De�ne

the minimax rate of estimation

R𝑛 (Q𝐽 ) = inf
𝑇

sup
𝑄∈Q𝐽

E𝑄𝑛 [‖𝑇 −𝑇 𝑃→𝑄0 ‖2
𝐿2 (𝑃)] .

Then, it holds that R𝑛 (Q𝐽 ) ≥ 𝑛−1/2/64.

Proof. Let 𝑒 be a vector of the canonical basis of R𝑑 , scaled by 1/2. Fix 0 < 𝑟 < 1/2 and let

𝑄0 =
1
2𝛿−𝑒 +

1
2𝛿𝑒 and 𝑄1 = ( 12 − 𝑟 )𝛿−𝑒 + (

1
2 + 𝑟 )𝛿𝑒 . A computation gives ‖𝑇 𝑃→𝑄0

0 −𝑇 𝑃→𝑄1
0 ‖2

𝐿2 (𝑃) = 𝑟 .

Therefore, by Le Cam’s lemma (see, e.g., Wainwright, 2019, Chapter 15),

R𝑛 (Q𝐽 ,𝑅) ≥
𝑟

8
(1 − TV(𝑄𝑛0 , 𝑄𝑛1 )) . (3.13)
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Let H2(𝑄0, 𝑄1) denote the (squared) Hellinger distance between measures. We have

TV(𝑄𝑛0 , 𝑄𝑛1 )2 ≤ H2(𝑄𝑛0 , 𝑄𝑛1 ) ≤ 𝑛H2(𝑄0, 𝑄1) .

Furthermore, a computation gives

H2(𝑄0, 𝑄1) =
(√︃

1
2 − 𝑟 −

√︃
1
2

)2
+

(√︃
1
2 + 𝑟 −

√︃
1
2

)2
= 2 − (

√
1 + 2𝑟 +

√
1 − 2𝑟 ) ≤ 4𝑟 2.

We obtain the conclusion by picking 𝑟 = 𝑛−1/2/4. �

3.3.2 The 1NN estimator is proveably suboptimal

The 1-Nearest-Neighbor estimator, henceforth denoted 𝑇1NN, was proposed by Manole et al.

(2024a) as a computational surrogate for estimating optimal transport maps in the low smoothness

regime. Written succinctly, their estimator is𝑇1NN(𝑥) =
∑𝑛
𝑖=1 1𝑉𝑖 (𝑥)𝑌𝜋 (𝑖) , where (𝑉𝑖)𝑛𝑖=1 are Voronoi

regions i.e.,

𝑉𝑖 B {𝑥 ∈ R𝑑 : ‖𝑥 − 𝑋𝑖 ‖ ≤ ‖𝑥 − 𝑋𝑘 ‖ ,∀ 𝑘 ≠ 𝑖} ,

and 𝜋 is the optimal transport plan between the empirical measures 𝑃𝑛 and 𝑄𝑛 , which amounts to

a permutation. Computing the closest 𝑋𝑖 to a new sample 𝑥 has runtime O(𝑛 log(𝑛)), though the

complexity of this estimator is determined by computing the plan 𝜋 , which takes O(𝑛3) time via,

e.g., the Hungarian Algorithm (see Peyré and Cuturi, 2019, Chapter 3).

When 𝜑0 is smooth and strongly convex, Manole et al. (2024a) showed that, for 𝑑 ≥ 5,

E‖𝑇1NN − ∇𝜑0‖2𝐿2 (𝑃) . 𝑛
−2/𝑑 .

In contrast to the rate optimality of the entropic Brenier map, we now show that 𝑇1NN is
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proveably suboptimal in the semi-discrete setting. Not only does it fail to recover the minimax

rate obtained by the entropic Brenier map, but its performance in fact degrades in comparison to

the smooth case. A proof appears in Appendix B.7.

Proposition 3.14. There exist a measure 𝑃 satisfying (S1) and a discrete measure 𝑄 satisfying (S2)

such that for 𝑑 ≥ 3

E‖𝑇1NN −𝑇 𝑃→𝑄0 ‖2
𝐿2 (𝑃) & 𝑛

−1/𝑑 .

3.3.3 Experiments

We brie�y verify our theoretical �ndings on synthetic experiments. To create the following

plots, we draw two sets of 𝑛 i.i.d. points from 𝑃 , (𝑋1, . . . , 𝑋𝑛) and (𝑋 ′1, . . . , 𝑋 ′𝑛), and create target

points𝑌𝑖 = 𝑇0(𝑋 ′𝑖 ), where𝑇0 is known to us in advance in order to generate the data. Our estimators

are computed on the data (𝑋1, . . . , 𝑋𝑛) and (𝑌1, . . . , 𝑌𝑛), and we evaluate the Mean-Squared error

criterion

MSE(𝑇 ) = ‖𝑇 −𝑇0‖2𝐿2 (𝑃)

of a given map estimator 𝑇 using Monte Carlo integration, using 50000 newly sampled points

from 𝑃 . We plot the means across 10 repeated trials, accompanied by their standard deviations.

3.3.3.1 Semi-discrete example #1

First consider 𝑃 = Unif( [0, 1]𝑑) and create atoms {𝑦1, . . . , 𝑦𝐽 } by partitioning the points along

the �rst coordinate for all 𝑗 ∈ [𝐽 ]:

(𝑦 𝑗 ) [1] =
( 𝑗 − 1/2)

𝐽
, (𝑦 𝑗 ) [2] = · · · = (𝑦 𝑗 ) [𝑑] = 0.5 .
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Figure 3.2: Le�: 𝑇𝜀 versus 𝑇1NN for 𝐽 = 2 and 𝑑 = 10. Right: 𝑇𝜀 versus 𝑇1NN for 𝐽 = 10 and 𝑑 = 50.

We choose uniform 𝑞 𝑗 = 1/𝐽 for 𝑗 ∈ [𝐽 ]. In this case, it is easy to see that the optimal transport

map 𝑇0(𝑥) is uniquely de�ned by the �rst coordinate of 𝑥1. Figure 3.2 illustrates the rate-optimal

performance of the entropic Brenier map, and the proveably suboptimal performance of the

1-Nearest-Neighbor estimator.

3.3.3.2 Semi-discrete example #2

We now consider a synthetic experiment with far less symmetry. Let 𝑃 = Unif( [0, 1]𝑑), and

�x 𝐽 ∈ N. We randomly generate 𝑦1, . . . , 𝑌𝐽 ∈ [0, 1]𝑑 , and also randomly generate 𝜓0 ∈ R𝐽 , and

consider the optimal transport map 𝑇0(𝑥) = argmin 𝑗∈[𝐽 ]{𝑥>𝑦 𝑗 − (𝜓0) 𝑗 }. We de�ne 𝑄 = (𝑇0)♯𝑃 ,

leading to the same setup as before, but with a less structured optimal transport map. We consider

𝐽 = 5 and 𝑑 = 50, and repeat the procedure of the preceding section to generate our data, and the

resulting estimator. Figure 3.3 contains plots the MSE as a function of 𝑛, where again we see a

log-linear slope of around −0.5, which agrees with our theory.

3.3.3.3 Discontinuous example

We turn our attention to a discontinuous transport map, where for 𝑥 ∈ R𝑑 , all the coordinates

are �xed except for the �rst one

𝑇0(𝑥) = 2sign(𝑥 [1]) ⊗ 𝑥 [2] ⊗ · · · ⊗ 𝑥 [𝑑] .
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Figure 3.3: 𝑇𝜀 versus 𝑇1NN for with𝜓0 random in 𝑑 = 50

We choose 𝑃 = Unif( [−1, 1]𝑑) to exhibit a discontinuity in the data. Focusing on 𝑑 = 10, we see in

Figure 3.4 that the entropic map estimator avoids the curse of dimensionality and enjoys a faster

convergence rate, with better constants.
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Figure 3.4: 𝑇𝜀 versus 𝑇1NN for 𝑑 = 10
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4 | Plug-in estimation of Schrödinger

bridges

4.1 Introduction

Modern statistical learning tasks often involve not merely the comparison of two unknown

probability distributions but also the estimation of transformations from one distribution to

another. Estimating such transformations is necessary when we want to generate new samples,

infer trajectories, or track the evolution of particles in a dynamical system. In these applications,

we want to know not only how “close” two distributions are, but also how to “go” between them.

Optimal transport theory de�nes objects that are well suited for both of these tasks (Santam-

brogio, 2015; Villani, 2009). The 2-Wasserstein distance is a popular tool for comparing probability

distributions for data analysis in statistics (Carlier et al., 2016; Chernozhukov et al., 2017; Ghosal

and Sen, 2022), machine learning (Salimans et al., 2018), and the applied sciences (Bunne et al.,

2023b; Manole et al., 2024b). Recall that under suitable conditions, the two probability measures

that we want to compare (say, 𝜇 and 𝜈) induce an optimal transport map: the uniquely de�ned

vector-valued function which acts as a transport map between 𝜇 and 𝜈 such that the distance trav-

eled is minimal in the 𝐿2 sense (Brenier, 1991). Despite being a central object in many applications,

the optimal transport map is di�cult to compute and su�ers from poor statistical estimation guar-

antees in high dimensions; see Divol et al. (2022); Hütter and Rigollet (2021); Manole et al. (2024a).
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These drawbacks of the optimal transport map suggest that other approaches for de�ning

a transport between two measures may often be more appropriate. For example, �ow based

or iterative approaches have recently begun to dominate in computational applications—these

methods sacri�ce the 𝐿2-optimality of the optimal transport map to place greater emphasis on

the tractability of the resulting transport. The work of Chen et al. (2018) proposed continuous

normalizing �ows (CNFs), which use neural networks to model the vector �eld in an ordinary

di�erential equation (ODE). This machinery was exploited by several groups simultaneously

(Albergo and Vanden-Eijnden, 2022; Lipman et al., 2022; Liu et al., 2022b) for the purpose of

developing tractable constructions of vector �elds that satisfy the continuity equation (recall

Section 4.2.1.1), and whose �ow maps therefore yield valid transports between source and target

measures.

An increasingly popular alternative method for iterative transport is based on the Fokker–

Planck equation (see Section 4.2.1 for a de�nition). This formulation incorporates a di�usion term,

and the resulting dynamics follow a stochastic di�erential equation (SDE). Though there exist many

stochastic dynamics that give rise to valid transports, a canonical role is played by the Schrödinger

bridge (SB). Just as the optimal transport map minimizes the 𝐿2 distance in transporting between

two distributions, the SB minimizes the relative entropy of the di�usion process, and therefore

has an interpretation as the “simplest” stochastic process bridging the two distributions—indeed,

the SB originates as a Gedankenexperiment (or “thought experiment”) of Erwin Schrödinger in

modeling the large deviations of di�using gasses (Schrödinger, 1932). There are many equivalent

formulations of the SB problem (see Section 4.2.2), though for the purposes of transport, its most

important property is that it gives rise to a pair of SDEs that interpolate between two measures 𝜇

and 𝜈 :

d𝑋𝑡 = 𝑏★𝑡 (𝑋𝑡 ) d𝑡 +
√
𝜀 d𝐵𝑡 , 𝑋0 ∼ 𝜇, 𝑋1 ∼ 𝜈 , (4.1)

d𝑌𝑡 = 𝑑★𝑡 (𝑌𝑡 ) d𝑡 +
√
𝜀 d𝐵𝑡 , 𝑌0 ∼ 𝜈,𝑌1 ∼ 𝜇 , (4.2)
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where 𝜀 > 0 plays the role of thermal noise.1 Concretely, (4.1) indicates that samples from 𝜈 can

be obtained by drawing samples from 𝜇 and simulating an SDE with drift 𝑏★𝑡 , and (4.2) shows how

this process can be performed in reverse. Though these dynamics are of obvious use in generating

samples, the di�culty lies in obtaining estimators for the drifts.

Nearly a century later, Schrödinger’s thought experiment has been brought to reality, having

found applications in the generation of new images, protein structures, and more (Kawakita et al.,

2022; Lee et al., 2024; Liu et al., 2022a; Nusken et al., 2022; Shi et al., 2022; Thornton et al., 2022).

The foundation for these advances is the work of De Bortoli et al. (2021), who propose to train

two neural networks to act as the forward and backward drifts, which are iteratively updated to

ensure that each di�usion yields samples from the appropriate distribution. This is reminiscent of

the iterative proportion �tting procedure of Fortet (1940), and can be interpreted as a version of

Sinkhorn’s matrix-scaling algorithm (Cuturi, 2013; Sinkhorn, 1967) on path space.

While the framework of De Bortoli et al. (2021) is popular from a computational perspective, it

is worth emphasizing that this method is relatively costly, as it necessitates the undesirable task

of simulating an SDE at each training iteration. Moreover, despite the recent surge in applications,

current methods do not come with statistical guarantees to quantify their performance. In short,

existing work leaves open the problem of developing tractable, statistically rigorous estimators

for the Schrödinger bridge.

4.1.1 Contributions

We propose and analyze a computationally e�cient estimator of the Schrödinger bridge which

we call the Sinkhorn Bridge. Our main insight is that it is possible to estimate the time-dependent

drifts in (4.1) and (4.2) by solving a single, static entropic optimal transport problem between

samples from the source and target measures. Our approach is to compute the potentials (𝑓 , 𝑔)

obtained by running Sinkhorn’s algorithm on the data 𝑋1, . . . , 𝑋𝑚 ∼ 𝜇 and 𝑌1, . . . , 𝑌𝑛 ∼ 𝜈 and plug
1We assume throughout our work that the reference process is Brownian motion with volatility 𝜀; see Section 4.2.2.
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these estimates into a simple formula for the drifts. For example, in the forward case, our estimator

reads

𝑏𝑡 (𝑧) B (1 − 𝑡)−1
(
−𝑧 +

∑𝑛
𝑗=1𝑌𝑗 exp

(
(𝑔 𝑗 − 1

2(1−𝑡) ‖𝑧 − 𝑌𝑗 ‖
2)/𝜀

)∑𝑛
𝑗=1 exp

(
(𝑔 𝑗 − 1

2(1−𝑡) ‖𝑧 − 𝑌𝑗 ‖2)/𝜀
) )

.

See Section 4.3.1 for a detailed motivation for the choice of 𝑏𝑡 . Once the estimated potential 𝑔 is

obtained from a single use of Sinkhorn’s algorithm on the source and target data at the beginning

of the procedure, computing 𝑏𝑡 (𝑧) for any 𝑧 ∈ R𝑑 and any 𝑡 ∈ (0, 1) is trivial.

We show that the solution to a discretized SDE implemented with the estimated drift 𝑏𝑡 closely

tracks the law of the solution to (4.1) on the whole interval [0, 𝜏], for any 𝜏 ∈ [0, 1). Indeed,

writing P★[0,𝜏] for the law of the process solving (4.1) on [0, 𝜏] and P̂[0,𝜏] for the law of the process

obtained by initializing from a fresh sample 𝑋0 ∼ 𝜇 and solving a discrete-time SDE with drift 𝑏𝑡 ,

we prove bounds on the risk

E[TV2(P̂[0,𝜏], P★[0,𝜏])]

that imply that, for �xed 𝜀 > 0 and 𝜏 ∈ [0, 1), the Schrödinger bridge can be estimated at the

parametric rate. Moreover, though it is well known that such bounds must diverge as 𝜀 → 0 or

𝜏 → 1, we demonstrate that the rate of growth depends on the intrinsic dimension k of the target

measure rather than the ambient dimension 𝑑 . When k � 𝑑 , this gives strong justi�cation for the

use of the Sinkhorn Bridge estimator in high-dimensional problems.

To give a particular example in a special case, our results provide novel estimation rates for

the Föllmer bridge, an object which has also garnered interest in the machine learning community

(Chen et al., 2024; Huang, 2024; Vargas et al., 2023). In this setting, the source measure is a Dirac

mass, and we suppose the target measure 𝜈 is supported on a ball of radius 𝑅 contained within a

k-dimensional smooth submanifold of R𝑑 . Taking the volatility level to be unity, we show that the
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Föllmer bridge up to time 𝜏 ∈ [0, 1) can be estimated in total variation with precision 𝜖TV using 𝑛

samples and 𝑁 SDE-discretization steps, where

𝑛 � 𝑅2(1 − 𝜏)−k−2𝜖−2TV , 𝑁 . 𝑑𝑅4(1 − 𝜏)−4𝜖−2TV .

As advertised, for �xed 𝜏 ∈ [0, 1), these bounds imply parametric scaling on the number of samples

(which matches similar �ndings in the entropic optimal transport literature, see, e.g., Stromme

(2024)) and exhibit a “curse of dimensionality” only with respect to the intrinsic dimension of

the target, k. As our main theorem shows, these phenomena are not unique to the Föllmer

bridge, and hold for arbitrary volatility levels and general source measures. Moreover, by tuning

𝜏 appropriately, we show how these estimation results yield guarantees for sampling from the

target measure 𝜈 , see Section 4.4.3. These guarantees also su�er only from a “curse of intrinsic

dimensionality.” Since the drifts arising from the Föllmer bridge can be viewed as the score of

a kernel density estimator of 𝜈 with a Gaussian kernel (see (4.26)), this benign dependence on

the ambient dimension is a signi�cant improvement over guarantees recently obtained for such

estimators in the context of denoising di�usion probabilistic models (Wibisono et al., 2024). Our

improved rates are due to the intimate connection between the SB problem and entropic optimal

transport in which intrinsic dimensionality plays a crucial role (Groppe and Hundrieser, 2024;

Stromme, 2024). We expound on this connection in the main text.

We are not the �rst to notice the simple connection between the static entropic potentials and

the SB drift. Finlay et al. (2020a) �rst proposed to exploit this connection to simulate the SB by

learning static potentials via a neural network-based implementation of Sinkhorn’s algorithm;

however, due to some notational inaccuracies and implementation errors, the resulting procedure

was not scalable. This work shows the theoretical soundness of their approach, with a much

simpler, tractable algorithm and with rigorous statistical guarantees.
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4.1.1.1 Notation

We denote the space of probability measures over R𝑑 with �nite second moment by P2(R𝑑).

We write 𝐵(𝑥, 𝑅) ⊆ R𝑑 to indicate the (Euclidean) ball of radius 𝑅 > 0 centered at 𝑥 ∈ R𝑑 . We

denote the maximum of a and b by 𝑎∨𝑏. We write 𝑎 . 𝑏 (resp. 𝑎 � 𝑏) if there exists constants𝐶 > 0

(resp. 𝑐,𝐶 > 0 such that 𝑎 ≤ 𝐶𝑏 (resp. 𝑐𝑏 ≤ 𝑎 ≤ 𝐶𝑏). We let path B C([0, 1],R𝑑) be the space of

paths with 𝑋𝑡 : path→ R𝑑 given by the canonical mapping 𝑋𝑡 (ℎ) = ℎ𝑡 for any ℎ ∈ path and any

𝑡 ∈ [0, 1]. For a path measure P ∈ P(path) and any 𝑡 ∈ [0, 1], we write P𝑡 B (𝑋𝑡 )♯P ∈ P(R𝑑)

for the 𝑡 th marginal of P𝑡 . Similarly, for 𝑠, 𝑡 ∈ [0, 1], we can de�ne the joint probability measure

P𝑠𝑡 B (𝑋𝑠, 𝑋𝑡 )♯P. We write P[0,𝑡] for the restriction of the P to C([0, 𝑡],R𝑑). Since path is a Polish

space, we can de�ne regular conditional probabilities for the law of a path given its value at time

𝑡 , which we denote P|𝑡 . For any 𝑠 > 0, we write Λ𝑠 := (2𝜋𝑠)−𝑑/2 for the normalizing constant of

the density of the Gaussian distribution N(0, 𝑠𝐼 ).

4.1.2 Related work

On Schrödinger bridges. Connections between entropic optimal transport and the Schrödinger

bridge (SB) problem are well studied; see the comprehensive survey by Léonard (2014). We were

also inspired by the works of Ripani (2019), Gentil et al. (2020), as well as Chen et al. (2016; 2021b)

(which cover these topics from the perspective of optimal control), and the more recent article by

Kato (2024) (which revisits the large-deviation perspective of this problem). The special case of

the Föllmer bridge and its variants has been a topic of recent study in theoretical communities

(Eldan et al., 2020; Mikulincer and Shenfeld, 2024).

Interest in computational methods for SBs has been explosive in over the last few years,

see Bunne et al. (2023a); Chen et al. (2024); De Bortoli et al. (2021); Shi et al. (2024; 2022); Tong

et al. (2023); Vargas et al. (2023); Yim et al. (2023) for recent developments in deep learning.

The works by Bernton et al. (2019); Pavon et al. (2021); Vargas et al. (2021) use more traditional
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statistical methods to estimate the SB, with various goals in mind. For example, Bernton et al.

(2019) propose a sampling scheme based on trajectory re�nements using a approximate dynamic

programming approach. Pavon et al. (2021) and Vargas et al. (2021) propose methods to compute

the (intermediate) density directly based on maximum likelihood-type estimators: Pavon et al.

(2021) directly model the densities of interest and devise a scheme to update the weights; Vargas

et al. (2021) use Gaussian processes to model the forward and backward drifts, and update them

via a maximum-likelihood type loss.

On entropic optimal transport. Our work is closely related to the growing literature on

statistical entropic optimal transport, speci�cally on the developments surrounding the entropic

transport map. This object was introduced by Pooladian and Niles-Weed (2021) as a computation-

ally friendly estimator for optimal transport maps in the regime 𝜀 → 0; see also Pooladian et al.

(2023) for minimax estimation rates in the semi-discrete regime. When 𝜀 is �xed, the theoretical

properties of the entropic maps have been analyzed (Chewi and Pooladian, 2023; Chiarini et al.,

2022; Conforti, 2024; Conforti et al., 2023; Divol et al., 2025) as well as their statistical properties (del

Barrio et al., 2022b; Goldfeld et al., 2024a;b; Gonzalez-Sanz et al., 2022; Rigollet and Stromme,

2022; Werenski et al., 2023). Ghosal et al. (2022); Nutz and Wiesel (2021) study the stability of

entropic potentials and plans in a qualitative sense under minimal regularity assumptions. Most

recently, Stromme (2024) and Groppe and Hundrieser (2024) established the connections between

statistical entropic optimal transport and intrinsic dimensionality (for bothmaps and costs). Daniels

et al. (2021) investigates sampling using entropic optimal transport couplings combined with neu-

ral networks. Closely related are the works by Chizat et al. (2022) and Lavenant et al. (2024), which

highlight the use of entropic optimal transport for trajectory inference. A more �exible alternative

to the entropic transport map was recently developed by Kassraie et al. (2024), who proposed a

transport that progressively displaces the source measure to the target measure by computing a

new entropic transport map at each step to approximate theMcCann interpolation (McCann, 1997).
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4.2 Background

4.2.1 Preliminaries on entropic optimal transport

We require a slightly di�erent change in notation this chapter. Recall the primal and dual

entropic optimal transport problems are

OT𝜀 (𝜇, 𝜈) = inf
𝜋∈Π(𝑃,𝑄)

∬
1
2 ‖𝑥 − 𝑦‖

2 d𝜋 (𝑥,𝑦) + 𝜀 KL(𝜋 ‖𝜇 ⊗ 𝜈) (4.3a)

= sup
(𝑓 ,𝑔)∈F

D𝜇𝜈
𝜀 (𝑓 , 𝑔) (4.3b)

where F = 𝐿1(𝜇) × 𝐿1(𝜈) and

D𝜇𝜈
𝜀 (𝑓 , 𝑔) B

∫
𝑓 d𝜇 +

∫
𝑔 d𝜈 − 𝜀

∬ (
Λ𝜀𝑒
(𝑓 (𝑥)+𝑔(𝑦)−12 ‖𝑥−𝑦‖

2)/𝜀 − 1
)
d𝜇 (𝑥) d𝜈 (𝑦) , (4.4)

where Λ𝜀 = (2𝜋𝜀)−𝑑/2. Solutions to both problems are guaranteed to exist when 𝜇, 𝜈 ∈ P2(R𝑑).

The minimizer to (4.3a) is called the optimal entropic plan, written 𝜋★ ∈ Π(𝜇, 𝜈), and the dual

optimizers the optimal entropic (Kantorovich) potentials, written (𝑓 ★, 𝑔★).2

Csiszár (1975) showed that the primal and dual optima are intimately connected through the

following relationship:3

d𝜋★(𝑥,𝑦) = Λ𝜀 exp
( 𝑓 ★(𝑥) + 𝑔★(𝑦) − 1

2 ‖𝑥 − 𝑦‖
2

𝜀

)
d𝜇 (𝑥) d𝜈 (𝑦) . (4.5)

Though 𝑓 ★ and 𝑔★ are a priori de�ned almost everywhere on the support of 𝜇 and 𝜈 , they can be

extended to all of R𝑑 (see Mena and Niles-Weed (2019); Nutz and Wiesel (2021)) via the optimality
2Though 𝜋★ and the other objects discussed in this section depend on 𝜀, we will omit this dependence for the sake

of readability, though we will track the dependence on 𝜀 in our bounds.
3The normalization factorΛ𝜀 is not typically used in the computational optimal transport literature, but it simpli�es

some formulas in what follows. Since the procedure we propose is invariant under translation of the optimal entropic
potentials, this normalization factor does not a�ect either our algorithm or its analysis.
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conditions

𝑓 ★(𝑥) = −𝜀 log
(
Λ𝜀

∫
𝑒 (𝑔

★(𝑦)−‖𝑥−𝑦‖2/2)/𝜀 d𝜈 (𝑦)
)
, 𝑔★(𝑦) = −𝜀 log

(
Λ𝜀

∫
𝑒 (𝑓

★(𝑥)−‖𝑥−𝑦‖2/2)/𝜀 d𝜇 (𝑥)
)
.

At times, it will be convenient to work with entropic Brenier potentials, de�ned as

(𝜑★,𝜓★) B ( 12 ‖ · ‖
2 − 𝑓 ★, 12 ‖ · ‖

2 − 𝑔★) .

Note that the gradients of the entropic Brenier potentials4 are related to barycentric projections of

the optimal entropic coupling

∇𝜑★(𝑥) = E𝜋★ [𝑌 |𝑋 = 𝑥] , ∇𝜓★(𝑦) = E𝜋★ [𝑋 |𝑌 = 𝑦] .

For a proof of this fact, see Pooladian and Niles-Weed (2021, Proposition 2). By analogy with the

unregularized optimal transport problem, these are called entropic Brenier maps. The following

relationships can also be readily veri�ed:

∇2𝜑★(𝑥) = 𝜀−1Cov𝜋★ [𝑌 |𝑋 = 𝑥] , ∇2𝜓★(𝑦) = 𝜀−1Cov𝜋★ [𝑋 |𝑌 = 𝑦] . (4.7)

4.2.1.1 A dynamic formulation via the continuity eqation

Entropic optimal transport can also be understood from a dynamical perspective. Let (p𝑡 )𝑡∈[0,1]

be a family of measures in P2(R𝑑), and let (𝑣𝑡 )𝑡∈[0,1] be a family of vector �elds. We say that the

pair satis�es the continuity equation, written (p𝑡 , 𝑣𝑡 ) ∈ ℭ, if p0 = 𝜇, p1 = 𝜈 , and, for 𝑡 ∈ [0, 1],

𝜕𝑡p𝑡 + ∇ · (𝑣𝑡p𝑡 ) = 0 . (4.8)

4Passing the gradient under the integral is permitted via dominated convergence under suitable tail conditions on
𝜇 and 𝜈 .
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Solutions to (4.8) are understood to hold in the weak sense (that is, with respect to suitably smooth

test functions).

The continuity equation can be viewed as the analogue of the marginal constraints being

satis�ed (i.e., the set Π(𝜇, 𝜈) above): it represents both the conservation of mass and the requisite

end-point constraints for the path (p𝑡 )𝑡∈[0,1] . With this, we can cite a clean expression of the

dynamic formulation of the entropic optimal transport problem (see Conforti and Tamanini (2021)

or Chizat et al. (2020)) if 𝜇 and 𝜈 are absolutely continuous and have �nite entropy:

OT𝜀 (𝜇, 𝜈) +𝐶0(𝜀, 𝜇, 𝜈) = inf
(p𝑡 ,𝑣𝑡 )∈ℭ

∫ 1

0

∫ (1
2
‖𝑣𝑡 (𝑥)‖2 +

𝜀2

8
‖∇ log p𝑡 (𝑥)‖2

)
dp𝑡 (𝑥) d𝑡 , (4.9)

where𝐶0(𝜀, 𝜇, 𝜈) B 𝜀 log(Λ𝜀)+ 𝜀2 (H (𝜇)+H (𝜈)) is an additive constant, withH(𝜇) B
∫
log(d𝜇) d𝜇,

similarly forH(𝜈).

The case 𝜀 = 0 reduces to the celebrated Benamou–Brenier formulation of optimal trans-

port (Benamou and Brenier, 2000).

4.2.1.2 A stochastic formulation via the Fokker–Planck eqation

We now revisit the dynamic formulation of entropic optimal transport, this time based on the

Fokker–Planck equation. This equation is said to be satis�ed by a pair (p𝑡 , 𝑏𝑡 ) ∈ 𝔉 if p0 = 𝜇, p1 = 𝜈 ,

and, for 𝑡 ∈ [0, 1],

𝜕𝑡p𝑡 + ∇ · (𝑏𝑡p𝑡 ) =
𝜀

2
Δp𝑡 .

Then, under the same conditions as above,

OT𝜀 (𝜇, 𝜈) +𝐶1(𝜀, 𝜇) = inf
(p𝑡 ,𝑏𝑡 )

∫ 1

0

∫
1
2
‖𝑏𝑡 (𝑥)‖2 dp𝑡 (𝑥) d𝑡 , (4.10)
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where 𝐶1(𝜀, 𝜇) = 𝜀 log(Λ𝜀) + 𝜀H(𝜇). The equivalence between the objective functions (4.9) and

(4.10), as well as the continuity equation and Fokker–Planck equations, is classical. For com-

pleteness, we provide details of these computations in Appendix C.1. A key property of this

equivalence is the following relationship which relates the optimizers of (4.9), written (p★𝑡 , 𝑣★𝑡 )

and (4.10), written (p★𝑡 , 𝑏★𝑡 ):

𝑏★𝑡 = 𝑣★𝑡 +
𝜀

2
∇ log p★𝑡 .

We stress that the minimizer p★𝑡 is the same for both (4.9) and (4.10).

4.2.2 The Schrödinger Bridge problem and the Fokker–Planck eqation

We will now brie�y develop the required machinery to understand the Schrödinger bridge

problem. We will largely following the expositions of Gentil et al. (2020); Léonard (2012; 2014);

Ripani (2019).

For 𝜀 > 0, we let R ∈ P(path) denote the law of the reversible Brownian motion on R𝑑 with

volatility 𝜀, with the Lebesgue measure as the initial distribution.5 We write the joint distribution

of the initial and �nal positions under R by R01(d𝑥, d𝑦) = Λ𝜀 exp(−1
2 ‖𝑥 − 𝑦‖

2/𝜀) d𝑥 d𝑦.

With the above, we arrive at Schrödinger’s bridge problem over path measures:

min
P∈P(path)

𝜀 KL(P‖R) s.t. P0 = 𝜇 , P1 = 𝜈 , (4.11)

where 𝜇, 𝜈 ∈ P2(R𝑑) and are absolutely continuous with �nite entropy. Let P★ be the unique

solution to (4.11), which exists as the problem is strictly convex. Léonard (2014) shows that there
5The problem below remains well posed even though R is not a probability measure; see Léonard (2014) for

complete discussions.
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exist two non-negative functions 𝔣★, 𝔤★ : R𝑑 → R+ such that

P★ = 𝔣★(𝑋0)𝔤★(𝑋1)R , (4.12)

where Law(𝑋0) = 𝜇 and Law(𝑋1) = 𝜈 .

A further connection can be made: if we apply the chain-rule for the KL divergence by

conditioning on times 𝑡 = 0, 1, the objective function (4.11) decomposes into

𝜀 KL(P‖R) = 𝜀 KL(P01‖R01) + 𝜀 EPKL(P|01‖R|01) .

Under the assumption that 𝜇 and 𝜈 have �nite entropy, it can be shown that the �rst term on

the right-hand side is equivalent to the objective for the entropic optimal transport problem

in (4.3a). Moreover, the second term vanishes if we choose the measure P so that the conditional

measure P|01 is the same as R|01, i.e., a Brownian bridge. Therefore, the objective function in

(4.11) is minimized when P★01 = 𝜋
★ and when P writes as a mixture of Brownian bridges with the

distribution of initial and �nal points given by 𝜋★:

P★ =

∬
R(·|𝑋0 = 𝑥0, 𝑋1 = 𝑥1)𝜋★(d𝑥0, d𝑥1) . (4.13)

Much of the discussion above assumed that 𝜇 and 𝜈 are absolutely continuous with �nite

entropy; indeed, the manipulations in this section as well as in Section 4.2.1.1 and 4.2.1.2 are not

justi�ed if this condition fails. Though the �nite entropy conditioned is adopted liberally in the

literature on Schrödinger bridges, in this work we will have to consider bridges between measures

that may not be absolutely continuous (for example, empirical measures). Noting that the entropic

optimal transport problem (4.3a) has a unique solution for any 𝜇, 𝜈 ∈ P2(R𝑑), we leverage this fact

to use (4.13) as the de�nition of the Schrödinger bridge between two probability measures: for any

pair of probability distributions 𝜇, 𝜈 ∈ P2(R𝑑), their Schrödinger bridge is the mixture of Brownian
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bridges given by (4.13), where 𝜋★ is the solution to the entropic optimal transport problem (4.3a).

4.3 Proposed estimator: The Sinkhorn bridge

Our goal is to e�ciently estimate the Schrödinger bridge (SB) on the basis of samples. Let P★

denote the SB between 𝜇 and 𝜈 , and de�ne the the time-marginal �ow of the bridge by

p★𝑡 B P★𝑡 , 𝑡 ∈ [0, 1] . (4.14)

This choice of notation is deliberate: when 𝜇 and 𝜈 have �nite entropy, the 𝑡-marginals of P★

for 𝑡 ∈ [0, 1] solve the dynamic formulations (4.9) and (4.10) (Léonard, 2014, Proposition 4.1).

In the existing literature, p★𝑡 is sometimes called the the entropic interpolation between 𝜇 and 𝜈 .

See Gentil et al. (2020); Léonard (2012; 2014); Ripani (2019) for interesting properties of entropic

interpolations (for example, their relation to functional inequalities). Our goal is to provide an

estimator P̂ such that E[TV2(P̂[0,𝜏], P★[0,𝜏])] is small for all 𝜏 < 1. In particular, this marginals of

our estimator P̂ are estimators p̂𝑡 of p★𝑡 for all 𝑡 ∈ [0, 1).6

We call our estimator the Sinkhorn bridge, and we outline its construction below. Our main

observation involves revisiting some �ner properties of entropic interpolations as a function of

the static entropic potentials. Once everything is concretely expressed, a natural plug-in estimator

will arise which is amenable to both computational and statistical considerations.
6For reasons that will be apparent in the next section, time 𝜏 = 1 must be excluded from the analysis.
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4.3.1 From Schrödinger to Sinkhorn and back

We outline two crucial observations from which our estimator naturally arises. First, we note

that p★𝑡 can be explicitly expressed as the following density (Léonard, 2014, Theorem 3.4)

p★𝑡 (d𝑧) B H(1−𝑡)𝜀 [exp(𝑔★/𝜀)𝜈] (𝑧)H𝑡𝜀 [exp(𝑓 ★/𝜀)𝜇] (𝑧) d𝑧 , (4.15)

where H𝑠 is the heat semigroup, which acts on a measure 𝑄 via

𝑄 ↦→ H𝑠 [𝑄] (𝑧) B Λ𝑠

∫
𝑒
− 1
2𝑠 ‖𝑥−𝑧‖

2
𝑄 (d𝑥) .

This expression for the marginal of distribution p★𝑡 follows directly from (4.13):

p★𝑡 (𝑧) :=
∬

R𝑡 (𝑧 |𝑋0 = 𝑥0, 𝑋1 = 𝑥1)𝜋★(d𝑥0, d𝑥1)

=

∬
N(𝑧 |𝑡𝑦 + (1 − 𝑡)𝑥, 𝑡 (1 − 𝑡)𝜀)𝜋★(d𝑥, d𝑦)

= Λ𝜀

∬
𝑒
((𝑓 ★(𝑥)+𝑔★(𝑦)−12 ‖𝑥−𝑦‖

2)/𝜀)N(𝑧 |𝑡𝑦 + (1 − 𝑡)𝑥, 𝑡 (1 − 𝑡)𝜀)𝜇 (d𝑥)𝜈 (d𝑦)

=

∫
𝑒𝑔

★(𝑦)/𝜀N(𝑧 |𝑦, (1 − 𝑡)𝜀)𝜈 (d𝑦)
∫

𝑒 𝑓
★(𝑥)/𝜀N(𝑧 |𝑥, 𝑡𝜀)𝜇 (d𝑥)

= H1−𝑡 [exp(𝑔★/𝜀)𝜈] (𝑧)H𝑡 [exp(𝑓 ★/𝜀)𝜇] (𝑧)

where throughout we useN(𝑧 |𝑚,𝜎2) to denote the Gaussian density with mean𝑚 and covariance

𝜎2𝐼 , and the fourth equality follows from computing the explicit density of the product of two

Gaussians.

Also, Léonard (2014, Proposition 4.1) shows that when 𝜇 and 𝜈 have �nite entropy, the optimal

drift in (4.10) is given by

𝑏★𝑡 (𝑧) = 𝜀∇ logH(1−𝑡)𝜀 [exp(𝑔★/𝜀)𝜈] (𝑧) ,
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whence the pair (p★𝑡 , 𝑏★𝑡 ) satis�es the Fokker–Planck equation. This fact implies that if 𝑋𝑡 solves

d𝑋𝑡 = 𝑏★𝑡 (𝑋𝑡 ) d𝑡 +
√
𝜀 d𝐵𝑡 , 𝑋0 ∼ 𝜇 , (4.16)

then p∗𝑡 = Law(𝑋𝑡 ). In fact, more is true: the SDE (4.16) give rise to a path measure, which exactly

agrees with the Schrödinger bridge. Though Léonard (2014) derives these facts for 𝜇 and 𝜈 with

�nite entropy, we show in Proposition 4.1, below, that they hold in more generality.

Further developing the expression for 𝑏★𝑡 , we obtain

𝑏★𝑡 (𝑧) = (1 − 𝑡)−1
(
−𝑧 +

∫
𝑦𝑒
(𝑔★(𝑦)− 1

2(1−𝑡) ‖𝑧−𝑦‖
2)/𝜀 d𝜈 (𝑦)∫

𝑒
(𝑔★(𝑦)− 1

2(1−𝑡) ‖𝑧−𝑦‖
2)/𝜀 d𝜈 (𝑦)

)
C (1 − 𝑡)−1(−𝑧 + ∇𝜑★1−𝑡 (𝑧)) . (4.17)

Thus, our �nal expression for the SDE that yields the Schrödinger bridge is

d𝑋𝑡 = (−(1 − 𝑡)−1𝑋𝑡 + (1 − 𝑡)−1∇𝜑★1−𝑡 (𝑋𝑡 )) d𝑡 +
√
𝜀 d𝐵𝑡 . (4.18)

Once again, we emphasize that our choice of notation here is deliberate: the drift is expressed as a

function of a particular entropic Brenier map, namely, the entropic Brenier map between p★𝑡 and 𝜈

with regularization parameter (1 − 𝑡)𝜀.

We summarize this collection of crucial properties in the following proposition; see Ap-

pendix C.2 for proofs. We note that this result avoids the �nite entropy requirements of analogous

results in the literature (Léonard, 2014; Shi et al., 2024).

Proposition 4.1. Let 𝜋 be a probability measure of the form

𝜋 (d𝑥0, d𝑥1) = Λ𝜀 exp((𝑓 (𝑥0) + 𝑔(𝑥1) − 1
2 ‖𝑥0 − 𝑥1‖

2)/𝜀)𝜇0(d𝑥0)𝜇1(d𝑥1) , (4.19)

for any measurable 𝑓 and 𝑔 and any probability measures 𝜇0, 𝜇1 ∈ P2(R𝑑). Let M the path measure
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given by a mixture of Brownian bridges with respect to (4.19) as in (4.13), with 𝑡-marginals m𝑡 for

𝑡 ∈ [0, 1]. The following hold:

1. The path measureM is Markov;

2. The marginal m𝑡 is given by

m𝑡 (d𝑧) = H(1−𝑡)𝜀 [exp(𝑔/𝜀)𝜇1] (𝑧)H𝑡𝜀 [exp(𝑓 /𝜀)𝜇0] (𝑧)d𝑧 ;

3. M is the law of the solution to the SDE

d𝑋𝑡 = 𝜀∇ logH(1−𝑡)𝜀 [exp(𝑔/𝜀)𝜇1] (𝑋𝑡 ) d𝑡 +
√
𝜀 d𝐵𝑡 , 𝑋0 ∼ 𝜇0 ;

4. The drift above can be expressed as 𝑏𝑡 (𝑧) = (1−𝑡)−1(𝑧−∇𝜑1−𝑡 (𝑧)), where ∇𝜑1−𝑡 is the entropic

Brenier map between m𝑡 and 𝜌 with regularization strength (1 − 𝑡)𝜀, where

𝜌 (d𝑥1) = 𝜇1(d𝑥1) exp
(
𝑔(𝑥1)/𝜀 + logH𝜀 [𝑒 𝑓 /𝜀𝜇0] (𝑥1)

)
.

If (4.19) is the optimal entropic coupling between 𝜇0 and 𝜇1, then 𝜌 ≡ 𝜇1.

4.3.2 Defining the estimator

In light of (4.17), it is easy to de�ne an estimator on the basis of samples. Let𝑋1, . . . , 𝑋𝑚 ∼ 𝜇 and

𝑌1, . . . , 𝑌𝑛 ∼ 𝜈 , and let 𝜇𝑚 B 𝑚−1
∑𝑚
𝑖=1 𝛿𝑋𝑖

, and similarly 𝜈𝑛 B 𝑛−1
∑𝑛
𝑗=1 𝛿𝑌𝑗 . Let (𝑓 , 𝑔) ∈ R𝑚 ×R𝑛 be

the optimal entropic potentials associated with OT𝜀 (𝜇𝑚, 𝜈𝑛), which can be computed e�ciently via

Sinkhorn’s algorithm (Cuturi, 2013; Peyré and Cuturi, 2019) with a runtime of𝑂 (𝑚𝑛/𝜀) (Altschuler
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et al., 2017). A natural plug-in estimator for the optimal drift is thus

𝑏𝑡 (𝑧) B 𝜀∇ logH(1−𝑡)𝜀 [exp(𝑔/𝜀)𝜈𝑛]

= (1 − 𝑡)−1
(
−𝑧 +

∑𝑛
𝑗=1𝑌𝑗 exp

(
(𝑔 𝑗 − 1

2(1−𝑡) ‖𝑧 − 𝑌𝑗 ‖
2)/𝜀

)∑𝑛
𝑗=1 exp

(
(𝑔 𝑗 − 1

2(1−𝑡) ‖𝑧 − 𝑌𝑗 ‖2)/𝜀
) )

=: (1 − 𝑡)−1(−𝑧 + ∇𝜑1−𝑡 (𝑧))

(4.20)

Further discussions on the numerical aspects of our estimator are deferred to Section 4.5. Since we

want to estimate the path given by P★, our estimator is given by the solution to the following SDE:

d𝑋𝑡 = (−(1 − 𝑘𝜂)−1𝑋𝑘𝜂 + (1 − 𝑘𝜂)−1∇𝜑1−𝑘𝜂 (𝑋𝑘𝜂)) d𝑡 +
√
𝜀 d𝐵𝑡 , (4.21)

for 𝑡 ∈ [𝑘𝜂, (𝑘 + 1)𝜂], where 𝜂 ∈ (0, 1) is some step-size, and 𝑘 is the iteration number. Though it

is convenient to write the drift in terms of a time-varying entropic Brenier map, (4.20) shows that

for all 𝑡 ∈ (0, 1), our estimator is a simple function of the potential 𝑔 obtained from a single call to

Sinkhorn’s algorithm.

Remark 4.2. To the best of our knowledge, the idea of using static potentials to estimate the SB drift

was �rst explored by Finlay et al. (2020a). However, their proposal had some inconsistencies. For

example, they assume a �nite entropy condition on the source and target measures, and perform

a standard Gaussian convolution on R𝑑 instead of our proposed convolution H(1−𝑡)𝜀 [exp(𝑔/𝜀)𝜈𝑛].

The former leads to a computationally intractable estimator, whereas, as we have shown above,

the former has a simple form that is trivial to compute.

Remark 4.3. An alternative approach to computing the Schrödinger bridge is due to Stromme (2023):

Given 𝑛 samples from the source and target measure, one can e�ciently compute the in-sample

entropic optimal coupling 𝜋 on the basis of samples via Sinkhorn’s algorithm. Resampling a pair

(𝑋 ′, 𝑌 ′) ∼ 𝜋 and computing the Brownian bridge between 𝑋 ′ and 𝑌 ′ yields an approximate sample

from the Schrödinger bridge. We remark that the computational complexity of our approach is
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signi�cantly lower than that of Stromme (2023). While both methods use Sinkhorn’s algorithm

to compute an entropic optimal coupling between the source and target measures, Stromme’s

estimator necessitates 𝑛 fresh samples from 𝜇 and 𝜈 to obtain a single approximate sample from

the SB. By contrast, having used our method to estimate the drifts, fresh samples from 𝜇 can be

used to generate unlimited approximate samples from the SB.

4.4 Main results and proof sketch

We now present the proof sketches to our main result. We �rst present a sketch focusing

purely on the statistical error incurred by our estimator, and later, using standard tools (Chen

et al., 2022b; Lee et al., 2023), we incorporate the additional time-discretization error. All omitted

proofs in this section are deferred to Appendix C.3.

4.4.1 Statistical analysis

We restrict our analysis to the one-sample estimation task, as it is the closest to real-world

applications where the source measure is typically known (e.g., the standard Gaussian) and the

practitioner is given �nitely many samples from a distribution of interest (e.g., images). Thus, we

assume full access to 𝜇 and access to 𝜈 through i.i.d. data, and let (𝑓 , 𝑔) correspond to the optimal

entropic potentials solving OT𝜀 (𝜇, 𝜈𝑛), which give rise to an optimal entropic plan 𝜋𝑛 . Formally,

this corresponds to the𝑚 →∞ limit of the setting described in Section 4.3.2; the estimator for the

drift (4.20) is unchanged.

Let P̃ be the Markov measure associated with the mixture of Brownian bridges de�ned with

respect to 𝜋𝑛 . By Proposition 4.1, the 𝑡-marginals are given by

p̃𝑡 (𝑧) = H(1−𝑡)𝜀 [exp(𝑔/𝜀)𝜈𝑛] (𝑧)H𝑡𝜀 [exp(𝑓 /𝜀)𝜇] (𝑧) , (4.22)
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and the one-sample empirical drift is equal to

𝑏𝑡 (𝑧) = 𝜀∇ logH(1−𝑡)𝜀 [exp(𝑔/𝜀)𝜈𝑛] (𝑧) .

Thus, P̃ is the law of the following process with 𝑋̃0 ∼ 𝜇

d𝑋̃𝑡 = 𝑏𝑡 (𝑋̃𝑡 ) d𝑡 +
√
𝜀 d𝐵𝑡 . (4.23)

Note that this agrees with our estimator in (4.21), but without discretization. This process is not

technically implementable, but forms an important theoretical tool in our analysis.

Our main result of this section is the following theorem.

Theorem 4.4 (One-sample estimation; no discretization). Suppose both 𝜇, 𝜈 ∈ P2(R𝑑), and 𝜈 is

supported on a k-dimensional smooth submanifold of R𝑑 whose support is contained in a ball of

radius 𝑅 > 0. Let P̃ (resp. P) be the path measure corresponding to (4.23) (resp. (4.17)). Then it holds

that, for any 𝜏 ∈ [0, 1),

E[TV2(P̃[0,𝜏], P★[0,𝜏])] .
(𝜀−k/2−1
√
𝑛
+ 𝑅2𝜀−k

(1 − 𝜏)k+2𝑛

)
.

As mentioned in the introduction, the parametric rates will not be surprising given the proof

sketch below, which incorporates ideas from entropic optimal transport. The rates diverge

exponentially in k as 𝜏 → 1; this is a consequence of the fact that the estimated drift 𝑏𝑡 enforces

that the samples exactly collapse onto the training data at terminal time, which is far from the

true target measure.

The proof of Theorem 4.4 uses key ideas from Stromme (2024): We introduce the following

entropic plan

𝜋𝑛 (𝑥,𝑦) B Λ𝜀 exp
(
(𝑓 (𝑥) + 𝑔★(𝑦) − 1

2 ‖𝑥 − 𝑦‖
2)/𝜀

)
𝜇 (d𝑥)𝜈𝑛 (d𝑦) , (4.24)
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where 𝑔★ is the optimal entropic potential for the population measures (𝜇, 𝜈), and where we call

𝑓 : R𝑑 → R a rounded potential, de�ned as

𝑓 (𝑥) B −𝜀 log
(
Λ𝜀 · 𝑛−1

𝑛∑︁
𝑗=1

exp((𝑔★(𝑌𝑗 ) − 1
2 ‖𝑥 − 𝑌𝑗 ‖

2)/𝜀)
)
.

Note that 𝑓 can be viewed as the Sinkhorn update involving the potential 𝑔★ and measure 𝜈𝑛 , and

that 𝜋𝑛 ∈ Γ(𝜇, 𝜈𝑛), where 𝜈𝑛 is a rescaled version of 𝜈𝑛 . We again exploit Proposition 4.1. Consider

the path measure associated to the mixture of Brownian bridges with respect to 𝜋𝑛, denoted P̄

(with 𝑡-marginals p̄𝑡 ), which corresponds to an SDE with drift

𝑏𝑡 (𝑧) = 𝜀∇ logH1−𝑡 [exp(𝑔★/𝜀)𝜈𝑛] (𝑧)

= (1 − 𝑡)−1
(
−𝑧 +

∑𝑁
𝑗=1𝑌𝑗 exp((𝑔★(𝑌𝑗 ) + 1

2(1−𝑡) ‖𝑧 − 𝑌𝑗 ‖
2)/𝜀)∑𝑁

𝑗=1 exp((𝑔★(𝑌𝑗 ) + 1
2(1−𝑡) ‖𝑧 − 𝑌𝑗 ‖2)/𝜀)

)
.

(4.25)

Introducing the path measure P̄[0,𝜏] into the bound via triangle inequality and then applying

Pinsker’s inequality, we arrive at

E[TV2(P̃[0,𝜏], P★[0,𝜏])] . E[TV
2(P̃[0,𝜏], P̄[0,𝜏])] + E[TV2(P̄[0,𝜏], P★[0,𝜏])]

. E[KL(P̃[0,𝜏] ‖P̄[0,𝜏])] + E[KL(P★[0,𝜏] ‖P̄[0,𝜏])] ,

We analyse the two terms separately, each term involving proof techniques developed by Stromme

(2024). We summarize the results in the following propositions, which yield the proof of Theo-

rem 4.4.

Proposition 4.5. Assume the conditions of Theorem 4.4, then for any 𝜏 ∈ [0, 1)

E[KL(P̃[0,𝜏] ‖P̄[0,𝜏])] ≤
1
𝜀
E[OT𝜀 (𝜇, 𝜈𝑛) − OT𝜀 (𝜇, 𝜈)] ≤ 𝜀−(k/2+1)𝑛−1/2 .
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Proposition 4.6. Assume the conditions of Theorem 4.4, then

E[KL(P★[0,𝜏] ‖P̄[0,𝜏])] ≤
𝑅2𝜀−k

𝑛
(1 − 𝜏)−k−2 .

4.4.2 Completing the results

We now incorporate the discretization error. Letting P̂ denote the path measure induced by

the dynamics of (4.21), we use the triangle inequality to introduce the path measure P̃:

E[TV2(P̂[0,𝜏], P★[0,𝜏])] . E[TV
2(P̂[0,𝜏], P̃[0,𝜏])] + E[TV2(P̃[0,𝜏], P★[0,𝜏])] .

The second term is precisely the statistical error, controlled by Theorem 4.4. For the �rst term, we

employ a now-standard discretization argument (see e.g., Chen et al. (2022b)) which bounds the

total variation error as a function of the step-size parameter 𝜂 and the Lipschitz constant of the

empirical drift, which can be easily bounded in our setting.

Proposition 4.7. Suppose 𝜇, 𝜈 ∈ P2(R𝑑). Denoting 𝐿𝜏 for the Lipschitz constant of 𝑏𝜏 (recall (4.20))

for 𝑡 ∈ [0, 1) and 𝜂 the step-size of the SDE discretization, it holds that

E[TV2(P̂[0,𝜏], P̃[0,𝜏])] . (𝜀 + 1)𝐿2𝜏𝑑𝜂 .

In particular, if supp(𝜈) ⊆ 𝐵(0;𝑅), then

E[TV2(P̂[0,𝜏], P̃[0,𝜏])] . (𝜀 + 1) (1 − 𝜏)−2𝑑𝜂 (1 ∨ 𝑅4(1 − 𝜏)−2𝜀−2) .

We now aggregate the statistical and approximation error into one �nal result.

Theorem 4.8. Suppose 𝜇, 𝜈 ∈ P2(R𝑑) with supp(𝜈) ⊆ 𝐵(0, 𝑅) ⊆ M, whereM is a k-dimensional

submanifold of R𝑑 . Given 𝑛 i.i.d. samples from 𝜈 , the one-sample Sinkhorn bridge P̂ estimates the
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Schrödinger bridge P★ with the following error

E[TV2(P̂[0,𝜏], P★[0,𝜏])] .
(𝜀−k/2−1
√
𝑛
+ 𝑅2𝜀−k

(1 − 𝜏)k+2𝑛

)
+ (𝜀 + 1) (1 − 𝜏)−2𝑑𝜂 (1 ∨ 𝑅4(1 − 𝜏)−2𝜀−2) .

Assuming 𝑅 ≥ 1 and 𝜀 = 1, the Schrödinger bridge can be estimated in total variation distance to

accuracy 𝜖TV with 𝑛 samples and 𝑁 Euler–Maruyama steps, where

𝑛 � 𝑅2

(1 − 𝜏)k+2𝜖2TV
∨ 𝜖−4TV , 𝑁 .

𝑑𝑅4

(1 − 𝜏)4𝜖2TV
.

Note that our error rates improve as 𝜀 →∞; since this is also the regime in which Sinkhorn’s

algorithm terminates rapidly, it is natural to suppose that 𝜀 should be large in practice. This is

misleading, however: as 𝜀 grows, the Schrödinger bridge becomes less and less informative,7 and

the marginal p★𝜏 only resembles 𝜈 when 𝜏 becomes very close to 1. We elaborate on the use of the

SB for sampling in the following section.

4.4.3 Application: Sampling with the Föllmer bridge

Theorem 4.8 does not immediately imply guarantees for sampling from the target distribution

𝜈 . Obtaining such guarantees requires arguing that simulating the Sinkhorn bridge on a suitable

interval [0, 𝜏] for 𝜏 close to 1 yields samples close to the true density (without completely collapsing

onto the training data). We provide such a guarantee in this section, for the special case of the

Föllmer bridge. We adopt this setting only for concreteness; similar arguments apply more broadly.

The Föllmer bridge is a special case of the Schrödinger bridge due to Hans Föllmer (Föllmer,

1985). In this setting, 𝜇 = 𝛿𝑎 for any 𝑎 ∈ R𝑑 , and our estimator takes a particularly simple form:

𝑏F𝑡 (𝑧) = (1 − 𝑡)−1
(
−𝑧 +

∑𝑛
𝑗=1𝑌𝑗 exp

(
( 12 ‖𝑌𝑗 ‖

2 − 1
2(1−𝑡) ‖𝑧 − 𝑌𝑗 ‖

2)/𝜀
)∑𝑛

𝑗=1 exp
(
( 12 ‖𝑌𝑗 ‖2 −

1
2(1−𝑡) ‖𝑧 − 𝑌𝑗 ‖2)/𝜀

) )
, (4.26)

7In other words, the transport path is more and more volatile.

93



Note that in this special case, calculating the drift does not require the use of Sinkhorn’s algorithm,

and the drift, in fact, corresponds to the score of a kernel density estimator applied to 𝜈𝑛. We

provide a calculation of these facts in Appendix C.4 for completeness.

We then have the following guarantee.

Corollary 4.9. Consider the assumptions of Theorem 4.8, further suppose that 𝜇 = 𝛿0 and 𝜀 = 1 and

that the second moment of 𝜈 is bounded by 𝑑 . Suppose we use 𝑛 samples from 𝜈 to estimate the Föllmer

drift, and simulate the resulting SDE using 𝑁 Euler–Maruyama iterations until time 𝜏 = 1 − 𝜖2W2
/𝑑 ,

with

𝑛 � 𝑅2𝑑k+2

𝜖2𝑘+4W2
𝜖2TV
∨ 𝜖−4TV 𝑁 .

𝑅4𝑑5

𝜖8W2
𝜖2TV

.

Then the density given by the Sinkhorn bridge at time 𝜏 iterations will be 𝜖TV-close in total variation

to a measure which is 𝜖W2-close to 𝜈 in the 2-Wasserstein distance.

Note that the choice 𝜀 = 1 was merely out of convenience. If instead the practitioner was

willing to pay the computational price of solving Sinkhorn’s algorithm for small 𝜀 and large 𝑛,

then the number of requisite iterations 𝑁 would decrease. Finally, notice that the number of

samples scales exponentially in the intrinsic dimension k � 𝑑 instead of the ambient dimension 𝑑 .

This is, of course, unavoidable, but improves upon recent work that uses kernel density estimators

to prove a similar result for denoising di�usion probabilistic models (Wibisono et al., 2024).

Remark 4.10. Recently, Huang (2024) also proposed (4.26) to estimate the Föllmer drift. They

provide no statistical estimation guarantees of the drift, nor any sampling guarantees; their

contributions are largely empirical, demonstrating that the proposed estimator is tractable for

high-dimensional tasks. The work of Huang et al. (2021b) also proposes an estimator for the

Föllmer bridge based on having partial access to the log-density ratio of the target distribution

(without the normalizing constant).
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Algorithm 1: Sinkhorn bridges
Input: Data {𝑋𝑖}𝑚𝑖=1 ∼ 𝜇, {𝑌𝑗 }𝑛𝑗=1 ∼ 𝜈 , parameters 𝜀 > 0, 𝜏 ∈ (0, 1), and 𝑁 ≥ 1
Compute: Sinkhorn potentials (𝑓 , 𝑔) ∈ R𝑚 × R𝑛 ; // Using POT or OTT

Initialize: 𝑥 (0) = 𝑥 ∼ 𝜇, 𝑘 = 0, stepsize 𝜂 = 𝜏/𝑁
while 𝑘 ≤ 𝑁 − 1 do

𝑥 (𝑘+1) = 𝑥 (𝑘) + 𝜂𝑏𝑘𝜂 (𝑥 (𝑘)) +
√
𝜂𝜀𝜉 ; // 𝜉 ∼ N(0, 𝐼 )

𝑘 ← 𝑘 + 1
end

return 𝑥 (𝑁 )

4.5 Numerical performance

Our approach is summarized in Algorithm 1, and open-source code for replicating our experi-

ments is available at https://github.com/APooladian/SinkhornBridge.8

For a �xed regularization parameter 𝜀 > 0, the runtime of computing (𝑓 , 𝑔) on the basis of

samples has complexity O(𝑚𝑛/(𝜀𝛿tol)), where 𝛿tol is a required tolerance parameter that measures

how closely the the marginal constraints are satis�ed (Altschuler et al., 2022; Cuturi, 2013; Peyré

and Cuturi, 2019). Once these are computed, the evaluation of 𝑏𝑘𝜂 is O(𝑛), with the remaining

runtime being the number of iteration steps, denoted by 𝑁 . In all our experiments, we take𝑚 = 𝑛,

thus the total runtime complexity of the algorithm is a �xed cost of O(𝑛2/(𝜀𝛿tol), followed by

O(𝑛𝑁 ) for each new sample to be generated (which can be parallelized).

4.5.1 �alitative illustration

As a �rst illustration, we consider standard two-dimensional datasets from the machine

learning literature. For all examples, we use 𝑛 = 2000 training points from both the source and

target measure, and run Sinkhorn’s algorithm with 𝜀 = 0.1. For generation, we set 𝜏 = 0.9, and

consider 𝑁 = 50 Euler–Maruyama steps. Figure 4.1 contains the resulting simulations, starting

from out-of-sample points. We see reasonable performance in each case.
8Our estimator is implemented in both the POT and OTT-JAX frameworks.
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Figure 4.1: Schrödinger bridges on the basis of samples from toy datasets.

4.5.2 �antitative illustrations

We quantitatively assess the performance of our estimator using synthetic examples from the

deep learning literature (Bunne et al., 2023a; Gushchin et al., 2023).

The Gaussian case We �rst demonstrate that we are indeed learning the drift and that the

claimed rates are empirically justi�ed. As a �rst step, we consider the simple case where 𝜇 =

N(𝑎,𝐴) and 𝜈 = N(𝑏, 𝐵) for two positive-de�nite 𝑑 × 𝑑 matrices 𝐴 and 𝐵 and arbitrary vectors

𝑎, 𝑏 ∈ R𝑑 . In this regime, the optimal drift 𝑏★𝜏 and p★𝜏 has been computed in closed-form by Bunne

et al. (2023a); see equations (25)-(29) in their work.

To verify that we are indeed learning the drift, we �rst draw 𝑛 samples from 𝜇 and 𝜈 , and

compute our estimator, 𝑏𝜏 for any 𝜏 ∈ [0, 1). We then evaluate the mean-squared error

MSE(𝑛, 𝜏) = ‖𝑏𝜏 − 𝑏★𝜏 ‖2𝐿2 (p★𝜏 ) ,

by a Monte Carlo approximation, with 𝑛MC = 10000. For simplicity, with 𝑑 = 3, we choose 𝐴 = 𝐼

and randomly generate a positive-de�nite matrix 𝐵, and center the Gaussians. We �x 𝜀 = 1 and

vary 𝑛 used to de�ne our estimator, and perform the simulation ten times to generate error bars
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Figure 4.2: MSE for estimating the Gaussian dri� as (𝑛, 𝜏) vary, averaged over 10 trials.

across various choices of 𝜏 ∈ [0, 1); see Figure 4.2.

It is clear from the plot that the constant associated to the rate of estimation gets worse as

𝜏 → 1, but the overall rate of convergence appears unchanged, which hovers around 𝑛−1 for all

choices of 𝜏 shown in the plot, as expected from e.g., Proposition 4.5.

Multimodal measures with closed-form drift The next setting is due to Gushchin et al.

(2023); they devised a drift that de�nes the Schrödinger bridge between a Gaussian and a more

complicated measure with multiple modes. This explicit drift allowed them to benchmark multiple

neural network based methods for estimating the Schrödinger bridge for non-trivial couplings

(e.g., beyond the Gaussian to Gaussian setting). We brie�y remark that the approaches discussed

in their work fall under the “continuous estimation" paradigm, where researchers assume they can

endlessly sample from the distributions when training (using new samples per training iteration).

We consider the same pre-�xed drift as found in their publicly available code, which transports

the standard Gaussian to a distribution with four modes. We consider the case 𝑑 = 64 and 𝜀 = 1, as

these hyperparameters are most extensively studied in their work, where they provide the most
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Figure 4.3: Plo�ing generated and resampled
target data in 𝑑 = 64.

Method BW-UVP
Ours 0.41 ± 0.03

MLE-SB 0.56
EgNOT 0.85

FB-SDE-A 0.65

Table 4.1: Comparison to neural network ap-
proaches in BW-UVP for 𝑑 = 64.

details on the other models. We use 𝑛 = 4096 training samples from the source and target data

they construct (which is signi�cantly less than the total number of samples required for any of

the neural network based models) and perform our estimation procedure, and we take 𝑁 = 100

discretization steps (which is half as many as most of the works they consider) to simulate to time

𝜏 = 0.99. To best illustrate the four mixture components, Figure 4.3 contains a scatter plot of the

�rst and �fteenth dimension, containing fresh target samples and our generated samples.

We compare to the ground-truth samples using the unexplained variance percentage (UVP)

based on the Bures–Wasserstein distance (Bures, 1969):

𝜇 ↦→ BW-UVP𝜈 (𝜇) B 100
BW2(N𝜇,N𝜈 )
0.5 · Var(𝜈) ,

where N𝜇 = N(E𝜇 [𝑋 ],Cov𝜇 (𝑋 )), and same for N𝜈 .9 While seemingly ad hoc, the BW-UVP

is widely used in the machine learning literature as a means of quantifying the quality of the

generated samples (see e.g., Daniels et al. (2021)). We compute the BW-UVP with 104 generated

samples from the target and our approach, averaged over 5 trials, and used the results of Gushchin

et al. (2023) for the remaining methods (MLE-SB is by Vargas et al. (2021), EgNOT is byMokrov et al.
9For us, these quantities are computed on the basis of samples.
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(2023), and FB-SDE-A is by Chen et al. (2021a)). We see that the Sinkhorn bridge has signi�cantly

lower BW-UVP compared to the other approaches while requiring less compute resources and

training data.
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Part II

Interlude: Theoretical properties of

entropic Brenier maps
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5 | An entropic generalization of

Caffarelli’s contraction theorem

via covariance ineqalities

5.1 Introduction

The following seminal result is due to Ca�arelli (2000).

Theorem 5.1 (Ca�arelli’s contraction theorem). Let 𝑃 = exp(−𝑉 ) and𝑄 = exp(−𝑊 ) have smooth

densities on R𝑑 , with ∇2𝑉 � 𝛽𝑉 𝐼 and ∇2𝑊 � 𝛼𝑊 𝐼 � 0. Then, the optimal transport map ∇𝜑0 from 𝑃

to 𝑄 is
√︁
𝛽𝑉 /𝛼𝑊 -Lipschitz.

Here, 𝜑0 : R𝑑 → R is a convex function, known as a Brenier potential. The optimal transport

map ∇𝜑0 : R𝑑 → R𝑑 pushes forward 𝑃 to𝑄 , in the sense that if 𝑋 is a random variable with law 𝑃 ,

then ∇𝜑0(𝑋 ) is a random variable with law 𝑄 . See Section 1.3.1 and the textbook by Villani (2021)

for background on optimal transport.

Ca�arelli’s contraction theorem can be used to transfer functional inequalities, such as

a Poincaré inequality, from the standard Gaussian measure on R𝑑 to other probability mea-

sures (Bakry et al., 2014). Towards this end, recent works have also constructed and studied

alternative Lipschitz transport maps (e.g. Kim and Milman (2012); Mikulincer and Shenfeld (2023;
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2024); Neeman (2022)), but still the properties of the original optimal transport map remain of

fundamental interest, with many questions unresolved (Colombo et al., 2017; Valdimarsson, 2007).

Indeed, besides the application to functional inequalities, the structural properties of optimal

transport maps play a fundamental role in theoretical and methodological advances in optimal

transport, such as the control of the curvature of the Wasserstein space through the notion of

extendible geodesics (Ahidar-Coutrix et al., 2020; Le Gouic et al., 2022), the stability of Wasserstein

barycenters (Chewi et al., 2020), and the statistical estimation of optimal transport maps (Hütter

and Rigollet, 2021).

In applied domains, however, the inauspicious computational and statistical burden of solving

the original optimal transport problem has instead led practitioners to consider entropically

regularized optimal transport, as pioneered by Cuturi (2013). In addition to its practical merits,

entropic optimal transport enjoys a rich mathematical theory, rooted in its connection to the

classical Schrödinger bridge problem (Léonard, 2014), which has led to powerful applications to

high-dimensional probability (Fathi et al., 2020; Gentil et al., 2020; Ledoux, 2018). As such, it is

natural to study the properties of the entropic analogue of the optimal transport map.

5.1.1 Contributions

In this chapter, we prove a generalization of Ca�arelli’s contraction theorem to the setting of

entropic optimal transport. Namely, we study the Hessian of the entropic Brenier potential which

admits a representation as a covariance matrix (Lemma 5.4). By applying two well-known inequal-

ities for covariance matrices (the Brascamp–Lieb inequality and the Cramér–Rao inequality), we

quickly deduce a sharp upper bound on the operator norm of the Hessian which holds for any

value 𝜀 > 0 of the regularization parameter.

As a byproduct of our analysis, by sending 𝜀 ↘ 0 and appealing to recent convergence

results for the entropic Brenier potentials (Nutz and Wiesel, 2021), we obtain the shortest proof of

Ca�arelli’s contraction theorem to date. Notably, our argument allows us to sidestep the regularity
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of the optimal transport map, which is a key obstacle in Ca�arelli’s original proof.

Recently, Fathi et al. (2020) gave a proof of Ca�arelli’s theorem using a surprising equivalence

between Theorem 5.1 and a statement about Wasserstein projections, which was discovered

through the theory of weak optimal transport (Gozlan and Juillet, 2020). In order to verify the

latter, their proof also used ideas from entropic optimal transport. In comparison, we note that our

argument is more direct and also allows us to handle the case of non-zero regularization (𝜀 > 0).

To further demonstrate the applicability of our technique, in Section 5.4 we prove a generaliza-

tion of Ca�arelli’s result: if ∇2𝑉 � 𝐴−1 and ∇2𝑊 � 𝐵−1, where 𝐴 and 𝐵 are arbitrary commuting

positive de�nite matrices, then the Hessian of the Brenier potential from 𝑃 to𝑄 is pointwise upper

bounded (in the PSD ordering) by 𝐴−1/2𝐵1/2. This result implies a remarkable extremal property

of optimal transport maps between Gaussian measures, namely: the optimal transport map from

N(0, 𝐴) toN(0, 𝐵) maximizes the Hessian of the Brenier potential at any point among all possible

measures 𝑃 and 𝑄 satisfying our assumptions. To the best of our knowledge, this result is new.

5.2 Background

5.2.1 Assumptions

Henceforth, we say that the pair (𝑃,𝑄) satis�es our regularity conditions if:

1. 𝑃 has full support on R𝑑 and 𝑄 is supported on a convex subset of R𝑑 . Let Ω𝑄 denote the

interior of the support of 𝑄 , so that Ω𝑄 is a convex open set.

2. 𝑃 and𝑄 admit positive Lebesgue densities on R𝑑 and Ω𝑄 , which we can therefore be written

exp(−𝑉 ) and exp(−𝑊 ) respectively for functions𝑉 ,𝑊 : R𝑑 → R∪ {∞}. We abuse notation

and identify the measures with their densities, thus writing 𝑃 = exp(−𝑉 ) and𝑄 = exp(−𝑊 ).

3. We assume that 𝑉 and𝑊 are twice continuously di�erentiable on R𝑑 and Ω𝑄 respectively.
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Some of these assumptions can be eventually relaxed, but they su�ce for the purposes of this

work. Throughout the rest of the paper and for the sake of simplicity, these regularity assumptions

are assumed to hold for the probability measures under consideration.

5.2.2 Optimal transport without regularization

Let 𝑃 and𝑄 be probability measures with �nite second moment. The optimal transport problem

is the optimization problem

minimize
𝜋∈Π(𝑃,𝑄)

∬
1
2 ‖𝑥 − 𝑦‖

2 d𝜋 (𝑥,𝑦) (5.1)

where Π(𝑃,𝑄) is the set of joint probability measures with marginals 𝑃 and 𝑄 . The following

fundamental result characterizes the optimal solution to (5.1).

Theorem 5.2 (Brenier’s theorem). Suppose that 𝑃 admits a density with respect to Lebesgue measure.

Then, there exists a proper, convex, lower semicontinuous function 𝜑0 : R𝑑 → R ∪ {∞} such that the

optimal transport plan in (5.1) can be written 𝜋0 = (id,∇𝜑0)♯𝑃 . The function 𝜑0 is called the Brenier

potential, and the mapping ∇𝜑0 is called the optimal transport map from 𝑃 to 𝑄 . Moreover, the

optimal transport map ∇𝜑0 is unique up to 𝑃-almost everywhere equality.

The Brenier potential 𝜑0 is obtained as the solution to the dual problem

maximize
𝜑∈Γ0

∫ ( ‖·‖2
2
− 𝜑

)
d𝑃 +

∫ ( ‖·‖2
2
− 𝜑∗

)
d𝑄 , (5.2)

where 𝜑∗ is the convex conjugate to 𝜑 , and Γ0 is the set of proper, convex, lower semicontinuous

functions on R𝑑 .

We refer to Villani (2021) for further background.
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5.2.3 Optimal transport with entropic regularization

Entropic optimal transport is the problem that arises when we add the Kullback–Liebler (KL)

divergence, denoted KL(· ‖ ·), as a regularizer to (5.1):

minimize
𝜋∈Π(𝑃,𝑄)

∬
1
2 ‖𝑥 − 𝑦‖

2 d𝜋 (𝑥,𝑦) + 𝜀 KL(𝜋 ‖𝑃 ⊗ 𝑄) . (5.3)

The following statement characterizes the solution to (5.3) (Csiszár, 1975; Nutz and Wiesel, 2021;

Peyré and Cuturi, 2019).

Theorem 5.3 (Entropic optimal transport). Let 𝑃 and 𝑄 be probability measures on R𝑑 and �x

𝜀 > 0. Then there exists a unique solution 𝜋𝜀 ∈ Π(𝑃,𝑄) to (5.3). Moreover, 𝜋𝜀 has the form

𝜋𝜀 (d𝑥, d𝑦) = exp
( 𝑓𝜀 (𝑥) + 𝑔𝜀 (𝑦) − 1

2 ‖𝑥 − 𝑦‖
2

𝜀

)
𝑃 (d𝑥)𝑄 (d𝑦) , (5.4)

where (𝑓𝜀, 𝑔𝜀) are maximizers for the dual problem

maximize
(𝑓 ,𝑔)∈𝐿1 (𝑃)×𝐿1 (𝑄)

∫
𝑓 d𝑃 +

∫
𝑔 d𝑄 − 𝜀

∬
𝑒 (𝑓 (𝑥)+𝑔(𝑦)−

1
2 ‖𝑥−𝑦‖

2)/𝜀 d𝑃 (𝑥) d𝑄 (𝑦) + 𝜀 . (5.5)

The constraint that 𝜋𝜀 has marginals 𝑃 and 𝑄 implies the following dual optimality conditions

for (𝑓𝜀, 𝑔𝜀) (see Mena and Niles-Weed (2019); Nutz and Wiesel (2021)):

𝑓𝜀 (𝑥) = −𝜀 log
∫

𝑒 (𝑔𝜀 (𝑦)−
1
2 ‖𝑥−𝑦‖

2)/𝜀 d𝑄 (𝑦) (𝑥 ∈ R𝑑) , (5.6)

𝑔𝜀 (𝑦) = −𝜀 log
∫

𝑒 (𝑓𝜀 (𝑥)−
1
2 ‖𝑥−𝑦‖

2)/𝜀 d𝑃 (𝑥) (𝑦 ∈ R𝑑) . (5.7)

In particular, 𝑓𝜀 and 𝑔𝜀 are smooth. In this work, it is more convenient to work with the entropic
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Brenier potentials, de�ned as

(𝜑𝜀,𝜓𝜀) := ( 12 ‖ · ‖
2 − 𝑓𝜀, 1

2 ‖ · ‖
2 − 𝑔𝜀) . (5.8)

Since (𝑓𝜀, 𝑔𝜀) are only unique up to adding a constant to 𝑓𝜀 and subtracting the same constant from

𝑔𝜀 , we �x the normalization convention
∫
𝑓𝜀 d𝑃 =

∫
𝑔𝜀 d𝑄 . Under this condition, it was shown

by Nutz and Wiesel (2021) that we have convergence to the Brenier potential 𝜑𝜀 → 𝜑0 as 𝜀 ↘ 0.

Adopting this new notation, with 𝑃 = exp(−𝑉 ) and𝑄 = exp(−𝑊 ), we can rewrite the entropic

optimal plan as

𝜋𝜀 (d𝑥, d𝑦) = exp
(
−𝜑𝜀 (𝑥) +𝜓𝜀 (𝑦) − 〈𝑥,𝑦〉

𝜀
−𝑉 (𝑥) −𝑊 (𝑦)

)
d𝑥 d𝑦 .

The entropic Brenier potentials were �rst introduced to develop a computationally tractable

estimator of the optimal transport map ∇𝜑0 (Pooladian et al., 2022; Pooladian and Niles-Weed,

2021; Seguy et al., 2018). Indeed, this is motivated by the following observation, which acts as an

entropic version of Brenier’s theorem. Write 𝜋𝑌 |𝑋=𝑥𝜀 for the conditional distribution of 𝑌 given

𝑋 = 𝑥 for (𝑋,𝑌 ) ∼ 𝜋𝜀 , and similarly de�ne 𝜋𝑋 |𝑌=𝑦𝜀 . Then, by Pooladian and Niles-Weed (2021,

Proposition 2), ∇𝜑𝜀 is the barycentric projection

∇𝜑𝜀 (𝑥) =
∫

𝑦 d𝜋𝑌 |𝑋=𝑥𝜀 (𝑦) . (5.9)

For clarity of exposition, we abuse notation and abbreviate 𝜋𝑌 |𝑋=𝑥𝜀 by 𝜋𝑥𝜀 and 𝜋𝑋 |𝑌=𝑦𝜀 by 𝜋𝑦𝜀 when

there is no danger of confusion.

The following lemma is a straightforward computation using (5.4), (5.6), and (5.7).

Lemma 5.4. It holds that

∇2𝜑𝜀 (𝑥) = 𝜀−1 Cov𝑌∼𝜋𝑥𝜀 (𝑌 ) , and ∇2𝜓𝜀 (𝑦) = 𝜀−1 Cov𝑋∼𝜋𝑦
𝜀
(𝑋 ) .
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In particular, both 𝜑𝜀 and𝜓𝜀 are convex. Moreover, under our regularity conditions,

∇2𝑦 log(1/𝜋𝑥𝜀 ) (𝑦) = 𝜀−1 ∇2𝜓𝜀 (𝑦) + ∇2𝑊 (𝑦) ,

∇2𝑥 log(1/𝜋
𝑦
𝜀 ) (𝑥) = 𝜀−1 ∇2𝜑𝜀 (𝑥) + ∇2𝑉 (𝑥) .

5.2.4 Two covariance ineqalities

In our proofs, we make use of the following key inequalities.

Lemma 5.5. Let 𝑃 = exp(−𝑉 ) be a probability measure on R𝑑 and assume that 𝑉 is twice continu-

ously di�erentiable on the interior of its domain. Then, the following hold.

1. (Brascamp–Lieb inequality) If in addition we assume that 𝑃 is strictly log-concave, then it holds

that Cov𝑋∼𝑃 (𝑋 ) � E𝑋∼𝑃 [(∇2𝑉 (𝑋 ))−1].

2. (Cramér–Rao inequality) Cov𝑋∼𝑃 (𝑋 ) � (E𝑋∼𝑃 [∇2𝑉 (𝑋 )])−1.

The Brascamp–Lieb inequality is classical, and we refer readers to Bakry et al. (2014); Bobkov

and Ledoux (2000); Cordero-Erausquin (2017) for several proofs. To make our exposition more

self-contained, we provide a proof of the Cramér–Rao inequality in the appendix.

5.3 Main result and proof

We now state and prove our main theorem.

Theorem 5.6. Let 𝑃 = exp(−𝑉 ) and 𝑄 = exp(−𝑊 ).

1. Suppose that (𝑃,𝑄) satisfy our regularity assumptions, as well as

∇2𝑉 � 𝛽𝑉 𝐼 , and ∇2𝑊 � 𝛼𝑊 𝐼 � 0 .
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Then, for every 𝜀 > 0 and all 𝑥 ∈ R𝑑 , the Hessian of the entropic Brenier potential satis�es

∇2𝜑𝜀 (𝑥) �
1
2

(√︃
4𝛽𝑉 /𝛼𝑊 + 𝜀2𝛽2𝑉 − 𝜀𝛽𝑉

)
𝐼 .

2. Suppose that (𝑄, 𝑃) satisfy our regularity assumptions, as well as

∇2𝑉 � 𝛼𝑉 𝐼 � 0 , and ∇2𝑊 � 𝛽𝑊 𝐼 .

Then, for every 𝜀 > 0 and all 𝑥 ∈ Ω𝑃 := int(supp(𝑃)), the Hessian of the entropic Brenier

potential satis�es

∇2𝜑𝜀 (𝑥) �
1
2

(√︃
4𝛼𝑉 /𝛽𝑊 + 𝜀2𝛼2𝑉 − 𝜀𝛼𝑉

)
𝐼 .

Observe that as 𝜀 ↘ 0, we formally expect the following bounds on the Brenier potential:

√︁
𝛼𝑉 /𝛽𝑊 𝐼 � ∇2𝜑0(𝑥) �

√︁
𝛽𝑉 /𝛼𝑊 𝐼 .

In particular, this recovers Ca�arelli’s contraction theorem (Theorem 5.1). We make this intuition

rigorous below by appealing to convergence results for the entropic potentials as the regularization

parameter 𝜀 tends to zero.

Proof of Theorem 5.6. Upper bound. Fix 𝑥 ∈ R𝑑 . Recall from Lemma 5.4 that

∇2𝜑𝜀 (𝑥) = 𝜀−1 Cov𝑌∼𝜋𝑥𝜀 (𝑌 ) .
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By an application of the Brascamp–Lieb inequality, this results in the upper bound

∇2𝜑𝜀 (𝑥) = 𝜀−1 Cov𝑌∼𝜋𝑥𝜀 (𝑌 )

� 𝜀−1E𝑌∼𝜋𝑥𝜀
[ (
𝜀−1 ∇2𝜓𝜀 (𝑌 ) + ∇2𝑊 (𝑌 )

)−1]
� E𝑌∼𝜋𝑥𝜀

[ (
∇2𝜓𝜀 (𝑌 ) + 𝜀𝛼𝑊 𝐼

)−1]
,

where in the last inequality we also used the lower bound on the spectrum of ∇2𝑊 . Next, using

Lemma 5.4 and the Cramér–Rao inequality (Lemma 5.5), we obtain the lower bound

∇2𝜓𝜀 (𝑌 ) = 𝜀−1 Cov𝑋∼𝜋𝑌𝜀 (𝑋 )

� 𝜀−1
(
E𝑋∼𝜋𝑌𝜀

[
𝜀−1 ∇2𝜑𝜀 (𝑋 ) + ∇2𝑉 (𝑋 )

] )−1
�

(
E𝑋∼𝜋𝑌𝜀

[
∇2𝜑𝜀 (𝑋 ) + 𝜀𝛽𝑉 𝐼

] )−1
,

where we used the upper bound on the spectrum of ∇2𝑉 . Combining these inequalities,

∇2𝜑𝜀 (𝑥) � E𝑌∼𝜋𝑥𝜀
[( (
E𝑋∼𝜋𝑌𝜀

[
∇2𝜑𝜀 (𝑋 ) + 𝜀𝛽𝑉 𝐼

] )−1 + 𝜀𝛼𝑊 𝐼 )−1] .
Now, de�ne the quantity

𝐿𝜀 := sup
𝑥∈R𝑑

𝜆max
(
∇2𝜑𝜀 (𝑥)

)
.

Then, we have shown

𝜆max
(
∇2𝜑𝜀 (𝑥)

)
6

(
(𝐿𝜀 + 𝜀𝛽𝑉 )−1 + 𝜀𝛼𝑊

)−1
.
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Taking the supremum over 𝑥 ∈ R𝑑 ,

𝐿𝜀 6
(
(𝐿𝜀 + 𝜀𝛽𝑉 )−1 + 𝜀𝛼𝑊

)−1
.

Solving the inequality yields

𝐿𝜀 ≤
1
2

(√︃
4𝛽𝑉 /𝛼𝑊 + 𝜀2𝛽2𝑉 − 𝜀𝛽𝑉

)
. (5.10)

Lower bound. The lower bound argument is symmetric, but we give the details for complete-

ness. Using Lemma 5.4 and the Cramér–Rao inequality (Lemma 5.5),

∇2𝜑𝜀 (𝑥) = 𝜀−1 Cov𝑌∼𝜋𝑥𝜀 (𝑌 )

� 𝜀−1
(
E𝑌∼𝜋𝑥𝜀

[
𝜀−1 ∇2𝜓𝜀 (𝑌 ) + ∇2𝑊 (𝑌 )

] )−1
�

(
E𝑌∼𝜋𝑥𝜀

[
∇2𝜓𝜀 (𝑌 ) + 𝜀𝛽𝑊 𝐼

] )−1
.

Applying Lemma 5.4 and the Brascamp–Lieb inequality (Lemma 5.5),

∇2𝜓𝜀 (𝑌 ) = 𝜀−1 Cov𝑋∼𝜋𝑌𝜀 (𝑋 )

� 𝜀−1E𝑋∼𝜋𝑌𝜀
[ (
𝜀−1 ∇2𝜑𝜀 (𝑋 ) + ∇2𝑉 (𝑋 )

)−1]
� E𝑋∼𝜋𝑌𝜀

[ (
∇2𝜑𝜀 (𝑋 ) + 𝜀𝛼𝑉 𝐼

)−1]
.

Combining the two inequalities and setting

ℓ𝜀 := inf
𝑥∈Ω𝑃

𝜆min
(
∇2𝜑𝜀 (𝑥)

)
,
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we deduce that

ℓ𝜀 >
(
(ℓ𝜀 + 𝜀𝛼𝑉 )−1 + 𝜀𝛽𝑊

)−1
.

On the other hand, from Lemma 5.4, we know that ℓ𝜀 > 0. Solving the inequality then yields

ℓ𝜀 >
1
2

(√︃
4𝛼𝑉 /𝛽𝑊 + 𝜀2𝛼2𝑉 − 𝜀𝛼𝑉

)
.

�

Next, we rigorously deduce Ca�arelli’s contraction theorem from Theorem 5.6.

Proof of Ca�arelli’s contraction (Theorem 5.1). For every 𝜀 > 0, by Theorem 5.6, we have proven

that ∇2𝜑𝜀 � 𝐿𝜀𝐼 , with 𝐿𝜀 as in (5.10). Equivalently, this can be reformulated as saying that 𝐿𝜀 ‖·‖
2

2 −𝜑𝜀

is convex. Fix some 𝛿 > 0; in particular, for 𝜀 su�ciently small, (
√
𝛽𝑉 /𝛼𝑊 +𝛿) ‖·‖2

2 − 𝜑𝜀 is convex.

Upon passing to a sequence 𝜀𝑘 ↘ 0, existing results on the convergence of entropic optimal

transport potentials show that 𝜑𝜀𝑘 → 𝜑0 in 𝐿1(𝑃) (see Nutz andWiesel (2021)). Passing to a further

subsequence, we obtain 𝜑𝜀𝑘 → 𝜑0 (𝑃-almost surely). It follows that (
√
𝛽𝑉 /𝛼𝑊 +𝛿) ‖·‖2

2 − 𝜑0 is convex

for every 𝛿 > 0 (see the remark after Rockafellar (1997, Theorem 25.7)), and thus for 𝛿 = 0 as

well. �

Remark 5.7. Our main theorem provides both upper and lower bounds for ∇2𝜑𝜀 . In the case when

𝜀 = 0, the lower bound follows from the upper bound. Indeed, if 𝜑0 is the Brenier potential for

the optimal transport from 𝑃 to 𝑄 , then the convex conjugate 𝜑∗0 is the Brenier potential for the

optimal transport from 𝑄 to 𝑃 . By applying Ca�arelli’s contraction theorem to 𝜑∗0 and appealing

to convex duality, it yields a lower bound on ∇2𝜑0. However, we are not aware of a method of

deducing the lower bound from the upper bound for positive values of 𝜀.

Remark 5.8. In Appendix D.2, by inspecting the Gaussian case, we show that Theorem 5.6 is sharp

for every 𝜀 > 0.
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An inspection of the proof of the upper bound in Theorem 5.6 reveals the following more

general pair of inequalities.

Proposition 5.9. Let (𝑃,𝑄) be probability measures satisfying our regularity conditions. Then, for

all 𝑥 ∈ R𝑑 and 𝑦 ∈ Ω𝑄 ,

∇2𝜑𝜀 (𝑥) � E𝑌∼𝜋𝑥𝜀
[ (
∇2𝜓𝜀 (𝑌 ) + 𝜀 ∇2𝑊 (𝑌 )

)−1]
,

∇2𝜓𝜀 (𝑦) �
(
E𝑋∼𝜋𝑦

𝜀

[
∇2𝜑𝜀 (𝑋 ) + 𝜀 ∇2𝑉 (𝑋 )

] )−1
.

In the next section, we use these inequalities to prove a generalization of Ca�arelli’s theorem.

5.4 A generalization to commuting positive definite

matrices

In the next result, we replace the main assumptions of Ca�arelli’s contraction theorem, namely

∇2𝑉 � 𝛽𝑉 𝐼 and ∇2𝑊 � 𝛼𝑊 𝐼 , by the conditions

∇2𝑉 � 𝐴−1 and ∇2𝑊 � 𝐵−1 , (5.11)

where 𝐴 and 𝐵 are commuting positive de�nite matrices. Recall that the Hessian of the Brenier

potential between the Gaussian distributionsN(0, 𝐴) andN(0, 𝐵) is thematrix𝐴−1/2𝐵1/2 (Gelbrich,

1990). In light of this observation, the following theorem is sharp for every pair of commuting

positive de�nite (𝐴, 𝐵), and shows that the Brenier potential between Gaussians achieves the

largest possible Hessian among all source and target measures obeying the constraint (5.11).

Theorem 5.10. Let (𝑃,𝑄) satisfy our regularity conditions as well as the condition (5.11). Then, the
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Hessian of the Brenier potential satis�es the uniform bound: for all 𝑥 ∈ R𝑑 , it holds that

∇2𝜑0(𝑥) � 𝐴−1/2𝐵1/2 .

As in Theorem 5.6, the proof technique also yields a lower bound on ∇2𝜑0 under appropriate

assumptions. We omit this result because it is straightforward.

Proof. Let 𝐶𝜀 be the smallest constant 𝐶 > 0 such that ∇2𝜑𝜀 (𝑥) � 𝐴−1/2𝐵1/2 +𝐶𝐼 for all 𝑥 ∈ R𝑑 . In

light of Theorem 5.6, 𝐶𝜀 is well-de�ned and �nite. Equivalently,

𝐶𝜀 = sup
𝑥∈R𝑑

sup
𝑒∈R𝑑 , ‖𝑒 ‖=1

〈
𝑒, [∇2𝜑𝜀 (𝑥) −𝐴−1/2𝐵1/2] 𝑒

〉
.

Let (𝑥, 𝑒) achieve the above supremum. (If the supremum is not attained, then the rest of the proof

goes through with minor modi�cations.)

Using our assumptions and Proposition 5.9, we obtain

𝐶𝜀 =
〈
𝑒, [∇2𝜑𝜀 (𝑥) −𝐴−1/2𝐵1/2] 𝑒

〉
6

〈
𝑒,

[ (
(𝐴−1/2𝐵1/2 +𝐶𝜀𝐼 + 𝜀𝐴−1)−1 + 𝜀𝐵−1

)−1 −𝐴−1/2𝐵1/2] 𝑒〉 .
From our assumptions and Theorem 5.6, we know that the spectrum of𝑀𝜀 := 𝐴−1/2𝐵1/2 +𝐶𝜀𝐼 is

bounded away from zero and in�nity as 𝜀 ↘ 0, which justi�es the Taylor expansion

(
(𝑀𝜀 + 𝜀𝐴−1)−1 + 𝜀𝐵−1

)−1
=

(
𝑀−1𝜀 − 𝜀𝑀−1𝜀 𝐴−1𝑀−1𝜀 + 𝜀𝐵−1 +𝑂 (𝜀2)

)−1
= 𝑀𝜀 + 𝜀𝐴−1 − 𝜀𝑀𝜀𝐵

−1𝑀𝜀 +𝑂 (𝜀2) .
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Hence,

𝐶𝜀 6
〈
𝑒,

[
𝑀𝜀 + 𝜀𝐴−1 − 𝜀𝑀𝜀𝐵

−1𝑀𝜀 +𝑂 (𝜀2) −𝐴−1/2𝐵1/2
]
𝑒
〉

6 𝐶𝜀 + 𝜀
〈
𝑒, [𝐴−1 −𝑀𝜀𝐵

−1𝑀𝜀] 𝑒
〉
+𝑂 (𝜀2)

= 𝐶𝜀 + 𝜀
〈
𝑒, [𝐶𝜀𝐴−1/2𝐵−1/2 +𝐶2

𝜀𝐵
−1] 𝑒

〉
+𝑂 (𝜀2) .

This shows that lim𝜀↘0𝐶𝜀 = 0 (otherwise (𝐶𝜀)𝜀>0 would have a strictly positive cluster point

which would contradict the above inequality for small enough 𝜀 > 0).

By combining this fact with convergence of the entropic Brenier potentials as in the proof of

Theorem 5.1, we deduce the result. �

Next, we show how our theorem recovers and extends a result of Valdimarsson (Valdimarsson,

2007). Valdimarsson proves that if:

• 𝐴, 𝐵, and 𝐺 are positive de�nite matrices;

• 𝐴 � 𝐺 and 𝐵 commutes with 𝐺 ;

• 𝑃 = N(0, 𝐵𝐺−1) ∗ 𝜇 where ∗ denotes convolution and 𝜇 is an arbitrary probability measure

on R𝑑 ; and

• 𝑄 = exp(−𝑊 ) with ∇2𝑊 � 𝐵−1/2𝐴−1𝐵−1/2;

then the Brenier potential satis�es ∇2𝜑0 � 𝐺 . This result was then used to derive new forms of

the Brascamp–Lieb inequality.1

To prove this result, we �rst check that convolution with any probability measure only makes

the density more log-smooth.
1This is a di�erent Brascamp–Lieb inequality than the one in Lemma 5.5.
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Lemma 5.11. Let 𝑃 ∝ exp(−𝑉 ) be a probability measure, where 𝑉 : R𝑑 → R is twice continuously

di�erentiable. Let 𝑃 := 𝑃 ∗ 𝜇 = exp(−𝑉 ) where 𝜇 is any probability measure on R𝑑 . Suppose that for

some positive de�nite matrix 𝐴−1, we have ∇2𝑉 � 𝐴−1. Then, ∇2𝑉 � 𝐴−1 as well.

Proof. An elementary computation shows that if we de�ne the probability measure

𝜈𝑦 (d𝑥) :=
exp(−𝑉 (𝑦 − 𝑥)) 𝜇 (d𝑥)∫
exp(−𝑉 (𝑦 − 𝑥′)) 𝜇 (d𝑥′)

then

∇2𝑉 (𝑦) = E𝑋∼𝜈𝑦
[
∇2𝑉 (𝑦 − 𝑋 )

]
− Cov𝑋∼𝜈𝑦

(
∇𝑉 (𝑦 − 𝑋 )

)
,

from which the result follows. �

From the lemma, we deduce that under Valdimarsson’s assumptions, for 𝑃 = exp(−𝑉 ), we

have ∇2𝑉 � 𝐵−1𝐺 . Also, ∇2𝑊 � 𝐵−1/2𝐴−1𝐵−1/2 � 𝐵−1𝐺−1. By Theorem 5.10, the Brenier potential

𝜑0 satis�es ∇2𝜑0 � 𝐺 . However, it is seen that our argument yields much more. For example,

rather than requiring 𝑃 to be a convolution with a Gaussian measure, we can allow 𝑃 to be a

convolution with any measure exp(−𝑉 ) satisfying ∇2𝑉 � 𝐵−1𝐺 .

Remark 5.12. It is natural to ask whether Theorem 5.10 can be obtained by �rst applying Ca�arelli’s

contraction theorem to show that the optimal transport map 𝑇0 between the measures (𝐴−1/2)♯𝑃

and (𝐵−1/2)♯𝑄 is 1-Lipschitz, and then considering the mapping𝑇0(𝑥) := 𝐵1/2𝑇0(𝐴−1/2𝑥). Although

𝑇0 is indeed a valid transport mapping from 𝑃 to 𝑄 , under our assumptions ∇𝑇0 is not guaranteed

to be symmetric, so it does not make sense to ask whether or not ∇𝑇0 � 𝐴−1/2𝐵1/2.

In Valdimarsson’s application to Brascamp–Lieb inequalities, it is crucial that the transport

map 𝑇0 is chosen so that ∇𝑇0 is a symmetric positive de�nite matrix. Symmetry of ∇𝑇0 implies

that 𝑇0 is the gradient ∇𝜑0 of a function 𝜑0 : R𝑑 → R, and positive de�niteness implies that 𝜑0 is

convex. By Brenier’s theorem, the unique gradient of a convex function that pushes forward 𝑃 to
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𝑄 is the optimal transport map. Thus, it is crucial that we consider the optimal transport map

here; in particular, alternative maps such as the ones by Kim and Milman (2012); Mikulincer and

Shenfeld (2024) cannot be applied.

116



6 | Tight stability bounds for entropic

Brenier maps

6.1 Introduction

The theory of optimal transport de�nes a geometry over probability measures via the 2-

Wasserstein distance: for a source measure 𝜌 and a target measure 𝜇 with �nite second moments,

their Wasserstein distance is given by

𝑊 2
2 (𝜌, 𝜇) B min

𝑇 :𝑇♯𝜌=𝜇

∫
‖𝑥 −𝑇 (𝑥)‖2 d𝜌 (𝑥) , (6.1)

where the constraint 𝑇♯𝜌 = 𝜇 means that for 𝑋 ∼ 𝜌 , 𝑇 (𝑋 ) ∼ 𝜇, i.e., 𝑇 is a transport map. The

minimizer to (6.1), when it exists, is called an optimal transport map, which we denote by 𝑇 𝜇0 .

A seminal result by Brenier (1991) states that a unique optimal transport map between 𝜌 and 𝜇

exists whenever 𝜌 has a density, and moreover 𝑇 𝜇0 = ∇𝜑𝜇0 , where 𝜑
𝜇

0 is some convex function. We

will henceforth refer to optimal transport maps as Brenier maps, and the corresponding convex

functions that generate them as Brenier potentials.

A long-standing question in the optimal transport community is the following: is the mapping

𝜇 ↦→ 𝑇
𝜇

0 Hölder continuous with respect to the 2-Wasserstein distance? In other words, do there
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exist constants 𝐶, 𝛽 > 0 such that for all probability measures 𝜇, 𝜈 with �nite second moments,

‖𝑇 𝜇0 −𝑇
𝜈
0 ‖𝐿2 (𝜌) ≤ 𝐶𝑊

𝛽

2 (𝜇, 𝜈) ? (6.2)

Since the inequality𝑊2(𝜇, 𝜈) ≤ ‖𝑇 𝜇0 −𝑇 𝜈0 ‖𝐿2 (𝜌) always holds, (6.2) would imply that the mapping

𝜇 ↦→ 𝑇
𝜇

0 is a bi-Hölder embedding of the Wasserstein space into 𝐿2(𝜌). We call such an inequality

a stability bound.

The unique structure of the one-dimensional optimal transport problem shows that when 𝜌 , 𝜇,

and 𝜈 are probability measures on R, the bound (6.2) holds with 𝐶 = 𝛽 = 1—that is, the mapping

𝜇 ↦→ 𝑇
𝜇

0 is an isometry (see, e.g., Panaretos and Zemel, 2020, Chapter 2). On the other hand, Andoni

et al. (2015) showed that if 𝑑 ≥ 3, then (6.2) cannot hold uniformly over all probability measures 𝜇

and 𝜈 on R𝑑 with �nite second moment. In fact, their main statement is signi�cantly stronger and

rules out the possibility of embedding the Wasserstein space into any 𝐿𝑝 space, even in a very

weak sense. Nevertheless, as we describe further below, a stability bound such as (6.2) can hold if

further conditions are imposed on 𝜇 and 𝜈 , for instance, if they are compactly supported.

An early investigation in this direction is due to Gigli (2011), who showed that even when 𝜇

and 𝜈 are compactly supported, the exponent in (6.2) cannot be better than 𝛽 = 1
2 . However, in

the same paper, the author reports a simple proof due to Ambrosio that shows that if one of the

Brenier maps, say 𝑇 𝜈0 , is Λ-Lipschitz, then 𝛽 = 1
2 is achievable, with 𝐶 = 2

√
Λ𝑅, where 𝑅 is the

diameter of the support of 𝜌 ; see also Mérigot et al. (2020, Theorem 2.3) for a precise statement

and proof of this result. More recently, Manole et al. (2024a) showed that if 𝑇 𝜈0 is Λ-Lipschitz and

its inverse is 1/𝜆-Lipschitz, then 𝛽 = 1 is achievable, with constant 𝐶 =
√︁
Λ/𝜆.

Though these positive results are encouraging, requiring a priori smoothness bounds on one

of the two Brenier potentials excludes many cases of practical interest, for instance, the case of

discontinuous Brenier maps. Such maps arise commonly in applications of optimal transport

to machine learning, where it is natural to consider probability measures that lie on a union
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of manifolds of di�erent intrinsic dimension (Brown et al., 2022). There has therefore been

signi�cant recent interest in obtaining stability bounds without such assumptions; see Berman

(2021); Delalande and Mérigot (2023); Mérigot et al. (2020). The results of Delalande and Mérigot

(2023) are the most recent. They show that if 𝜌 has a (uniformly upper and lower bounded) density

supported on a convex set X, with 𝜇 and 𝜈 also supported on a compact set Y, then

‖𝑇 𝜇0 −𝑇
𝜈
0 ‖𝐿2 (𝜌) ≤ 𝐶𝑑,X,Y,𝜌𝑊

1/6
2 (𝜇, 𝜈) .

In fact, the authors prove this bound for the𝑊1 distance. Their proof technique relies on applica-

tions of the Brascamp–Lieb and Prekopa–Leindler inequalities.

In this chapter, we study analogous stability bounds for entropic Brenier maps. As entropic

optimal transport is a natural smoothed analogue to the optimal transport problem, and it is

reasonable to hope that techniques developed for entropic optimal transport can give insights

into the structure of the unregularized problem.

Despite the importance of entropic Brenier maps, much less is known about their stability

properties. The �rst result in this area is due to Carlier et al. (2024), who showed that if 𝜌 , 𝜇, and 𝜈

are compactly supported, then

‖𝑇 𝜇𝜀 −𝑇 𝜈𝜀 ‖𝐿2 (𝜌) ≤ 𝐶𝜀𝑊2(𝜇, 𝜈) , (6.3)

where 𝐶𝜀 is a constant that grows exponentially as 𝜀 tends to zero.

This striking result reveals that entropic Brenier maps automatically enjoy better stability

properties than unregularized Brenier maps when 𝜀 > 0. However, if (6.3) is to be used to extract

either practical bounds for entropic Brenier maps or insights about unregularized Brenier maps in

the 𝜀 → 0 limit, it is crucial to obtain sharp bounds on the constant 𝐶𝜀 .
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6.1.1 Contributions

The goal of this chapter is to improve the Lipschitz constant for the embedding 𝜇 ↦→ 𝑇
𝜇
𝜀 as a

function of 𝜀. Our main theorem is technical, but it readily implies results in the following three

scenarios of interest.

First, if the source and target measures are merely supported in the Euclidean ball of radius 𝑅,

then

‖𝑇 𝜇𝜀 −𝑇 𝜈𝜀 ‖𝐿2 (𝜌) ≤
(
1 + 2𝑅2/𝜀

)
𝑊2(𝜇, 𝜈) ,

see Corollary 6.5. We stress that none of the measures here require densities, and so, a priori,

Brenier maps may not exist, while their entropic counterparts do. Moreover, up to universal

constants, we show that this bound is tight; see Remark 6.6. This is an exponential improvement

on the bounds provided by Carlier et al. (2024).

As in the unregularized case, the preceding bounds can be improved under smoothness

assumptions on the entropic Brenier potentials. Such assumptions are arguably more reasonable

than in the unregularized case, since it is sometimes possible to obtain a priori smoothness bounds

for entropic Brenier potentials via elementary tools (see, e.g., Chewi and Pooladian, 2023). If one

of the entropic Brenier maps, say 𝑇 𝜈𝜀 , is Λ-Lipschitz, we show that the previous bound can be

improved to

‖𝑇 𝜇𝜀 −𝑇 𝜈𝜀 ‖𝐿2 (𝜌) ≤
(
1 + 2

√︁
𝑅Λ/𝜀

)
𝑊2(𝜇, 𝜈) ,

Going further, if the backward entropic Brenier map 𝑆𝜈𝜀 (see Section 6.2 for a precise de�nition) is

1/𝜆-Lipschitz, then the bound becomes independent of the regularization parameter:

‖𝑇 𝜇𝜀 −𝑇 𝜈𝜀 ‖𝐿2 (𝜌) ≤
(
1 + 2

√︁
Λ/𝜆

)
𝑊2(𝜇, 𝜈) .
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See Corollary 6.7 for these last two results. In particular, up to constants, this result is analogous

to the stability bound established by Manole et al. (2024a).

As a novel application, we turn to the semi-discrete setting of optimal transport, where 𝜇 and 𝜈

are both supported on �nitely many atoms and 𝜌 has a su�ciently well-behaved density. In this

setting, we partially close the gap left by Gigli and others, where we prove that

‖𝑇 𝜇0 −𝑇
𝜈
0 ‖𝐿2 (𝜌) .𝑊

1/3
2 (𝜇, 𝜈) , (6.4)

where 𝜇, 𝜈 satisfy appropriate regularity conditions, as does the source measure 𝜌 , and the sup-

pressed constant depends on these regularity assumptions. While our results do not allow for

arbitrary discrete measures, they hold for a wide class of discrete measures and do not require

the support of the atoms to be the same. The proof starts from the following application of the

triangle inequality

‖𝑇 𝜇0 −𝑇
𝜈
0 ‖𝐿2 (𝜌) ≤ ‖𝑇

𝜇

0 −𝑇
𝜇
𝜀 ‖𝐿2 (𝜌) + ‖𝑇 𝜈0 −𝑇 𝜈𝜀 ‖𝐿2 (𝜌) +𝐶𝜀𝑊2(𝜇, 𝜈) .

Under appropriate assumptions on 𝜌 and the two discrete measures 𝜇 and 𝜈 , we are able to control

the �rst two terms using existing techniques, and the third term can be controlled via Corollary 6.5.

Balancing the resulting terms as a function of 𝜀, we obtain the �nal bound that appears in (6.4).

Our identi�cation of the sharp constant 𝐶𝜀 is crucial to obtaining the result. See Section 6.4 for

more details.

6.2 Background
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6.2.1 Entropic optimal transport and notation

For two probability measures 𝜌, 𝜈 ∈ P2, the entropic optimal transport objective (Cuturi, 2013)

is de�ned as

OT𝜀 (𝜌, 𝜈) B min
𝜋∈Π(𝜌,𝜈)

∬
1
2 ‖𝑥 − 𝑧‖

2 d𝜋 (𝑥, 𝑧) + 𝜀 KL(𝜋 ‖𝜌 ⊗ 𝜈) , (6.5)

for some 𝜀 > 0, and KL(𝜋 ‖𝜌 ⊗ 𝜈) is the Kullback–Leibler divergence, de�ned as

KL(𝜋 ‖𝜌 ⊗ 𝜈) B
∫

log
(

d𝜋
d𝜌 ⊗ d𝜈

)
d𝜋

when 𝜋 is absolutely continuous with respect to 𝜌 ⊗ 𝜈 , and +∞ otherwise. Note that due to the

regularization term, the problem is strictly convex with a unique minimizer 𝜋𝜈𝜀 , the optimal entropic

(transport) coupling.1

The entropic optimal transport problem also admits a dual formulation (see, e.g., Genevay,

2019):

OT𝜀 (𝜌, 𝜈) B 1
2𝑀2(𝜌 + 𝜈) − min

𝜑∈𝐿1 (𝜌)

∫
𝜑 d𝜌 +

∫
Φ
𝜌
𝜀 [𝜑] d𝜈 , (6.6)

where Φ𝜈𝜀 is the following operator

∀𝑧 ∈ R𝑑 , Φ𝜌𝜀 [𝜑] (𝑧) B 𝜀 log
∫

𝑒 (〈𝑥,𝑧〉−𝜑 (𝑥))/𝜀 d𝜌 (𝑥) ,

which should be thought of as the entropic analogue to the convex conjugate operator. Indeed,

notice that as 𝜀 → 0, Φ𝜌𝜀 [𝜑] (𝑧) converges to the 𝜌-essential supremum of the function 𝑥 ↦→

〈𝑥, 𝑧〉 − 𝜑 (𝑥). We write the minimizer to (6.6) as 𝜑𝜈𝜀 , from which we obtain the minimizing pair of
1Since 𝜌 is �xed throughout, we use the superscript 𝜈 (respectively, 𝜇) to indicate objects that correspond to the

entropic optimal transport problem between 𝜌 and 𝜈 (respectively, 𝜌 and 𝜇).
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entropic Brenier potentials

(𝜑𝜈𝜀 ,𝜓𝜈𝜀 ) B (𝜑𝜈𝜀 ,Φ
𝜌
𝜀 [𝜑𝜈𝜀 ]) = (Φ𝜈𝜀 [𝜓𝜈𝜀 ],𝜓𝜈𝜀 ) ,

where Φ𝜈𝜀 is de�ned analogously to Φ
𝜌
𝜀 . Again, this pair is unique up to constant shifts.

Moreover, by the dual optimality conditions, we can de�ne versions of the entropic Brenier

potentials taking values in the extended reals, for all 𝑥 ∈ R𝑑 and 𝑧 ∈ R𝑑 , respectively. Thus, we

freely write

𝜑𝜈𝜀 (𝑥) B 𝜀 log
∫

𝑒 (〈𝑥,𝑧〉−𝜓
𝜈
𝜀 (𝑧))/𝜀 d𝜈 (𝑧) (𝑥 ∈ R𝑑)

𝜓𝜈𝜀 (𝑧) B 𝜀 log
∫

𝑒 (〈𝑥,𝑧〉−𝜑
𝜈
𝜀 (𝑥))/𝜀 d𝜌 (𝑥) (𝑧 ∈ R𝑑) .

(6.7)

See Mena and Niles-Weed (2019); Nutz and Wiesel (2021) for more details. Note that 𝜑𝜈𝜀 : R𝑑 →

R ∪ {+∞} (resp. 𝜓𝜈𝜀 ) is a convex function which is analytic on the interior of its domain dom(𝜑𝜈𝜀 )

(resp. dom(𝜓𝜈𝜀 )),

An important feature of the entropic optimal transport problem is that the optimal solutions

to (6.5) and (6.6) satisfy the following primal-dual relationship (Csiszár, 1975):

d𝜋𝜈𝜀 (𝑥, 𝑧) B 𝛾𝜈𝜀 (𝑥, 𝑧) d𝜌 (𝑥) d𝜈 (𝑧) B 𝑒 (〈𝑥,𝑧〉−𝜓
𝜈
𝜀 (𝑧)−𝜑𝜈

𝜀 (𝑥))/𝜀 d𝜌 (𝑥) d𝜈 (𝑧) .

Concretely, 𝛾𝜈𝜀 , the density of 𝜋𝜈𝜀 with respect to 𝜌 ⊗ 𝜈 , can be written explicitly in terms of the

entropic Brenier potentials (𝜑𝜈𝜀 ,𝜓𝜈𝜀 ).

Let (𝑋,𝑍 ) be a pair of random variables with distribution 𝜋𝜈𝜀 . For a given 𝑥 ∈ dom(𝜑𝜈𝜀 ), we

abuse notation and de�ne the conditional probability of 𝑍 |𝑋 = 𝑥 as

d𝜋𝜈𝜀 (𝑧 |𝑥) = 𝑒 (〈𝑥,𝑧〉−𝜑
𝜈
𝜀 (𝑥)−𝜓 𝜈

𝜀 (𝑧))/𝜀 d𝜈 (𝑧) .
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Similarly we denote 𝜋𝜈𝜀 (·|𝑧) B 𝜋𝜈𝜀 (·|𝑍 = 𝑧) whenever 𝑧 ∈ dom(𝜓𝜈𝜀 ). Likewise, if (𝑋,𝑌 ) are

distributed according to the optimal entropic coupling 𝜋 𝜇𝜀 between 𝜌 and 𝜇, we will write 𝜋 𝜇𝜀 (·|𝑥)

and 𝜋 𝜇𝜀 (·|𝑦) for the conditional distributions of 𝑌 |𝑋 = 𝑥 and 𝑋 |𝑌 = 𝑦, respectively. We will adopt

the convention throughout that 𝑋 , 𝑌 , and 𝑍 always refer to random variables with marginal

distributions 𝜌 , 𝜇, and 𝜈 , respectively.

Following e.g., Pooladian and Niles-Weed (2021); Rigollet and Stromme (2022), we de�ne,

respectively, the forward and backward entropic Brenier maps from 𝜌 to 𝜈 to be barycentric

projections of 𝜋𝜈𝜀 (Ambrosio et al., 2008, De�nition 5.4.2): for 𝑥 ∈ dom(𝜑𝜈𝜀 ) and 𝑧 ∈ dom(𝜓𝜈𝜀 ), we

de�ne

𝑇 𝜈𝜀 (𝑥) B
∫

𝑧 d𝜋𝜈𝜀 (𝑧 |𝑥) , 𝑆𝜈𝜀 (𝑧) B
∫

𝑥 d𝜋𝜈𝜀 (𝑥 |𝑧)

whenever the integrals are well-de�ned. Unlike the unregularized case, (𝑆𝜈𝜀 )−1 ≠ 𝑇 𝜈𝜀 . Note that by

Jensen’s inequality, 𝑇 𝜈𝜀 ∈ 𝐿2(𝜌) with ‖𝑇 𝜈𝜀 ‖2𝐿2 (𝜌) ≤ 𝑀2(𝜈) (resp. 𝑆𝜈𝜀 ∈ 𝐿2(𝜈) with ‖𝑆𝜈𝜀 ‖2𝐿2 (𝜈) ≤ 𝑀2(𝜌)).

Also note that by the dominated convergence theorem, the gradient of 𝜑𝜈𝜀 (resp. 𝜓𝜈𝜀 ) from (6.7) has

a natural interpretation as the forward (resp. backward) entropic Brenier map: whenever 𝑥 is in

the interior of dom(𝜑𝜈𝜀 ) and 𝑧 is in the interior of dom(𝜓𝜈𝜀 ),

∇𝜑𝜈𝜀 (𝑥) = 𝑇 𝜈𝜀 (𝑥) , ∇𝜓𝜈𝜀 (𝑧) = 𝑆𝜈𝜀 (𝑧) . (6.8)

Under the same condition, a similar expression holds for the Hessians of the entropic Brenier

potentials (see, e.g., Chewi and Pooladian, 2023, Lemma 1):

∇2𝜑𝜈𝜀 (𝑥) = 𝜀−1Cov𝜋𝜈
𝜀
(𝑍 |𝑋 = 𝑥) , ∇2𝜓𝜈𝜀 (𝑧) = 𝜀−1Cov𝜋𝜈

𝜀
(𝑋 |𝑍 = 𝑧) . (6.9)

Throughout, we will write (𝜑𝜈𝜀 ,𝜓𝜈𝜀 ) for the entropic Brenier potentials associated to OT𝜀 (𝜌, 𝜈),

𝑇 𝜈𝜀 for the forward entropic Brenier map, and 𝑆𝜈𝜀 for the backward entropic Brenier map (and the

same for for OT𝜀 (𝜌, 𝜇)).
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Similarly, we will simply write 𝜑𝜈0 , 𝜓
𝜈
0 and 𝑇 𝜈0 to refer to the quantities associated to the

unregularized optimal transport problem𝑊 2
2 (𝜌, 𝜈) (as for𝑊 2

2 (𝜌, 𝜇)).

6.2.2 Related work in entropic optimal transport

Fixed regularization. The initial motivation for studying (6.5) in the machine learning lit-

erature was its signi�cant computational bene�ts compared to the standard optimal transport

problem (Altschuler et al., 2017; Cuturi, 2013). As a result, the study of entropic objects for a

�xed 𝜀 > 0 regularization parameter has been of great interest in a number of �elds. For example,

del Barrio et al. (2022b); Goldfeld et al. (2024a); Gonzalez-Sanz et al. (2022) studied statistical

limit theorems for entropic optimal transport. Conforti et al. (2023); Greco et al. (2023); Nutz and

Wiesel (2023) study the convergence of Sinkhorn’s algorithm to the optimal Brenier potentials

at the population level. The works by Klein et al. (2024); Masud et al. (2023); Pooladian et al.

(2022); Rigollet and Stromme (2022); Stromme (2024); Werenski et al. (2023) studied additional

computational or statistical properties of entropic Brenier maps. As previously mentioned, Carlier

et al. (2024) initiated the study of the stability properties of entropic Brenier maps under variations

of the target measure, though their techniques di�er signi�cantly from ours.

Vanishing regularization. Theoretical properties of entropic optimal transport for vanishing

regularization parameter are widely studied in both statistical and theoretical works. For example,

convergence of the regularized to unregularized couplings was studied by Bernton et al. (2022);

Carlier et al. (2017); Ghosal et al. (2022); Léonard (2012), and convergence of the transport costs

by Chizat et al. (2020); Conforti and Tamanini (2021); Eckstein and Nutz (2023); Pal (2024). Nutz

and Wiesel (2021) established convergence of the entropic to non-entropic Brenier potentials

under minimal assumptions; this convergence was improved in the case of semi-discrete optimal

transport by Altschuler et al. (2022) and Delalande (2022). Chewi and Pooladian (2023) established

a short proof of Ca�arelli’s contraction theorem (Ca�arelli, 2000) via covariance inequalities and
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entropic optimal transport, which was subsequently generalized by Conforti (2024). Statistical

convergence of entropic Brenier maps to unregularized Brenier maps was established by Pooladian

et al. (2023); Pooladian and Niles-Weed (2021), the latter paper focusing on the semi-discrete

setting.

6.2.3 Key ingredient: A transport ineqality for conditional entropic

couplings

At the core of our approach is the use of a speci�c transport inequality which has been

developed for other purposes in the study of sampling and functional inequalities (Anari et al.,

2021a;b; Bauerschmidt et al., 2023; Chen and Eldan, 2022). We refer to Bauerschmidt et al. (2023,

Section 3.7) for more details, and brie�y overview the necessary inequalities and notation here.

Let 𝑞 ∈ P2 be a probability measure with �nite moment generating function whose covariance

is denoted by Cov(𝑞). For ℎ ∈ R𝑑 , we de�ne the tilt Tℎ𝑞 of 𝑞 as the probability measure satisfying

∀𝑧 ∈ R𝑑 , dTℎ𝑞
d𝑞
(𝑧) B exp(〈ℎ, 𝑧〉)

E𝑍∼𝑞 [exp(〈ℎ, 𝑍 〉)]
.

We say that 𝑞 is tilt-stable2 if for all ℎ ∈ R𝑑 , Cov(Tℎ𝑞) � 𝐶T𝐼 for some 𝐶T > 0. If 𝑞 is tilt-stable

with constant 𝐶T, then for all probability measures 𝑝 ∈ P2,

‖E𝑝 [𝑋 ] − E𝑞 [𝑋 ] ‖2 ≤ 2𝐶TKL(𝑝 ‖𝑞) ,

see Bauerschmidt et al. (2023, Lemma 3.21).

Our main observation is that conditional entropic couplings are tilt-stable, with a constant

that can be written in terms of the entropic Brenier potentials. For an entropic potential 𝜑𝜈𝜀 whose
2This name is not standard, but we introduce it here because the standard name for this concept (entropic stability)

is likely to cause confusion in the context of our main results.
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domain is all of R𝑑 , we write

𝐻max(𝜑𝜈𝜀 ) B sup
𝑢∈R𝑑
‖Cov𝜋𝜈

𝜀
(𝑍 |𝑋 = 𝑢)‖op = 𝜀 sup

𝑢∈R𝑑
‖∇2𝜑𝜈𝜀 (𝑢)‖op , (6.10)

and de�ne 𝐻max(𝜓𝜈𝜀 ) analogously. The second equality in (6.10) is justi�ed by the fact that (6.9)

holds everywhere when dom(𝜑𝜈𝜀 ) = R𝑑 . If either potential is not �nite on all of R𝑑 , we adopt the

convention that 𝐻max = +∞.

Lemma 6.1. Let 𝑥 ∈ R𝑑 and let 𝜋𝜈𝜀 (·|𝑥) be a conditional entropic coupling between two probability

measures 𝜌, 𝜈 ∈ P2. Assume that dom(𝜑𝜈𝜀 ) = R𝑑 . Then for any ℎ ∈ R𝑑 ,

Tℎ𝜋𝜈𝜀 (·|𝑥) = 𝜋𝜈𝜀 (·|𝑥 + 𝜀ℎ) .

Corollary 6.2. The conditional entropic coupling 𝜋𝜈𝜀 (·|𝑥) (resp. 𝜋𝜈𝜀 (·|𝑧)) is tilt-stable with constant

𝐻max(𝜑𝜈𝜀 ) (resp. 𝐻max(𝜓𝜈𝜀 )).

6.3 Main results

We now present our general stability result for entropic Brenier maps.

Theorem 6.3 (Stability of entropic Brenier maps). Suppose 𝜌, 𝜇, 𝜈 have �nite second moment. Then

‖𝑇 𝜇𝜀 −𝑇 𝜈𝜀 ‖𝐿2 (𝜌) ≤
(
1 +

2(𝐻max(𝜑𝜈𝜀 )𝐻max(𝜓𝜈𝜀 ))1/2
𝜀

)
𝑊2(𝜇, 𝜈) .

Remark 6.4. Note that if the potentials (𝜑𝜈𝜀 ,𝜓𝜈𝜀 ) are not �nite everywhere, the quantities 𝐻max(𝜑𝜈𝜀 )

and 𝐻max(𝜓𝜈𝜀 ) are in�nite by convention, and the inequality becomes vacuous. The potentials are

�nite everywhere whenever 𝜌 and 𝜈 have moment-generating functions that are �nite everywhere

(including the important case of bounded supports), but also when 𝜌 and 𝜈 have support equal to

R𝑑 , without additional tail assumptions.
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From here, we can prove the results highlighted in the introduction as special cases.

Corollary 6.5 (Entropic stability for bounded measures). Suppose 𝜌 and 𝜈 are supported in 𝐵(0;𝑅),

and 𝜇 has �nite second moment. Then

‖𝑇 𝜇𝜀 −𝑇 𝜈𝜀 ‖𝐿2 (𝜌) ≤
(
1 + 2𝑅2

𝜀

)
𝑊2(𝜇, 𝜈) .

Proof. Since 𝜌 and 𝜈 are supported in 𝐵(0;𝑅), (6.9) implies that both 𝐻max(𝜑𝜈𝜀 ) and 𝐻max(𝜓𝜈𝜀 ) are

smaller than 𝑅2, which completes the proof. �

Note that Corollary 6.5 is entirely general in its requirements, and does not rely on smoothness

of maps, nor do any of the measures require densities.

Remark 6.6 (Tightness of Corollary 6.5). We now demonstrate that Corollary 6.5 is tight for general

bounded probability measures. Fix 𝑅 > 0, and let 𝑝𝜃 B 1
2𝛿𝑅𝑒𝜃 +

1
2𝛿−𝑅𝑒𝜃 with 𝑒𝜃 = (cos(𝜃 ), sin(𝜃 )),

for 𝜃 ∈ [0, 𝜋2 ]. Let 𝜌 B 𝑝𝜋/2 and 𝜀 > 0, and let 𝜋𝜃𝜀 denote the entropic optimal coupling between 𝜌

and 𝑝𝜃 for 𝜃 ∈ [0, 𝜋2 ). One can deduce that the optimal entropic coupling is symmetric for any

such 𝜃 :

𝜋𝜃𝜀 (𝑥,𝑦) = 𝜋𝜃𝜀 (−𝑥,−𝑦) ,

Following the calculations in Altschuler et al. (2022, Section 3), one can choose𝜓𝜃𝜀 (𝑒𝜃 ) = 𝜓𝜃𝜀 (−𝑒𝜃 ) =

0, so that by (6.7), for all 𝑥 ∈ R𝑑 ,

𝜑𝜃𝜀 (𝑥) = 𝜀 log
( 1
2𝑒
𝑅〈𝑥,𝑒𝜃 〉/𝜀 + 1

2𝑒
𝑅〈𝑥,−𝑒𝜃 〉/𝜀 ) .

Then we compute

𝑇 𝜃𝜀 (𝑥) = 𝑅𝑒𝜃
(
𝜋𝜃𝜀 (𝑥, 𝑒𝜃 ) − 𝜋𝜃𝜀 (𝑥,−𝑒𝜃 )

)
= 𝑅𝑒𝜃 tanh(𝑅〈𝑥, 𝑒𝜃 〉/𝜀) .
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Let 𝜇 B 𝑝0 and 𝜈 B 𝑝𝜃 . Following the above calculations, it is clear that

‖𝑇 𝜇𝜀 −𝑇 𝜈𝜀 ‖𝐿2 (𝜌) = 𝑅‖𝑒𝜃 ‖
√︃
tanh2(𝑅 sin(𝜃 )/𝜀) = 𝑅2𝜃

𝜀
+𝑂 (𝜃 4) .

It is also easy to verify that𝑊2(𝑝0, 𝑝𝜃 ) � 𝜃 , since the optimal transport map from 𝑝0 to 𝑝𝜃 is the

standard 2× 2 rotation matrix acting on the dirac masses. This example shows that for 𝜃 small the

dependence 𝑅2𝜀−1 in Corollary 6.5 is tight.

The following example provides the entropic analogue of Theorem 6 fromManole et al. (2024a);

their result is formally recovered in the 𝜀 → 0 limit.

Corollary 6.7 (Improved stability under smoothness). Suppose 𝑇 𝜈𝜀 is uniformly Λ-Lipschitz. If 𝜌 is

supported in 𝐵(0;𝑅), then

‖𝑇 𝜇𝜀 −𝑇 𝜈𝜀 ‖𝐿2 (𝜌) ≤
(
1 + 2

√︁
Λ𝑅2/𝜀

)
𝑊2(𝜇, 𝜈) .

If instead 𝑆𝜈𝜀 is uniformly 1/𝜆-Lipschitz, then

‖𝑇 𝜇𝜀 −𝑇 𝜈𝜀 ‖𝐿2 (𝜌) ≤ (1 + 2
√︁
Λ/𝜆)𝑊2(𝜇, 𝜈) .

Proof. The �rst claim follows from the bounds 𝐻max(𝜑𝜈𝜀 ) ≤ Λ𝜀, which follows from (6.10), and

𝐻max(𝜓𝜈𝜀 ) ≤ 𝑅2. For the second, we instead use that 𝐻max(𝜓𝜈𝜀 ) ≤ 𝜀/𝜆. �

6.3.1 Proof of Theorem 6.3

Our proof relies on three propositions. To continue, we require the following objects. Let

𝜏 ∈ Π(𝜇, 𝜈) be a �xed (though not necessarily unique) optimal transport coupling between 𝜇 and

𝜈 . For 𝑧 ∈ R𝑑 , let 𝜏 (·|𝑧) be associated (regular) conditional measure (see Bogachev, 2007, Chapter

129



10), so that for all measurable 𝑓 : R𝑑 × R𝑑 → [0, +∞)

∬
𝑓 (𝑦, 𝑧) d𝜏 (𝑦, 𝑧) =

∫ (∫
𝑓 (𝑦, 𝑧) d𝜏 (𝑦 |𝑧)

)
d𝜈 (𝑧) .

For 𝑥 ∈ R𝑑 , let 𝑄 (·|𝑥) be the probability measure with

∀𝑧 ∈ R𝑑 , d𝑄 (·|𝑥)
d𝜈

(𝑧) B
∫

𝛾
𝜇
𝜀 (𝑥,𝑦) d𝜏 (𝑦 |𝑧) , (6.11)

where 𝛾 𝜇𝜀 (𝑥,𝑦) is the density of 𝜋 𝜇𝜀 w.r.t. 𝜌 ⊗ 𝜇. Note that this indeed de�nes a density as we have

the relation

∫ (∫
𝛾
𝜇
𝜀 (𝑥,𝑦) d𝜏 (𝑦 |𝑧)

)
d𝜈 (𝑧) =

∬
𝛾
𝜇
𝜀 (𝑥,𝑦) d𝜏 (𝑦, 𝑧) =

∫
𝛾
𝜇
𝜀 (𝑥,𝑦) d𝜇 (𝑦) = 1 .

We also de�ne the conditional Kullback–Leibler divergence:

𝐼 B

∫
KL(𝑄 (·|𝑥)‖𝜋𝜈𝜀 (·|𝑥)) d𝜌 (𝑥) , (6.12)

We are now in a position to proceed with the proof. First, we decompose the di�erence of forward

entropic Brenier maps into a𝑊2(𝜇, 𝜈) term, plus a term depending on 𝐼 .

Proposition 6.8. Suppose 𝜌, 𝜇, 𝜈 have �nite second moment. Then

‖𝑇 𝜇𝜀 −𝑇 𝜈𝜀 ‖𝐿2 (𝜌) ≤𝑊2(𝜇, 𝜈) + (2𝐻max(𝜑𝜈𝜀 )𝐼 )1/2 .

In (6.12), we de�ned the conditional relative entropy between 𝑄 (·|𝑥) and the conditional

entropic coupling 𝜋𝜈𝜀 (·|𝑥). We now turn to directly bounding the quantity 𝐼 . Note that for all
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𝑧 ∈ R𝑑

d𝑄 (·|𝑥)
d𝜋𝜈𝜀 (·|𝑥)

(𝑧) =
∫
𝛾
𝜇
𝜀 (𝑥,𝑦) d𝜏 (𝑦 |𝑧)
𝛾𝜈𝜀 (𝑥, 𝑧)

.

An application of Jensen’s inequality then yields that

𝐼 ≤ 𝐼 B
∭

log
(𝛾 𝜇𝜀 (𝑥,𝑦)
𝛾𝜈𝜀 (𝑥, 𝑧)

)
𝛾
𝜇
𝜀 (𝑥,𝑦) d𝜏 (𝑦, 𝑧) d𝜌 (𝑥) . (6.13)

Expanding the densities 𝛾 𝜇𝜀 (𝑥,𝑦) and 𝛾𝜈𝜀 (𝑥, 𝑧) and performing the integration, we obtain

𝜀𝐼 =

∭
〈𝑥,𝑦 − 𝑧〉𝛾 𝜇𝜀 (𝑥,𝑦) d𝜏 (𝑦, 𝑧) d𝜌 (𝑥) +

∫
𝜑𝜈𝜀 d𝜌 +

∫
𝜓𝜈𝜀 d𝜈 −

∫
𝜑
𝜇
𝜀 d𝜌 −

∫
𝜓
𝜇
𝜀 d𝜇

=

∬
〈𝑆𝜇𝜀 (𝑦), 𝑦 − 𝑧〉 d𝜏 (𝑦, 𝑧) +

∫
𝜑𝜈𝜀 d𝜌 +

∫
𝜓𝜈𝜀 d𝜈 −

∫
𝜑
𝜇
𝜀 d𝜌 −

∫
𝜓
𝜇
𝜀 d𝜇

where we use the equality 𝑆𝜇𝜀 (𝑦) =
∫
𝑥𝛾

𝜇
𝜀 (𝑥,𝑦) d𝜌 (𝑥) in the last line. If we de�ne 𝐼 as a symmetric

analogue to 𝐼 , namely,

𝐼 B

∭
log

(𝛾𝜈𝜀 (𝑥, 𝑧)
𝛾
𝜇
𝜀 (𝑥,𝑦)

)
𝛾𝜈𝜀 (𝑥, 𝑧) d𝜏 (𝑦, 𝑧) d𝜌 (𝑥) ,

then, since 0 ≤ 𝐼 , a symmetric calculation immediately yields the following:

Proposition 6.9. Suppose 𝜌, 𝜇, 𝜈 have �nite second moment. Then

𝜀𝐼 ≤ 𝜀 (𝐼 + 𝐼 ) =
∬
〈𝑆𝜇𝜀 (𝑦) − 𝑆𝜈𝜀 (𝑧), 𝑦 − 𝑧〉 d𝜏 (𝑦, 𝑧) . (6.14)

All in all, our bound currently reads

‖𝑇 𝜇𝜀 −𝑇 𝜈𝜀 ‖𝐿2 (𝜌) ≤𝑊2(𝜇, 𝜈) + (2𝜀−1𝐻max(𝜑𝜈𝜀 ))1/2
(∬
〈𝑆𝜇𝜀 (𝑦) − 𝑆𝜈𝜀 (𝑧), 𝑦 − 𝑧〉 d𝜏 (𝑦, 𝑧)

)1/2
.
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The second term depends on the two backward entropic Brenier maps, 𝑆𝜇𝜀 and 𝑆𝜈𝜀 . The next

proposition shows that tilt stability can again be used to bound the di�erence between these

backward maps by 𝐼 .

Proposition 6.10. Suppose 𝜌, 𝜇, 𝜈 have �nite second moment. Then

∬
‖𝑆𝜇𝜀 (𝑦) − 𝑆𝜈𝜀 (𝑧)‖2 d𝜏 (𝑦, 𝑧) ≤ 2𝐻max(𝜓𝜈𝜀 )𝐼 .

Finally, with these results in hand, we can prove our main result.

Proof of Theorem 6.3. From (6.14), we apply Cauchy-Schwarz, resulting in

𝜀𝐼 ≤
∬
〈𝑆𝜇𝜀 (𝑦) − 𝑆𝜈𝜀 (𝑧), 𝑦 − 𝑧〉 d𝜏 (𝑦, 𝑧) ≤𝑊2(𝜇, 𝜈) (2𝐻max(𝜓𝜈𝜀 )𝐼 )1/2 .

This ultimately implies

𝐼 1/2 ≤ 𝐼 1/2 ≤ 𝜀−1𝑊2(𝜇, 𝜈) (2𝐻max(𝜓𝜈𝜀 ))1/2 ,

where we recall the �rst inequality from (6.13). Together with Proposition 6.8, the proof is

complete. �

6.4 Application: Improved qantitative stability of

semi-discrete optimal transport maps

As an application of our new stability results for entropic Brenier maps, we turn to proving

quantitative stability results for unregularized optimal transport maps. As highlighted in the

introduction, our proof technique for proving quantitative stability for optimal transport maps is
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based on the following decomposition:

‖𝑇 𝜇0 −𝑇
𝜈
0 ‖𝐿2 (𝜌) ≤ ‖𝑇

𝜇

0 −𝑇
𝜇
𝜀 ‖𝐿2 (𝜌) + ‖𝑇 𝜈0 −𝑇 𝜈𝜀 ‖𝐿2 (𝜌) + ‖𝑇

𝜇
𝜀 −𝑇 𝜈𝜀 ‖𝐿2 (𝜌) . (6.15)

Recall that Corollary 6.5 takes care of the last term under virtually no assumptions other than

boundedness of the measures. It remains to control the �rst two terms in the above decomposition,

also known as bias terms.

To the best of our knowledge, bounds on the bias of entropic Brenier maps are known only

under strong assumptions. For example, Pooladian and Niles-Weed (2021) showed that (see their

Corollary 1)

‖𝑇 𝜇0 −𝑇
𝜇
𝜀 ‖2𝐿2 (𝜌) . 𝜀

2𝐼0(𝜌, 𝜇) ,

where 𝐼0(𝜌, 𝜇) is the integrated Fisher information along the Wasserstein geodesic between 𝜌

and 𝜇, where 𝜌 and 𝜇 have upper and lower bounded densities over compact domains. Such

assumptions, while essential for estimating optimal transport maps on the basis of samples, are

too restrictive for our purposes.3

With this in mind, our goal is to establish quantitative control on the bias of entropic Brenier

maps under less restrictive regularity conditions. Speci�cally, we turn to the semi-discrete setting,

where 𝜌 has a density, and 𝜇 and 𝜈 are both discrete measures. As we will shortly see, this setting

allows for (6.15) to be used to obtain meaningful bounds on the stability of two semi-discrete

optimal transport maps when the discrete measures themselves have favorable properties.

We brie�y recall some fundamental notions from semi-discrete optimal transport: let 𝜇 =∑𝐽

𝑗=1 𝜇 𝑗𝛿𝑦 𝑗 be a discrete probability measure with atoms located at the points {𝑦 𝑗 }𝐽𝑗=1 with corre-

3Indeed, under these assumptions, it is well-known via Ca�arelli regularity theory (Ca�arelli, 1992; 1996) that the
corresponding optimal transport map is Lipschitz, so the results of Gigli (2011) already imply a stability bound.

133



sponding weights 𝜇 𝑗 > 0. In this setting, the Brenier potential is given explicitly by

𝜑
𝜇

0 (𝑥) = max
𝑗∈{1,...,𝐽 }

〈𝑥,𝑦 𝑗 〉 − (𝜓 𝜇0 ) 𝑗 ,

where𝜓 𝜇0 ∈ R𝐽 is the dual potential. Note that 𝜑
𝜇

0 is 𝜌-almost everywhere di�erentiable, and so

the Brenier map 𝑇 𝜇0 = ∇𝜑𝜇0 is well-de�ned. The inverse transport map is now set-valued, where

for a given target atom 𝑦 𝑗 , we de�ne the Laguerre cell 𝐿 𝑗 B (𝑇 𝜇0 )−1(𝑦 𝑗 ). These cells partition the

support of 𝜌 . Consequently, for 𝑥 ∈ 𝐿 𝑗 , the optimal transport mapping is 𝑥 ↦→ 𝑇
𝜇

0 (𝑥) = 𝑦 𝑗 .

With these notions in hand, we are ready to present the following result on the convergence

of entropic Brenier maps to their unregularized counterpart; its proof is located in Appendix E.5.

This is a slightly di�erent version of Theorem 3.5 by Pooladian et al. (2023), which based o� the

results of Delalande (2022).

Proposition 6.11 (Quantitative bias in the semi-discrete setting). Let 𝜌 be a compactly supported

probability distribution with a density over R𝑑 and 𝜇 be a discrete measure, written 𝜇 =
∑𝐽

𝑗=1 𝜇 𝑗𝛿𝑦 𝑗 .

Then for all 𝜀 > 0,

‖𝑇 𝜇0 −𝑇
𝜇
𝜀 ‖2𝐿2 (𝜌) ≤ 𝑒

2‖𝜓 𝜇

0 −𝜓
𝜇
𝜀 ‖∞/𝜀𝜀

∑︁
𝑖, 𝑗

‖𝑦𝑖 − 𝑦 𝑗 ‖
2

∫ ∞

0
ℎ𝑖 𝑗 (𝑢𝜀)

(
1 + 𝑒𝑢/2

)−1
d𝑢 , (6.16)

where 0 ≤ ℎ𝑖 𝑗 (·) measures the amount of overlap between 𝐿𝑖 and 𝐿 𝑗 weighted against the source

measure 𝜌 (see (E.1) in the appendix for precise details), and (𝜓𝜈𝜀 ) 𝑗 = (𝜓𝜈𝜀 ) 𝑗 −𝜀 log 𝜇 𝑗 for 𝑗 ∈ {1, . . . , 𝐽 }.

In addition, suppose that

(T1) the density of 𝜌 has convex support in 𝐵(0;𝑅), is 𝛼-Hölder continuous for 𝛼 ∈ (0, 1], and there

exist 𝜌min, 𝜌max such that 0 < 𝜌min ≤ 𝜌 (𝑥) ≤ 𝜌max,

(T2) the support of 𝜇 lies in 𝐵(0;𝑅), and all the weights are uniformly lower-bounded i.e., 𝜇 𝑗 ≥

𝜇min > 0 for all 𝑗 ∈ {1, . . . , 𝐽 }.
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Then it holds that, for all 𝜀 > 0

‖𝑇 𝜇0 −𝑇
𝜇
𝜀 ‖2𝐿2 (𝜌) ≤ 𝐶0𝑒

𝐶1𝜀
𝛼

𝜀 , (6.17)

where the constants depend on 𝜌min, 𝜌max, 𝑑, 𝑅, 𝜇min, 𝐽 , min𝑖≠ 𝑗 ‖𝑦𝑖 − 𝑦 𝑗 ‖, and on the maximum angle

formed by three non aligned points among the atoms {𝑦 𝑗 }𝐽𝑗=1.

Remark 6.12. Following the asymptotic results of Altschuler et al. (2022), we can take a limit of

(6.16), resulting in the computation

lim sup
𝜀→∞

𝜀−1‖𝑇 𝜇0 −𝑇
𝜇
𝜀 ‖2𝐿2 (𝜌) =

∑︁
𝑖, 𝑗

‖𝑦𝑖 − 𝑦 𝑗 ‖ℎ𝑖 𝑗 (0)
2

∫ ∞

0

(
1 + 𝑒𝑢/2

)−1
d𝑢 =

∑︁
𝑖, 𝑗

‖𝑦𝑖 − 𝑦 𝑗 ‖ℎ𝑖 𝑗 (0) log(2) ,

where we used that 𝑡 ↦→ ℎ𝑖 𝑗 (𝑡) is continuous at 𝑡 = 0 (which holds if, for instance, 𝜌 has an upper

bounded density with compact support). We conjecture that this quantity is uniformly bounded

for all discrete measures.

Combined with (6.15) and Corollary 6.5, we can state and prove our main theorem for this

section. While the conditions do not allow for arbitrary discrete measures, we stress that they

permit a wide class of discrete measures, and in particular measures supported on di�erent masses.

To our knowledge, this is the �rst general improvement to the stability bound of Delalande and

Mérigot (2023), even in the semi-discrete case.

Theorem 6.13 (Near-tight stability in the semi-discrete setting). Suppose 𝜌 satis�es (T1), and both

𝜇 and 𝜈 each independently satisfy (T2) (with possibly all di�erent parameters). Then

‖𝑇 𝜇0 −𝑇
𝜈
0 ‖𝐿2 (𝜌) .𝑊

1/3
2 (𝜇, 𝜈) ,

where the underlying constants depend on those from Proposition 6.11.

Proof. First, we note that if𝑊2(𝜇, 𝜈) ≥ 1, then ‖𝑇 𝜇0 −𝑇 𝜈0 ‖𝐿2 (𝜌) ≤ 2𝑅 ≤ 2𝑅𝑊2(𝜇, 𝜈)1/3, so the only
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case of interest is when𝑊2(𝜇, 𝜈) ≤ 1. Then, using the decomposition from (6.15) with Corollary 6.5

and two applications of (6.17), we obtain

‖𝑇 𝜇0 −𝑇
𝜈
0 ‖2𝐿2 (𝜌) ≤ 4max{𝐶0(𝜇)𝑒𝐶1 (𝜇)𝜀𝛼 ,𝐶0(𝜈)𝑒𝐶1 (𝜈)𝜀𝛼 }𝜀 + (2 + 4𝑅4/𝜀2)𝑊 2

2 (𝜇, 𝜈) .

Choosing 𝜀 =𝑊 2/3
2 (𝜇, 𝜈) ≤ 1, we obtain our desired rate with a prefactor scaling like 𝐶0𝑒

𝐶1 + 1,

where we choose the worse constant arising from the bias terms between 𝜇 and 𝜈 . �

Remark 6.14. Closest to this result is that of Bansil and Kitagawa (2022): when 𝜇 and 𝜈 are supported

on the same atoms, the following bound holds4

‖𝑇 𝜇0 −𝑇
𝜈
0 ‖2𝐿2 (𝜌) ≤ (𝐽 − 1)diam(Ω)

2TV(𝜇, 𝜈) , (6.18)

where TV(·, ·) is the total variation distance, and 𝐽 is the number of atoms in the support of 𝜇

and 𝜈 . Theorem 6.13 implies meaningful bounds in some situations in which (6.18) fails to do

so. For example, consider the simple setting where 𝜌 = Unif(𝐵(0, 1)) and 𝜇𝜃 = 1
2 (𝛿𝑒𝜃 + 𝛿−𝑒𝜃 ) with

𝑒𝜃 = (cos(𝜃 ), sin(𝜃 )) for 0 < 𝜃 � 𝜋/2. It is easy to verify that𝑊2(𝜇0, 𝜇𝜃 ) � 𝜃 , so Theorem 6.13

gives ‖𝑇 𝜇0 −𝑇 𝜈0 ‖𝐿2 (𝜌) . 𝜃 1/3. On the other hand, since TV(𝜇0, 𝜇𝜃 ) = 1, the bound (6.18) is vacuous.

4This bound is not explicitly written in the paper but it can be extracted from their Theorem 1.3.
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Part III

Optimization over the Wasserstein space
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7 | Algorithms for mean-field

variational inference via polyhedral

optimization in the Wasserstein

space

7.1 Introduction

This chapter develops a framework for optimizing over polyhedral subsets of the Wasserstein

space, with accompanying guarantees. Our main application is to provide the �rst end-to-end

computational guarantees for mean-�eld variational inference (Blei et al., 2017; Wainwright and

Jordan, 2008) under standard tractability assumptions on the posterior distribution. We now

contextualize our work with respect to the broader literature.

Optimization over (subsets of) the Wasserstein space (the metric space of probability measures

over R𝑑 endowed with the 2-Wasserstein distance, see Section 7.2) has found diverse and e�ective

applications in modern machine learning. Notable examples include distributionally robust

optimization (Kuhn et al., 2019; Yue et al., 2022), the computation of barycenters (Altschuler

et al., 2021; Backho�-Veraguas et al., 2022; Chewi et al., 2020; Cuturi and Doucet, 2014; Zemel

and Panaretos, 2019), sampling (Chewi, 2024; Jordan et al., 1998; Wibisono, 2018), and variational
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inference (see below). The development of optimization algorithms over this space, however, has

been hindered by signi�cant implementation challenges stemming from its in�nite-dimensional

nature and the curse of dimensionality which impedes e�cient representation of high-dimensional

distributions.

To alleviate these hurdles, a popular approach is to restrict the optimization to tractable

subfamilies of probability distributions, such as �nite-dimensional parametric families. Note that

this is in contrast to Euclidean optimization, in which constraint sets are typically imposed as part

of the problem (e.g., a�ne constraints in operations research). Here we view the use of a constraint

set in the Wasserstein space as a design choice, with the end goals of �exibility, interpretability,

and computational tractability.

An important motivating example is that of variational inference (VI), which seeks the best

approximation to a probability measure 𝜋 over R𝑑 in the sense of KL divergence over some subset

of probability measures C:

𝜋★ ∈ argmin
𝜇∈C

KL(𝜇‖𝜋) = argmin
𝜇∈C

∫
log

( d𝜇
d𝜋

)
d𝜇 . (7.1)

For example, C could be taken to be the class of non-degenerate Gaussian distributions, in which

case (7.1) is known as Gaussian VI. Recently, by leveraging the rich theory of gradient �ows over

the Wasserstein space, Diao et al. (2023); Lambert et al. (2022) provided algorithmic guarantees for

Gaussian VI under standard tractability assumptions, i.e., strong log-concavity and log-smoothness

of 𝜋 .

We instead study the problem of mean-�eld VI, in which C is taken to be the class of product

measures over R𝑑 , written P(R)⊗𝑑 . In this context, the works by Lacker (2023); Yao and Yang

(2022); Zhang and Zhou (2020) have also developed algorithms based on Wasserstein gradient

�ows, although computational guarantees for VI are still nascent (see Section 7.5.1 for further

details and comparison with the literature).
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The main result of our work is to provide computational guarantees under the usual tractability

assumptions for 𝜋 . Our approach is to replace the set of product measures by a smaller, “polyhedral”

subset P� which we prove is an accurate approximation to P(R)⊗𝑑 , in the sense that the minimizer

𝜋★ of (7.1) is in fact close to the KL minimizer 𝜋★� over P� with quanti�able approximation rates.

This motivates our development of a theory of polyhedral optimization over the Wasserstein

space which, when applied to the mean-�eld VI problem, furnishes algorithms for minimization

of the KL divergence over P� with theoretical (even accelerated) guarantees. More broadly, we are

hopeful that the success of polyhedral optimization for mean-�eld VI will encourage the further

use of polyhedral constraint sets to model other problems of interest.

We discuss the implementation of our algorithm in Section 7.5.5.1, with code available here.

Below, we describe our contributions in more detail.

7.1.1 Main contributions

Polyhedral optimization in the Wasserstein space. We study parametric sets of the follow-

ing form:

cone(M)♯𝜌 B
{(∑

𝑇∈M 𝜆𝑇𝑇
)
♯
𝜌

��� 𝜆 ∈ R|M|+ }
,

where R|M|+ is the non-negative orthant,M is a family of user-chosen optimal transport maps,

and 𝜌 is a �xed, known, reference measure. To our knowledge, such sets have not previously

appeared in the literature.

Before proceeding, however, wemust dispel a potential source of confusion: although cone(M)

is a convex subset of the space of optimal transport maps at 𝜌—in other words, a convex subset

of the tangent space to Wasserstein space at 𝜌—the set cone(M)♯𝜌 is not always a convex subset

of the Wasserstein space itself, in the sense of being closed under Wasserstein geodesics. For

this to hold, we impose a further condition onM, known as compatibility (Boissard et al., 2015).
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Although compatibility is restrictive, it is nevertheless powerful enough to capture our application

to mean-�eld VI described below. We refer to the set cone(M)♯𝜌 , for a compatible familyM, as a

polyhedral subset of the Wasserstein space (or more speci�cally, a cone).

The assumption of compatibility entails strong consequences: we show that in fact, the set

(cone(M)♯𝜌,𝑊2) is isometric to (R|M|+ , ‖ · ‖𝑄 ), where ‖ · ‖𝑄 is a Euclidean norm. This isometry

allows us to optimize functionals over cone(M)♯𝜌 via lightweight �rst-order algorithms for

Euclidean optimization in lieu of Wasserstein optimization, which often requires computationally

burdensome approximation schemes such as interacting particle systems. In particular, we can

apply projected gradient descent or incorporate faster, accelerated methods. Moreover, under the

isometry, convex subsets of cone(M) map to convex subsets of cone(M)♯𝜌 , giving rise to a bevy

of geodesically convex constraint sets over which tractable optimization is feasible. This includes

Wasserstein analogues of polytopes, to which we can apply the projection-free Frank–Wolfe

algorithm. We show that as soon as the objective functional F is geodesically convex and smooth,

these algorithms inherit the usual rates of convergence from the convex optimization literature.

Application to mean-field VI. We next turn toward mean-�eld VI as a compelling application

of our theory of polyhedral optimization. Throughout, we only assume that 𝜋 satis�es the

standard assumptions of strong log-concavity and log-smoothness. By leveraging the structure of

the mean-�eld VI solution and establishing regularity bounds for optimal transport maps between

well-conditioned product measures, we �rst prove an approximation result which shows that the

solution 𝜋★ to mean-�eld VI in (7.1) is well-approximated by the minimizer 𝜋★� of the KL divergence

over a suitable polyhedral approximation P� of the space of product measures. Importantly, our

approximation rates, owing to the coordinate-wise decomposability of mean-�eld VI, do not incur

the curse of dimensionality.

Next, we establish the geodesic strong convexity and geodesic smoothness of the KL divergence

over P�. Consequently, bringing to bear the full force of the Euclidean–Wasserstein equivalence,
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we obtain, to the best of our knowledge, the �rst end-to-end convergence rates for mean-�eld VI.

7.1.2 Related work

To the best of our knowledge, our introduction of polyhedral sets and theory of polyhedral

optimization over the Wasserstein space are novel. A special case of our set is

conv(M)♯𝜌 B
{(∑

𝑇∈M 𝜆𝑇𝑇
)
♯
𝜌

��� 𝜆 ∈ Δ|M|} ,
where Δ|M| is the |M|-simplex. Such a constraint set is used by Boissard et al. (2015); Gunsilius

et al. (2024); Werenski et al. (2022), and is usually studied in the context of Wasserstein barycenters.

The work of Bonneel et al. (2016) also considers conv(M)♯𝜌 , but makes no assumptions on the

maps, and they tackle the problem from a computational angle via Sinkhorn’s algorithm (Cuturi,

2013; Peyré and Cuturi, 2019), albeit without convergence guarantees. Albergo et al. (2024) use

the same set, but without incorporating any optimal transport theory.

Our approach to mean-�eld VI, which parameterizes the variational family as the pushforward

of a reference measure via transport maps, has its roots in the literature on generative modeling

and normalizing �ows (Chen et al., 2018; Finlay et al., 2020a;b; Huang et al., 2021a). We provide

further background information and literature on mean-�eld VI in Section 7.5.1, and omit it here

to avoid redundancies.

Finally, we mention that our work falls under the category of linearized optimal transport

(Wang et al., 2013), which we closely address in Section 7.3.2.

7.2 Background on optimal transport

In this section, we provide background on optimal transport relevant to our work and refer

to Santambrogio (2015); Villani (2009) for details. Throughout, we assume that all probability

142



measures admit a density function with respect to Lebesgue measure. We let P2(R𝑑) denote the

set of probability measures with density over R𝑑 with �nite second moment.

For 𝜌, 𝜇 ∈ P2(R𝑑), the squared 2-Wasserstein distance is written as

𝑊 2
2 (𝜌, 𝜇) = inf

𝑇 :𝑇♯𝜌=𝜇

∫
‖𝑥 −𝑇 (𝑥)‖22 d𝜌 (𝑥) , (7.2)

where the collection {𝑇 :𝑇♯𝜌 = 𝜇} is the set of all valid transport maps: for 𝑋 ∼ 𝜌 , 𝑇 (𝑋 ) ∼ 𝜇.

Since we assumed 𝜌 has a density, Brenier’s theorem (Brenier, 1991) states that there exists a

unique minimizer to (7.2), called the optimal transport map 𝑇★ between 𝜌 and 𝜇. Further,𝑇★ = ∇𝜑★

for some convex function 𝜑★, called a Brenier potential.

Additionally, since 𝜇 also has a density, then there exists an optimal transport map between 𝜇

and 𝜌 , given by ∇𝜑∗★ = (𝑇★)−1, where 𝜑∗★(𝑦) B sup𝑥∈R𝑑 {〈𝑥,𝑦〉 − 𝜑★(𝑥)} is the Fenchel conjugate

of 𝜑★. For more information on (di�erentiable) convex functions and conjugacy, we suggest

Hiriart-Urruty and Lemaréchal (2004); Rockafellar (1997).

Recall that a function 𝑓 : R𝑑 → R is𝑚-strongly convex in some norm ‖ · ‖ if

𝑓 (𝑦) ≥ 𝑓 (𝑥) + 〈∇𝑓 (𝑥), 𝑦 − 𝑥〉 + 𝑚
2
‖𝑥 − 𝑦‖2 , 𝑥,𝑦 ∈ R𝑑 ,

and𝑀-smooth in some norm ‖ · ‖ if

𝑓 (𝑦) ≤ 𝑓 (𝑥) + 〈∇𝑓 (𝑥), 𝑦 − 𝑥〉 + 𝑀
2
‖𝑥 − 𝑦‖2 , 𝑥,𝑦 ∈ R𝑑 ,

where𝑚,𝑀 > 0.

For two probability measures 𝜇0, 𝜇1 ∈ P2(R𝑑), let ∇𝜑0→1 denote the optimal transport map

from 𝜇0 to 𝜇1. The (unique) constant-speed geodesic between 𝜇0 and 𝜇1 is given by the curve
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(𝜇𝑡 )𝑡∈[0,1] , with

𝜇𝑡 = (∇𝜑𝑡 )♯𝜇0 B (id + 𝑡 (∇𝜑0→1 − id))♯𝜇0 . (7.3)

If we equip P2(R𝑑), the space of probability distributions with �nite second moment over

R𝑑 , with the 2-Wasserstein distance, we obtain a metric spaceW B (P2(R𝑑),𝑊2) (Villani, 2021,

Theorem 7.3), whichwe call theWasserstein space. In fact, it can be formally viewed as a Riemannian

manifold over which one can de�ne gradient �ows of functionals (Otto, 2001). We refer the

interested reader to consult the background sections of Altschuler et al. (2021) or to Chewi (2024)

for a light exposition and further details.

The Riemannian structure of the Wasserstein space is crucial for the development of optimiza-

tion over this space, as it furnishes appropriate Wasserstein analogues of basic concepts from

Euclidean optimization, such as the gradient mapping, convexity, and smoothness. In particular,

we say that a subset C of the Wasserstein space is geodesically convex if it is closed under taking

geodesics (7.3). Also, a functional F : P2(R𝑑) → R is geodesically (strongly) convex (resp. geodesi-

cally smooth) if the map [0, 1] → R, 𝑡 ↦→ F (𝜇𝑡 ) is (strongly) convex (resp. smooth) along every

constant-speed geodesic (𝜇𝑡 )𝑡∈[0,1] .

7.3 Polyhedral sets in the Wasserstein space

In this section, we establish properties of the constraint set

cone(M)♯𝜌 B
{(∑

𝑇∈M 𝜆𝑇𝑇
)
♯
𝜌

��� 𝜆 ∈ R|M|+ }
, (7.4)

with respect to the known base measure 𝜌 and a �xed set of optimal transport mapsM. Typically,

we have in mind �niteM, in which case (7.4) is valid. Otherwise, (7.4) should be modi�ed to

range only over 𝜆 with �nitely many non-zero coordinates, or in other words, cone(M) is the
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smallest set containing all conic combinations of maps inM.

Despite its simplicity, we argue that the geometry of cone(M)♯𝜌 is surprisingly deceptive.

Most strikingly, it is not always a geodesically convex set. Consider 𝑇1(𝑥) = 𝑥 , 𝑇2(𝑥) = 𝐴1/2𝑥 ,

and 𝑇3(𝑥) = 𝐵1/2𝑥 , with 𝜌 = N(0, 𝐼 ), the standard Gaussian in R𝑑 , and 𝐴, 𝐵 � 0. In this setting,

cone(M)♯𝜌 is the following set of Gaussians:

cone(M)♯𝜌 =
{
N(0, (𝜆1𝐼 + 𝜆2𝐴1/2 + 𝜆3𝐵1/2)2)

�� 𝜆 ∈ R3+} . (7.5)

One can check with virtually any randomly generated positive de�nite matrices 𝐴 and 𝐵 that, as

long as all three matrices 𝐼 , 𝐴, 𝐵 are not mutually diagonalizable, the geodesic between N(0, 𝐴)

and N(0, 𝐵) does not lie in (7.5). This simple example illustrates that some care is required in

order to de�ne convex constraint sets in the Wasserstein space.

7.3.1 Compatible families of transport maps

In the Gaussian example above, geodesic convexity of cone(M)♯𝜌 is recovered if we addition-

ally assume that 𝐼 , 𝐴, and 𝐵 are mutually diagonalizable. This re�ects a certain property of the

maps 𝑇1, 𝑇2, 𝑇3, which can be generalized to a property known as compatibility (Boissard et al.,

2015). We recall its de�nition and basic properties in the sequel. As always, we assume that 𝜌

admits a density with respect to Lebesgue measure.

LetM be a set of bijective vector-valued maps, given by gradients of convex functions. We

call the set of mapsM compatible if

for all 𝑇1,𝑇2 ∈ M, 𝑇1 ◦ (𝑇2)−1 is the gradient of a convex function.

Compatibility is a fundamental notion which lies at the heart of numerous other works (see Bigot

et al., 2017; Boissard et al., 2015; Cazelles et al., 2018; Chewi et al., 2021; Panaretos and Zemel,
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2016; Werenski et al., 2022). See Panaretos and Zemel (2020) for details.

The main motivation for compatibility is the following theorem.

Theorem 7.1 (Compatibility induces geodesic convexity). Suppose thatM is compatible. Then,

cone(M)♯𝜌 is a geodesically convex set. Moreover, for any convex subsetK ⊆ cone(M), the setK♯𝜌

is a geodesically convex set.

Although this result is not di�cult to prove, we were unable to �nd it in the existing literature.

In fact, it follows as a direct consequence of the isometry established in Section 7.3.2, which will

show that cone(M)♯𝜌 is isometric to a convex subset of a Hilbert space.

Motivated by this theorem, we propose the following de�nition.

De�nition 7.2. LetM be a compatible and �nite family of optimal transport maps. We refer to

cone(M)♯𝜌 as a polyhedral set in the Wasserstein space.

More generally, a polyhedral set in the Wasserstein space is a set of the form K♯𝜌 where

K ⊆ cone(M) is polyhedral andM is a compatible family.

The next sequence of lemmas furnish important examples of compatible families, which we

prove in Appendix F.1.

Lemma 7.3 (Mutually diagonalizable linear maps). LetM be a family of mutually diagonalizable

and positive de�nite linear maps R𝑑 → R𝑑 . Then,M is a compatible family.

Lemma 7.4 (Radial maps). Let

M B {𝑥 ↦→ 𝑔(‖𝑥 ‖2) 𝑥 | 𝑔 : R+ → R+ is continuous and strictly increasing} .

Then,M is a compatible family.
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Lemma 7.5 (One-dimensional maps). Let M denote the family of continuous and increasing1

functions R→ R. Then,M is a compatible family.

Lemma 7.6 (Direct sum). LetM1 andM2 be compatible families of maps onR𝑑1 andR𝑑2 respectively.

Then,M B {(𝑥1, 𝑥2) ↦→ (𝑇1(𝑥1),𝑇2(𝑥2)) | 𝑇1 ∈ M1, 𝑇2 ∈ M2} is a compatible family of maps on

R𝑑1+𝑑2 .

Lemma 7.7 (Adding the identity). LetM be a compatible family. Then,M ∪ {id} is a compatible

family.

Lemma 7.8 (Adding translations). LetM be a compatible family of maps on R𝑑 . Then, {𝑥 ↦→

𝑇 (𝑥) + 𝑣 | 𝑇 ∈ M, 𝑣 ∈ R𝑑} is a compatible family of maps.

Lemma 7.9 (Cones). LetM be a compatible family. Then, cone(M) is a compatible family.

In the sequel, we will use these results in order to build rich compatible families, especially

with an eye toward approximating coordinate-wise separable maps which arise in mean-�eld VI

(see Section 7.5.3). In particular, Lemma 7.9 is the starting point for the development of our theory

of polyhedral optimization in the Wasserstein space.

Remark 7.10. In our applications of interest, cone(M) is typically constructed as follows: let

M1, . . . ,M𝑑 be univariate compatible families (Lemma 7.5). We then take cone(M) to be the

cone generated by the direct sum ofM1, . . . ,M𝑑 via Lemma 7.6. It is easy to see that a generating

family of this cone is the set of maps 𝑥 ↦→ (0, . . . , 0,𝑇𝑖 (𝑥𝑖), 0, . . . , 0), where𝑇𝑖 ∈ M𝑖 . This is a �nite

family of size
∑𝑑
𝑖=1 |M𝑖 |.

1Technically,M does not consist of bijective maps, which we required in the de�nition of compatibility. In one
dimension, however, the notion of compatibility still makes sense once we replace the inverse function with the
quantile function.
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7.3.2 Isometry with Euclidean geometry

A key consequence of compatibility is that the Wasserstein distance equals the linearized

optimal transport distance with respect to 𝜌 , i.e., for 𝑇,𝑇 ∈ M,

d2LOT,𝜌 (𝑇♯𝜌,𝑇♯𝜌) B ‖𝑇 −𝑇 ‖2𝐿2 (𝜌) = ‖𝑇 ◦𝑇
−1 − id‖2

𝐿2 (𝑇♯𝜌)
=𝑊 2

2 (𝑇♯𝜌,𝑇♯𝜌) , (7.6)

where we applied compatibility in the last equality to argue that 𝑇 ◦𝑇 −1 is the optimal transport

map from 𝑇♯𝜌 to 𝑇♯𝜌 . This equality shows that for compatibleM, the geometry of cone(M)♯𝜌 is

in a sense trivial, being isometric to a convex subset of the Hilbert space 𝐿2(𝜌). This fundamental

property lies at the heart of the widespread usage of one-dimensional optimal transport in appli-

cations, see Basu et al. (2014); Cai et al. (2020); Khurana et al. (2023); Kolouri and Rohde (2015);

Kolouri et al. (2016); Park and Thorpe (2018); Wang et al. (2013) for applications.

Next, we consider a family of the form cone(M), whereM is �nite. By its very de�nition,

cone(M) is naturally parameterized by the non-negative orthant. Henceforth, we write

𝑇 𝜆 B
∑︁
𝑇∈M

𝜆𝑇𝑇 , 𝜇𝜆 B (𝑇 𝜆)♯𝜌 .

We can therefore consider the induced metric on R|M|+ . A straightforward calculation reveals:

d2LOT,𝜌 (𝜇𝜂, 𝜇𝜆) = ‖
∑
𝑇∈M (𝜂𝑇 − 𝜆𝑇 )𝑇 ‖2𝐿2 (𝜌) = (𝜂 − 𝜆)

>𝑄 (𝜂 − 𝜆) = ‖𝜂 − 𝜆‖2
𝑄
,

where the matrix 𝑄 has entries 𝑄𝑇,𝑇 B 〈𝑇,𝑇 〉𝐿2 (𝜌) for 𝑇,𝑇 ∈ M. Here, 𝑄 is nothing more than a

Gram matrix, which is always positive semi-de�nite. This collection of observations proves the

following result.

Theorem 7.11. LetM be a �nite family of optimal transport maps with 𝑄 de�ned as the Gram

matrix with entries 𝑄𝑇,𝑇 = 〈𝑇,𝑇 〉𝐿2 (𝜌) for 𝑇,𝑇 ∈ M. Then, (R|M|+ , ‖ · ‖𝑄 ) is always isometric to
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(cone(M)♯𝜌, dLOT,𝜌). If, in addition,M is a compatible family (i.e., cone(M)♯𝜌 is polyhedral), then

(R|M|+ , ‖ · ‖𝑄 ) is isometric to (cone(M)♯𝜌,𝑊2).

As we develop in the next section, Theorem 7.11 paves the way for the application of scalable

�rst-order Euclidean optimization algorithms for minimization problems over polyhedral subsets

of the Wasserstein space.

7.4 Polyhedral optimization in the Wasserstein space

Let cone(M)♯𝜌 be polyhedral and recall the Gram matrix 𝑄 from Theorem 7.11, with entries

given by 𝑄𝑇,𝑇 = 〈𝑇,𝑇 〉𝐿2 (𝜌) . We now turn toward the problem of minimizing a functional F over

cone(M)♯𝜌 . Henceforth, we assume that 𝑄 is positive de�nite, so that 𝑄−1 exists. The positive

de�niteness of 𝑄 follows if the maps 𝑇 ∈ M are linearly independent in 𝐿2(𝜌).

7.4.1 Continuous-time gradient flow

The isometry of Section 7.3.2 implies that the constrained Wasserstein gradient �ow of F is

equivalent to the gradient �ow of the functional 𝜆 ↦→ F (𝜇𝜆) with respect to the 𝑄-geometry.2

The latter gradient �ow can be written explicitly as

¤𝜆(𝑡) = −𝑄−1 ∇𝜆F (𝜇𝜆(𝑡)) . (7.7)

Then, geodesic strong convexity over W translates to strong convexity of 𝜆 ↦→ F (𝜇𝜆) over

(R|M|+ , ‖ · ‖𝑄 ) for free. The following theorem3 establishes convergence rates for this continuous-

time �ow; see Lambert et al. (2022, Appendix D) for a proof.
2See Nesterov (2018, §4.2.1) for a thorough discussion on optimization over general Euclidean spaces.
3In the case where we further constrain the gradient �ow to lie in a convex set, (7.7) should be replaced by a

di�erential inclusion. Since this is not relevant to the subsequent developments, we omit a fuller discussion of this
point.
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Theorem 7.12. Suppose F is geodesically𝑚-strongly convex overW, for𝑚 ≥ 0. Let cone(M)♯𝜌

be polyhedral. Then, F is geodesically𝑚-strongly convex over cone(M)♯𝜌 . Moreover, if 𝜇★ ≡ 𝜇𝜆★ ∈

cone(M)♯𝜌 is a minimizer of F over cone(M)♯𝜌 , the following convergence rates hold for the

gradient �ow (7.7).

1. If𝑚 = 0, then F (𝜇𝜆(𝑡)) − F (𝜇★) ≤ 1
2𝑡𝑊

2
2 (𝜇𝜆(0), 𝜇★).

2. If𝑚 > 0, then:

(a) 𝑊 2
2 (𝜇𝜆(𝑡), 𝜇★) ≤ exp(−2𝑚𝑡)𝑊 2

2 (𝜇𝜆(0), 𝜇★).

(b) F (𝜇𝜆(𝑡)) − F (𝜇★) ≤ exp(−2𝑚𝑡) (F (𝜇𝜆(0)) − F (𝜇★)).

7.4.2 Time-discretization made easy

Appealing to the isometry in Section 7.3.2, optimization of a geodesically convex and geodesi-

cally smooth functional F over a polyhedral set cone(M)♯𝜌 boils down to a �nite-dimensional,

convex, smooth, Euclidean optimization problem of the form

min
𝜆∈R |M |+

F (𝜇𝜆) . (7.8)

More generally, we consider optimization over arbitrary convex subsets 𝐾 ⊆ R|M|+ , and we let

K B {𝑇 𝜆 | 𝜆 ∈ 𝐾} denote the corresponding subset of cone(M). It leads to the problem

min
𝜆∈𝐾
F (𝜇𝜆) .

Our consideration of general constraint sets 𝐾 is not purely for the sake of generality, as we in fact

use the full power of polyhedral optimization in our application to mean-�eld VI (in particular,

see Theorem 7.24 and Appendix F.3.3).
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We consider accelerated projected gradient descent (Beck, 2017), as well as stochastic projected

gradient descent which is useful when only a stochastic gradient is available (as in Section 7.5.5.2).

Moreover, when restricted to any polytope in the non-negative orthant, we also consider the

projection-free Frank–Wolfe algorithm (Frank and Wolfe, 1956). We brie�y describe the algo-

rithms and state their corresponding convergence guarantees. Note that we could also port over

guarantees for other Euclidean optimization algorithms in a similar manner, but we omit them for

brevity.

7.4.2.1 Accelerated projected gradient descent

Starting at an initial point 𝜆(0) ∈ 𝐾 , we can solve (7.8) by applying a projected variant of

Nesterov’s accelerated gradient descent method (Nesterov, 1983), a well-known extrapolation

technique that improves upon the convergence rate for projected gradient descent and is optimal for

smooth convex optimization (Nemirovski and Yudin, 1983). The algorithm is given as Algorithm 2.

Here, proj𝐾,𝑄 (·) is the orthogonal projection operator onto 𝐾 with respect to the ‖ · ‖𝑄 norm.

We summarize the followingwell-known convergence results for accelerated projected gradient

descent (APGD) below; see Beck (2017, Chapter 10) for proofs.

Theorem 7.13 (Convergence results for APGD). Let cone(M)♯𝜌 be polyhedral andK ⊆ cone(M)

be convex. Suppose that F is geodesically𝑚-strongly convex and 𝑀-smooth over K♯𝜌 and let 𝜇★

denote a minimizer over this set. Let (𝜆(𝑡) : 𝑡 = 0, 1, 2, 3 . . .) denote the iterates of Algorithm 2.

1. If𝑚 = 0, then F (𝜇𝜆 (𝑡 ) ) − F (𝜇★) . 𝑀𝑡−2𝑊 2
2 (𝜇𝜆 (0) , 𝜇★) .

2. If𝑚 > 0, then for 𝜅 B 𝑀/𝑚,

(a) 𝑊 2
2 (𝜇𝜆 (𝑡 ) , 𝜇★) . 𝜅 exp(−𝑡/

√
𝜅)𝑊 2

2 (𝜇𝜆 (0) , 𝜇★).

(b) F (𝜇𝜆 (𝑡 ) ) − F (𝜇★) ≤ (1 − 1/
√
𝜅)𝑡

(
F (𝜇𝜆 (0) ) − F (𝜇★) + 𝑚

2 𝑊
2
2 (𝜇𝜆 (0) , 𝜇★)

)
.
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Algorithm 2: Accelerated projected gradient descent over cone(M)
Input: 𝜆(0) ∈ 𝐾 , functional F (𝑚-convex and𝑀-smooth in𝑊2), compatible familyM
Initialize: 𝜂 (0) = 𝜆(0) , 𝜅 ← 𝑀/𝑚 if𝑚 > 0, and 𝛾(0) = 1 if𝑚 = 0
for 𝑡 = 0, 1, 2, 3, . . . do

𝜆(𝑡+1) ← proj𝐾,𝑄 (𝜂 (𝑡) − 1
𝑀
𝑄−1 ∇𝜆F (𝜇𝜂 (𝑡 ) ))

if 𝑚 > 0 then
𝜂 (𝑡+1) ← 𝜆(𝑡+1) +

√
𝜅−1√
𝜅+1 (𝜆

(𝑡+1) − 𝜆(𝑡))
else

𝛾(𝑡+1) ←
1+

√︃
1+4𝛾2(𝑡 )
2

𝜂 (𝑡+1) ← 𝜆(𝑡+1) +
(𝛾 (𝑡 )−1
𝛾 (𝑡+1)

)
(𝜆(𝑡+1) − 𝜆(𝑡))

end

end

7.4.2.2 Stochastic projected gradient descent

In some situations, the full gradient ∇𝜆F (𝜇𝜆) cannot be computed, usually due to high compu-

tational costs. Instead, stochastic �rst-order methods alleviate this issue by instead allowing for

the use of an unbiased stochastic gradient oracle, written ∇̂𝜆F (𝜇𝜆).4 The decreased computational

overhead has contributed to the widespread use of stochastic gradient methods as a pillar of mod-

ern machine learning (Bubeck, 2015). We limit our discussions to the case where F is smooth and

strongly convex, as this setting will be the most relevant later. Other settings readily generalize,

though we omit them for brevity.

We provide a description of stochastic projected gradient descent (SPGD) in Algorithm 3, and

convergence analysis in Theorem 7.14 which requires the following standard assumption on the

variance of the unbiased estimator:

(VB) There exist constants 𝑐0, 𝑐1 ≥ 0 such that for any 𝜆 ∈ 𝐾 , the gradient estimate satis�es

E[‖𝑄−1 (∇̂𝜆F (𝜇𝜆) − ∇𝜆F (𝜇𝜆))‖2𝑄 ] ≤ 𝑐0 + 𝑐1 E[𝑊
2
2 (𝜇𝜆, 𝜇★)] .

4An unbiased estimator of the gradient is one which E𝜇𝜆 [∇̂𝜆F (𝜇𝜆)] = ∇𝜆F (𝜇𝜆).
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Algorithm 3: Stochastic projected gradient descent over cone(M)
Input: 𝜆(0) ∈ 𝐾 , functional F (𝑚-convex and𝑀-smooth in𝑊2), compatible familyM,

�xed step-size ℎ > 0, and unbiased stochastic gradient oracle ∇̂𝜆F (·)
for 𝑡 = 0, 1, 2, 3, . . . do

𝜆(𝑡+1) ← proj𝐾,𝑄 (𝜆(𝑡) − ℎ𝑄−1 ∇̂𝜆F (𝜇𝜆 (𝑡 ) ))
end

Note that 𝑐0, 𝑐1 in (VB) will typically depend on the smoothness and strong convexity parameters

of F , and possibly the dimension of the problem.

Theorem 7.14 (Convergence results for SPGD). Let cone(M)♯𝜌 be polyhedral andK ⊆ cone(M)

be convex. Suppose that F is geodesically𝑚-strongly convex and𝑀-smooth over K♯𝜌 , let 𝜇★ denote

a minimizer over this set, and suppose that (VB) holds. Let (𝜆(𝑡) : 𝑡 = 0, 1, 2, 3 . . .) denote the iterates

of Algorithm 3 and let 𝜀 > 0 be su�ciently small. If we choose step size ℎ � 𝑚𝜀2

𝑐0
≤ 𝑚

2𝑐1 ∧
1

2𝜅𝑀 , and the

number of iterations is at least

𝑡 &
𝑐0

𝑚2𝜀2
log(𝑊2(𝜇𝜆 (0) , 𝜇★)/𝜀) ,

then E[𝑊 2
2 (𝜇𝜆 (𝑡 ) , 𝜇★)] ≤ 𝜀2.

For completeness, we provide a short proof of Theorem 7.14 in Appendix F.2.

7.4.2.3 Frank–Wolfe

In this section, we consider optimization over a polytope, i.e., a set of the form

conv(M)♯𝜌 B
{(∑

𝑇∈M 𝜆𝑇𝑇
)
♯
𝜌

��� 𝜆 ∈ Δ|M|} ,
whereM is a �nite family of compatible maps and Δ|M| denotes the |M|-dimensional simplex.

Note that conv(M) ⊆ cone(M), where cone(M)♯𝜌 is polyhedral, so that conv(M) is an example

of a convex constraint set K considered in the previous subsection. The convergence guarantees
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for accelerated projection gradient descent in Theorem 7.13 therefore apply to optimization over

conv(M)♯𝜌 .

In this setting, however, there is a popular alternative to projected gradient descent known

as conditional gradient descent or the Frank–Wolfe (FW) algorithm (Frank and Wolfe, 1956; Jaggi,

2013). In this scheme, we �nd a descent direction that ensures our iterates remain within the

constraint set. This direction 𝜂 (𝑡) is found at each iterate 𝜆(𝑡) by solving the following linear

sub-problem:

𝜂 (𝑡) = argmin
𝜂∈Δ |M |

〈∇𝜆F (𝜇𝜆 (𝑡 ) ), 𝜂 − 𝜆(𝑡)〉 . (7.9)

Finding this direction can be substantially cheaper than the projection step in Algorithm 2. Indeed,

the sub-problem (7.9) does not depend on the matrix 𝑄 . It is not hard to see that the minimizer

𝜂 (𝑡) must be attained at one of the |M| vertices of the simplex.

The full algorithm is presented in Algorithm 4. Known results provide sublinear convergence

of the objective gap, which does not improve under strong convexity assumptions; see Beck (2017,

Chapter 13) for proofs and discussions.

Theorem 7.15 (Convergence results for FW). Suppose that F is geodesically convex and𝑀-smooth

over conv(M)♯𝜌 , and let 𝜇★ be a minimizer of F over this set. Let (𝜆(𝑡) : 𝑡 = 0, 1, 2, 3 . . .) denote the

iterates of Algorithm 4, with step size 𝛼 (𝑡) = 2/(𝑡 + 2). Then,

F (𝜇𝜆 (𝑡 ) ) − F (𝜇★) . 𝑀𝑡−1 diam
(
conv(M)♯𝜌

)2
. (7.10)

Via the isometry in Section 7.3.2, diam(conv(M)♯𝜌) equals the diameter of conv(M) in the

𝑄-norm. In terms of the matrix 𝑄 , this is at most 2max𝑇∈M
√︁
𝑄𝑇,𝑇 .

Remark 7.16. We are not the �rst to consider applying FW over the Wasserstein space. Kent

et al. (2021) use FW to optimize functionals over the constraint set {𝑊2(·, 𝜋) ≤ 𝛿} for some
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Algorithm 4: Frank–Wolfe over conv(M)
Input: 𝜆(0) ∈ Δ|M| , functional F , and compatible familyM with |M| = 𝐽
for 𝑡 = 0, 1, 2, 3, . . . do

𝑗∗ ← argmin 𝑗∈[𝐽 ] 〈∇𝜆F (𝜇𝜆 (𝑡 ) ), 𝑒 𝑗 − 𝜆(𝑡)〉
𝜆(𝑡+1) ← (1 − 𝛼 (𝑡)) 𝜆(𝑡) + 𝛼 (𝑡) 𝑒 𝑗∗ // 𝛼 (𝑡) = 2

𝑡+2 is a standard step size choice

end

𝛿 > 0 and some �xed probability measure 𝜋 . In their work, the optimization truly occurs in an

in�nite-dimensional space. The authors prove various discrete-time rates of convergence under

noisy gradient oracles and Hölder smoothness of the objective function, among other general

properties. The core di�erence between our works is the constraint set of interest, resulting in

our algorithm being simpler. Indeed, our setup is purely parametric.

7.4.3 Enriching the family of compatible maps

When applying our polyhedral optimization framework to speci�c problems of interest, it

is sometimes useful to �rst enrich the compatible family. For example, one notable advantage

of doing so is that it increases the expressive power of the constraint set. Another example is

that for our application to mean-�eld VI in Section 7.5, it will be necessary for us to ensure a

uniform lower bound on the Jacobian derivatives of the maps in our family (i.e., they are gradients

of strongly convex potentials).

The second issue can be addressed by adding 𝛼 id to each member of the family. Indeed,

by Lemma 7.9 and Lemma 7.7, cone(M ∪ {id}) is a compatible family, and then we can restrict

to the convex subset K ⊆ cone(M ∪ {id}) corresponding to 𝜆 for which the coe�cient 𝜆id in

front of id is 𝛼 . The guarantees of Section 7.4.2.1 then apply directly to optimization over K♯𝜌 .

However, we prefer to handle the 𝛼 id term separately, and so we de�ne the cone generated byM
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with tip 𝛼 id to be the family

cone(M; 𝛼 id) B 𝛼 id+ cone(M) .

Similarly, to address the �rst issue, we would like to enrich our compatible family by adding

translations, via Lemma 7.8. To this end, we de�ne our augmented cone, cone(M) for short, to be

cone(M) B
{∑

𝑇∈M 𝜆𝑇𝑇 + 𝑣
��� 𝜆 ∈ R|M|+ , 𝑣 ∈ R𝑑

}
.

Similarly, we de�ne

cone(M; 𝛼 id) B 𝛼 id + cone(M) .

The augmented cone is parameterized by (𝜆, 𝑣) ∈ R|M|+ × R𝑑 . We may assume that each of the

maps 𝑇 ∈ M has mean zero under 𝜌 , since this does not a�ect the augmented cone. Under this

assumption, it is easy to see (c.f. the proof of Theorem 7.28) that we still obtain an isometry with a

Euclidean metric:𝑊 2
2 (𝜇𝜂,𝑢, 𝜇𝜆,𝑣 ) = ‖𝜂 − 𝜆‖2𝑄 + ‖𝑢 − 𝑣 ‖

2. In this setting, the �rst-order algorithms

must be modi�ed to compute the gradient and projection steps with respect to this metric.

Remark 7.17 (Broader impact of our framework). We now pause to brie�y discuss the broader

impact of polyhedral sets. We want to stress that, even without compatibility, our framework

can be used to optimize functionals over any convex subset of the tangent space, provided that

the functional is convex with respect to the linearized optimal transport distance. In turn, this is

equivalent to requiring that the functional is convex along generalized geodesics (see Ambrosio

et al., 2008, §9.2), which is typically the case when the functional is convex in the Wasserstein

geometry; for example, it holds for the KL divergence with respect to a log-concave measure.

This substantially expands the scope of applications as it allows for optimization over any convex

subset of the tangent space, not just compatible ones.
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7.5 Application to mean-field variational inference

As our main application of polyhedral optimization over the Wasserstein space, we turn

to variational inference (VI) (Blei et al., 2017). In this framework, we are given access to an

unnormalized probability measure, known as the posterior, written 𝜋 ∝ exp(−𝑉 ), from which

we wish to obtain samples for downstream tasks. In principle, one can draw samples from 𝜋 via

Markov chain Monte Carlo methods, but these have computational drawbacks, such as potentially

long burn-in times. Instead, VI suggests to minimize the Kullback–Leibler (KL) divergence over a

constraint set to obtain a proxy measure that is easy to sample from. Commonly used constraint

sets in the literature include the space of non-degenerate Gaussians, location-scale families,

mixtures of Gaussians, and the space of product measures.

For a general constraint set C, the VI optimization problem reads

𝜋★C ∈ argmin
𝜇∈C

KL(𝜇‖𝜋) B argmin
𝜇∈C

∫
𝑉 d𝜇 +

∫
log 𝜇 d𝜇 + log𝑍 , (7.11)

where 𝑍 , the unknown normalizing constant of 𝜋 ∝ exp(−𝑉 ) plays no part in the optimization

problem. The following assumption, which will play a crucial role in our analyses in Section 7.5.3

and Section 7.5.4, is standard in the literature on log-concave sampling (Chewi, 2024):

(WC) 𝜋 is ℓ𝑉 -strongly log-concave and 𝐿𝑉 -log-smooth, i.e., ℓ𝑉 𝐼 � ∇2𝑉 � 𝐿𝑉 𝐼 for ℓ𝑉 , 𝐿𝑉 > 0.

In brief, we say that 𝜋 is well-conditioned. We denote by 𝜅 B 𝐿𝑉 /ℓ𝑉 the condition number.

The following lemma allows us to refer to the unique minimizer of the VI problem, which

follows from the strong geodesic convexity of the KL divergence (see the discussions around

Proposition 7.27).

Lemma 7.18. Suppose C is a geodesically convex subset of P2(R𝑑), and suppose that 𝜋 is strongly

log-concave. Then, there is a unique minimizer of KL(·‖𝜋) over C.
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Despite the widespread use of variational inference in numerous settings (see for example

Blei et al., 2017; Wainwright and Jordan, 2008), explicit guarantees have only recently been

established for a few constraint families. Recently, Diao et al. (2023); Lambert et al. (2022) obtained

computational guarantees for Gaussian VI by way of constrained Wasserstein gradient �ows.

Domke (2020); Domke et al. (2023); Kim et al. (2023) considered VI for location-scale families

and provided algorithmic guarantees, though they abstained from the gradient �ow formalism.

Subsequent work by Yi and Liu (2023) made this connection precise.

In the sequel, we develop end-to-end computational guarantees for mean-�eld variational

inference. This is done in �ve stages:

1. Transfer assumptions on the posterior 𝜋 , namely (WC), to the mean-�eld solution 𝜋★ (see

Proposition 7.19 in Section 7.5.1).

2. Use the properties of 𝜋★ to obtain regularity properties of the optimal transport map 𝑇★

from the standard Gaussian measure to 𝜋★, via Ca�arelli’s contraction theorem and the

Monge–Ampère equation (see Theorem 7.21 in Section 7.5.2).

3. Show that polyhedral sets in the Wasserstein space can approximate mean-�eld measures

arbitrarily well, making use of the regularity properties of the optimal transport map, approx-

imation theory, andWasserstein calculus (see Theorem 7.23, Theorem 7.24, and Theorem 7.26

in Section 7.5.3).

4. Provide convergence guarantees for optimizing the KL divergence over these polyhedral

sets (see Theorem 7.29 in Section 7.5.4).

5. Describe implementation details for our �nal algorithm (see Section 7.5.5.1).
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7.5.1 Mean-field variational inference

In mean-�eld VI, the constraint set is the space of product measures over R𝑑 , written P(R)⊗𝑑 .

Thus, the optimization problem is

𝜋★ ∈ argmin
𝜇∈P(R)⊗𝑑

KL(𝜇‖𝜋) , (7.12)

where, by design, the constraint set forces the minimizers to be of the form

𝜋★(𝑥1, . . . , 𝑥𝑑) =
𝑑⊗
𝑖=1

𝜋★𝑖 (𝑥𝑖) . (7.13)

Mean-�eld VI has a rich history in the realm of statistical inference; see Section 2.3 in Blei et al.

(2017) for a brief historical introduction. Despite being widely used, computational and statistical

guarantees have only recently emerged. A standard algorithm to solve (7.12) is Coordinate Ascent

VI (CAVI) (see Blei et al., 2017, Section 2.4), the updates for which can be implemented for certain

conjugate models. Guarantees for CAVI were provided recently in Bhattacharya et al. (2023) under

a generalized correlation condition for 𝜋 ; see also Arnese and Lacker (2024) and Lavenant and

Zanella (2024).

More closely related to our work is the use of Wasserstein gradient �ows. The work of Lacker

(2023) connects mean-�eld VI to constrained Wasserstein gradient �ows, providing continuous-

time guarantees via projected log-Sobolev inequalities but without a concrete algorithmic imple-

mentation; see also Lacker et al. (2024). Also, in the context of a Bayesian latent variable models,

convergence guarantees for a Wasserstein gradient �ow under a well-conditioned assumption at

the population level was established by Yao and Yang (2022). Toward the issue of implementation,

they suggested two strategies based on particle approximation combined with either Langevin sam-

pling or optimization over transport maps respectively, but they did not analyze the error arising

from the particle approximation. Zhang and Zhou (2020) study the theoretical and computational
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properties of mean-�eld variational inference in the context of community detection. Despite the

promising nature of these works, implementation remains a challenge in complete generality.

Mean-field eqations. Via calculus of variations, one can readily derive the following system

of mean-�eld equations from (7.12): for 𝑖 ∈ [𝑑],

𝜋★𝑖 (𝑥𝑖) ∝ exp
(
−

∫
R𝑑−1

𝑉 (𝑥1, . . . , 𝑥𝑑)
⊗
𝑗≠𝑖

𝜋★𝑗 (d𝑥 𝑗 )
)
. (7.14)

These are also sometimes called self-consistency equations; we give a derivation in Appendix F.3.1.

From the structure of 𝜋★, we can prove the following result.

Proposition 7.19. Suppose that 𝜋 is well-conditioned (WC). Then, (7.12) admits a uniqueminimizer

of the form (7.13), where each 𝜋★𝑖 is well-conditioned (WC) with the same parameters ℓ𝑉 , 𝐿𝑉 as 𝜋 .

Uniqueness of the minimizer follows as a corollary of Lemma 7.18 and Lacker (2023, Proposition

3.2), which shows that P(R)⊗𝑑 is a geodesically convex subset of the Wasserstein space, and the

individual 𝜋★𝑖 measures being well-conditioned is immediate from (7.14).

Our approach. We approach solving mean-�eld VI by optimizing over a suitably rich family of

compatible maps. To this end, we want to relate (7.12) to

𝜋★� B (𝑇★
� )♯𝜌 ∈ argmin

𝜇∈P�
KL(𝜇‖𝜋) , (7.15)

where P� is a polyhedral subset of the Wasserstein space (De�nition 7.2). Recall that polyhedral

subsets of the Wasserstein space are geodesically convex (see Theorem 7.1). Combined with

Lemma 7.18, the following corollary is immediate.

Corollary 7.20. Suppose that P� is a polyhedral subset of the Wasserstein space, and that 𝜋 is

well-conditioned (WC). Then the minimizer to (7.15) is unique, denoted by 𝜋★� .
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Borrowing inspiration from the existing literature combining normalizing �ows and optimal

transport (Chen et al., 2018; Finlay et al., 2020a;b; Huang et al., 2021a), our goal is to transfer

the di�culty of estimating the measure 𝜋★ to estimating an appropriate optimal transport map.

Indeed, P� is a collection of pushforwards of a base measure 𝜌 via optimal transport maps. Going

forward, we will provide a systematic way of choosing both 𝜌 , the base measure, andM, the set

of optimal transport maps which generates P�.

A natural candidate for the base density 𝜌 is the standard Gaussian distribution in R𝑑 . Beyond

its naturality, this choice is justi�ed by powerful regularity results, described in the next section,

for the optimal transport map 𝑇★ from 𝜌 to the mean-�eld solution 𝜋★. This regularity result, in

turn, will feed into the approximation theory of Section 7.5.3.

7.5.2 Regularity of optimal transport maps between well-conditioned

product measures

In this section, we study the regularity of the optimal transport map from the standard Gaussian

to the mean-�eld solution 𝜋★. More generally, our regularity bounds hold for the optimal transport

map from the Gaussian to any well-conditioned product measure, or between any two well-

conditioned product measures 𝜇 and 𝜈 (either by writing 𝑇 𝜇→𝜈 as 𝑇 𝜌→𝜈 ◦ (𝑇 𝜌→𝜇)−1 and directly

applying the results of this section, or by repeating the arguments thereof).

Theorem 7.21. Let 𝜌 = N(0, 𝐼 ) and suppose that 𝜋 is well-conditioned (WC). Then, there exists

a unique, coordinate-wise separable optimal transport map from 𝜌 to 𝜋★, the minimizer to (7.12),

written 𝑇★(𝑥) = (𝑇★
1 (𝑥1), . . . ,𝑇★

𝑑
(𝑥𝑑)). Each map 𝑇★

𝑖 satis�es

√︁
1/𝐿𝑉 ≤ (𝑇★

𝑖 )′ ≤
√︁
1/ℓ𝑉 .
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Moreover, we have the higher-order regularity bounds

| (𝑇★
𝑖 )′′(𝑥) | .

𝜅
√
ℓ𝑉
(1 + |𝑥 |) , and | (𝑇★

𝑖 )′′′(𝑥) | .
𝜅2
√
ℓ𝑉
(1 + |𝑥 |2) . (7.16)

The bounds on (𝑇★
𝑖 )′ in Theorem 7.21 in fact follow immediately from two landmark results

in optimal transport, and Proposition 7.19. First, since 𝜌 admits a density, then Brenier’s theorem

(Brenier, 1991) states that there always exists a unique optimal transport map from 𝜌 to any target

measure, in this case, 𝜋★. Obviously, since both 𝜌 and 𝜋★ are product measures, the corresponding

optimal transport map is coordinate-wise separable. Then, Ca�arelli’s contraction theorem

(Ca�arelli, 2000) yields tight lower and upper bounds on the derivatives of each component of

𝑇★ as a function of the strong log-concavity and log-smoothness parameters of 𝜌 and 𝜋★. See,

e.g., Chewi and Pooladian (2023, Theorem 4) for a precise statement of the contraction theorem,

and a short proof based on entropic optimal transport.

On the other hand, we have not seen the bounds (7.16) in the literature. In general, regularity

theory for optimal transport is notoriously challenging due to the fully non-linear nature of the

associated Monge–Ampère PDE; see Villani (2021, Section 4.2.2) for an exposition to Ca�arelli’s

celebrated regularity theory. Here, we can avoid di�cult arguments by exploiting the coordinate-

wise separability of the transport map and straightforward computations with the Monge–Ampère

equation. See Appendix F.3.2 for the proof.

The regularity we obtain is essentially optimal, since we started with information on the

derivatives of 𝜋★ up to order two, and we obtain regularity bounds for the Kantorovich potential

(of which 𝑇★ is the gradient) up to order four. Such higher-order regularity bounds are not only

useful for obtaining sharper approximation results, but are in fact essential for establishing the

key result Theorem 7.26 in Section 7.5.3.

Remark 7.22. In prior works that statistically estimate optimal transport maps on the basis of

samples (such as Deb et al. (2021); Divol et al. (2022); Hütter and Rigollet (2021); Manole et al.
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(2024a); Pooladian and Niles-Weed (2021)), bounds on the Jacobian of the optimal transport map

of interest are necessary and standard. In contrast, here these bounds hold as a consequence of

our problem setting (in particular, from (WC)).

7.5.3 Approximating the mean-field solution with compatible maps

So, Theorem 7.21 tells us that we can view 𝜋★ = (𝑇★)♯𝜌 , where 𝑇★ obeys desirable regularity

properties. The goal of this section is to demonstrate that we can prescribe a class of mapsM

such that the minimizer of the KL divergence over P� B cone(M; 𝛼 id)♯𝜌 ,

𝜋★� ∈ argmin
𝜇∈P�

KL(𝜇‖𝜋) ,

is close to 𝜋★ in theWasserstein distance. Then, Section 7.5.4 will provide guarantees for computing

𝜋★� via KL minimization over this set.

The �rst step is to prove an approximation theorem: there exists an element 𝜋� ∈ P� such that

𝜋★ is close to 𝜋�. We state this as the following general result. Here, we write ‖𝐷 (𝑇 −𝑇 )‖2
𝐿2 (𝜌) for

the quantity
∫
‖𝐷 (𝑇 −𝑇 )‖2F d𝜌 .

Theorem 7.23. Let 𝜌 = N(0, 𝐼 ). For any 𝜀 > 0, there exists a compatible familyM of optimal

transportmaps of size𝑂 (𝜅1/2𝑑5/4/𝜀1/2), with the following property. For any coordinate-wise separable

map 𝑇 : R𝑑 → R𝑑 with Jacobian satisfying the �rst and second derivative bounds of Theorem 7.21,

there exists 𝑇 ∈ cone(M; 𝛼 id), with 𝛼 = 1/
√
𝐿𝑉 , such that𝑊2(𝑇♯𝜌,𝑇♯𝜌) = ‖𝑇 −𝑇 ‖𝐿2 (𝜌) 6 𝜀/ℓ1/2𝑉

and ‖𝐷 (𝑇 −𝑇 )‖𝐿2 (𝜌) . 𝜅1/2𝑑1/4𝜀1/2/ℓ1/2𝑉
.

Approximation theory has a large literature which aims at proving uniform rates of approxima-

tion over various function classes by linear combinations of well-chosen basis elements. Typical

choices of basis functions include polynomials, splines, wavelets, etc., with more recent literature

investigating approximations via neural networks.
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While resting on standard techniques, the most important departure of our result from the

literature is the coordinate-wise structure of 𝑇 , which allows for approximation rates that do

not incur the curse of the dimensionality, in the sense that the cardinality of |M| does not

depend exponentially on the dimension 𝑑 . Observe the presence of a structural constraint: in

one dimension, the problem essentially boils down to approximating a monotonically increasing

function via conic combinations of the generating setM.

Our construction is described as follows. Let 𝑅 > 0 denote a truncation parameter, and let

𝛿 > 0 denote a mesh size. We partition the interval [−𝑅, +𝑅] into sub-intervals of size 𝛿 . Then,M

consists of all functions of the form 𝑥 ↦→ (0, . . . , 0,𝜓 (𝛿−1 (𝑥𝑖 − 𝑎)), 0, . . . , 0), where only the 𝑖-th

coordinate of the output is non-zero, 𝐼 = [𝑎, 𝑎 + 𝛿] is a sub-interval of size 𝛿 , and 𝜓 : R→ R is

piecewise linear, de�ned via𝜓 (𝑥) B 1 ∧ 𝑥+. Proofs are given in Appendix F.3.3.

This piecewise linear construction exploits the smoothness of𝑇 up to order two, but no further.

On the other hand, from Theorem 7.21 we see that 𝑇★ also obeys a bound on its third derivative,

so we can expect to obtain better approximation rates through a smoother dictionary. This is

indeed the case, but the approximating set becomes more complicated (in particular, it is no

longer the pushforward of a pointed cone, but a general polyhedral set), so we defer the details

to Appendix F.3.3.

Theorem 7.24 (Higher-order smoothness). There exists a polyhedral set P� with an explicit generat-

ing family of size𝑂 (𝜅2/3𝑑7/6/𝜀1/3) with the following property. In the setting of Theorem 7.23, assume

also that each component 𝑇𝑖 of 𝑇 obeys the third derivative bound in Theorem 7.21. Then, there exists

𝑇 ∈ P� such that𝑊2(𝑇♯𝜌,𝑇♯𝜌) = ‖𝑇 −𝑇 ‖𝐿2 (𝜌) 6 𝜀/ℓ1/2𝑉
and ‖𝐷 (𝑇 −𝑇 )‖𝐿2 (𝜌) . 𝜅2/3𝑑1/6𝜀2/3/ℓ1/2𝑉

.

Remark 7.25. We note that the worse dependence on 𝜅 for the smoother dictionary is due to our

derivative bounds for the optimal transport map; we have no reason to believe it is fundamental.

The two preceding results show that we can, with prior knowledge of 𝜋★, construct some

𝜋� ∈ P� which is close to 𝜋★, but it does not guarantee that we can �nd 𝜋� easily. The next
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result addresses this issue by showing that 𝜋★ is close to the minimizer 𝜋★� of the KL divergence

over P�, and hence can be computed using the algorithms in Section 7.5.4. As the proof reveals,

establishing this statement is related to a geodesic smoothness property for the KL divergence,

which is quite non-trivial since the entropy is non-smooth over the full Wasserstein space (see

the further discussion in the next section). We are able to verify this smoothness property on the

geodesic connecting 𝜋� to 𝜋★ using the bounds on ‖𝐷 (𝑇� −𝑇★)‖𝐿2 (𝜌) in our approximation results

(Theorem 7.23 and Theorem 7.24). The proof of Theorem 7.26 is also found in Appendix F.3.3.

Theorem 7.26. The mean-�eld solution 𝜋★ is close to the minimizer 𝜋★� of the KL divergence over

P� with corresponding generating familyM, in the sense that
√
ℓ𝑉𝑊2(𝜋★� , 𝜋★) 6 𝜀, in the following

two cases.

1. For the piecewise linear construction of Theorem 7.23, the size of the family is bounded by

|M| 6 𝑂 (𝜅2𝑑3/2/𝜀).

2. For the higher-order approximation scheme of Theorem 7.24, the size of the family is bounded

by |M| 6 𝑂 (𝜅3/2𝑑5/4/𝜀1/2).

7.5.4 Computational guarantees for mean-field VI

Having identi�ed polyhedral subsets P� of the Wasserstein space over which the KL minimizer

𝜋★� is close to the desired mean-�eld VI solution 𝜋★, we are now in a position to apply our theory

of polyhedral optimization and thereby obtain novel computational guarantees for mean-�eld VI.

Recall that 𝜋 ∝ exp(−𝑉 ), and

KL(𝜇‖𝜋) = V(𝜇) + H (𝜇) B
∫

𝑉 d𝜇 +
∫

log 𝜇 d𝜇 + log𝑍 , (7.17)

where 𝑍 > 0 is the normalizing constant of 𝜋 .

For concreteness, we focus our discussion on the setting in which P� = cone(M; 𝛼 id)♯𝜌 , such
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as in Theorem 7.23, although the discussion below can be adapted to more general polyhedral

sets. As in Section 7.4.2, we apply Euclidean optimization algorithms over the parameterization of

cone(M; 𝛼 id); see Section 7.5.5.1 for a discussion of implementation.

In order to apply the algorithmic guarantees from Section 7.4.2, we must verify the strong

geodesic convexity and geodesic smoothness of the KL divergence over the setP�. Strong convexity

follows from the celebrated fact that the KL divergence with respect to an ℓ𝑉 -strongly log-concave

measure 𝜋 is ℓ𝑉 -strongly geodesically convex (see Villani, 2009, Particular Case 23.15), together

with the geodesic convexity of P� (Theorem 7.1 and Section 7.4.3).

Proposition 7.27 (Strong convexity of the KL divergence over geodesically convex sets). Assume

that 𝜋 is well-conditioned (WC). Then, the KL divergence KL(·‖𝜋) is ℓ𝑉 -strongly geodesically convex

over any geodesically convex subset of the Wasserstein space.

Smoothness of the KL divergence, however, is more subtle, owing to the non-smoothness of

the entropyH over the full Wasserstein space; see Diao et al. (2023) for further discussion of this

point. Prior works therefore established smoothness over restricted subsets of the Wasserstein

space (e.g., Lambert et al., 2022), or utilized proximal methods which succeed in the absence of

smoothness (e.g., Diao et al., 2023). We adopt the former approach, and for this we require a

further property of the familyM of generating maps.

First, without loss of generality, we may assume that each 𝑇 ∈ M has mean zero under 𝜌 :∫
𝑇 d𝜌 = 0. Indeed, subtracting the means from the maps in the generating set does not a�ect

cone(M; 𝛼 id), since cone(M; 𝛼 id) is augmented by translations. Assuming now that M is

centered, we recall the Gram matrix 𝑄 with entries 𝑄𝑇,𝑇 B 〈𝑇,𝑇 〉𝐿2 (𝜌) . We also form the Gram

matrix of the Jacobians, 𝑄 (1) , with entries 𝑄 (1)
𝑇,𝑇
B 〈𝐷𝑇, 𝐷𝑇 〉𝐿2 (𝜌) B

∫
〈𝐷𝑇, 𝐷𝑇 〉 d𝜌 . Our main

assumption onM is an upper bound on 𝑄 (1) in terms of 𝑄 . We refer to familiesM satisfying this

condition as regular.

(Υ) There exists Υ > 0 such that for the Gram matrices associated with a centered familyM, it
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holds that 𝑄 (1) � Υ𝑄 .

We remark that whenM is constructed as a direct sum of univariate families via Lemma 7.6 (c.f.

Remark 7.10), as in our approximation results (Section 7.5.3), the matrices 𝑄 and 𝑄̃ have a 𝑑 × 𝑑

block diagonal structure; see Section 7.5.5.1 for details. Consequently, the regularity Υ of the

familyM is the same as the regularity parameter for the univariate family used to constructM,

and is therefore nominally “dimension-free”.5

We can now establish our geodesic smoothness result for the KL divergence over the augmented

and pointed cone cone(M; 𝛼 id)♯𝜌 , whereM is a regular generating family.

Proposition 7.28 (Smoothness of the KL divergence over cone(M; 𝛼 id)♯𝜌). Assume that 𝜋 is

well-conditioned (WC) and thatM is regular (Υ). Then, KL(·‖𝜋) is 𝑀-geodesically smooth over

cone(M; 𝛼 id)♯𝜌 , with smoothness constant bounded by

𝑀 6 𝐿𝑉 + Υ/𝛼2 .

From Theorem 7.21, we know that the optimal transport map 𝑇★ from 𝜌 to the mean-�eld

solution 𝜋★ is the gradient of a 1/
√
𝐿𝑉 -strongly convex potential, so we take 𝛼 = 1/

√
𝐿𝑉 . The

smoothness constant for the KL divergence then becomes (1 + Υ) 𝐿𝑉 . With these results in hand,

we can state our accelerated convergence guarantees for mean-�eld VI, which follow directly

from the previous propositions, and Theorem 7.13.

Theorem 7.29 (Accelerated mean-�eld VI). Assume that 𝜋 is well-conditioned (WC) and that

M is regular (Υ). Let 𝜋★� denote the unique minimizer of KL(·‖𝜋) over the polyhedral set P� =

cone(M; 𝛼 id)♯𝜌 with 𝛼 = 1/
√
𝐿𝑉 . Then, the iterates of accelerated projected gradient descent yield

5However, if one wishes to maintain the same quality of approximation in high dimension, our approximation
results in Section 7.5.3 require taking the size of the univariate family to scale mildly with the dimension, and in this
case the parameter Υ may indeed scale with the dimension.
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a measure 𝜇(𝑡) with the guarantee𝑊2(𝜇(𝑡), 𝜋★� ) ≤ 𝜀, with a number of iterations bounded by

𝑡 = 𝑂

(√︁
𝜅 (1 + Υ) log

(√
𝜅𝑊2(𝜇(0), 𝜋★� )/𝜀

) )
,

where 𝜅 B 𝐿𝑉 /ℓ𝑉 is the condition number of 𝜋 .

By combining Theorem 7.29 with our approximation result in Theorem 7.26, which provides a

bound on𝑊2(𝜋★� , 𝜋★) for explicit choices of P� with corresponding bounds on the size of |M|, we

can then ensure that the iterate 𝜇(𝑡) is close to 𝜋★ in the Wasserstein distance. Namely, we ensure

that𝑊2(𝜇(𝑡), 𝜋★) 6 𝜀 provided that we use either of the dictionaries in Theorem 7.26 and we take

the number of iterations 𝑡 as in Theorem 7.29; here, 𝑡 is the iteration complexity, whereas the

bounds on the size of the dictionary in Theorem 7.26 govern the per-iteration cost.

As previously mentioned, our analysis is made possible by bypassing the non-di�erentiability

of entropy over P(R) and instead optimizing over pointed cones characterized by a univariate

compatible familyM. Thus, the constant Υ > 0 should blow up as the polyhedral set approaches

P(R). This fact is summarized in the following lemma for the piecewise-linear family.

Lemma 7.30. LetM be the piecewise linear construction of Theorem 7.23. Then, Υ . |M1 |2, where

M1 is the generating family in a single dimension. Since |M1 | = 𝐽 , the bound is equivalently Υ . 𝐽 2.

As a corollary, we can fully characterize the runtime of solving the MFVI problem.

Corollary 7.31 (End-to-end guarantees for MFVI). Consider the setting of Theorem 7.29. Then the

required runtime to compute 𝜋★� becomes

𝑡 = 𝑂 (𝐽𝜅1/2 log(
√
𝜅𝑑/𝜀)) .

If 𝜋★� is meant to approximation 𝜋★, then we can use the approximation guarantees from Theorem 7.26
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to obtain the complete convergence guarantee of

𝑡 = 𝑂 (𝜅5/2𝑑1/2𝜀−1 log(
√
𝜅𝑑/𝜀)) .

As we demonstrate below, the regime of 𝐽 = 𝑂 (1) appears to su�ce numerically. To the

best of our knowledge, this constitutes the �rst accelerated and end-to-end convergence result for

mean-�eld VI. See Section 7.5.1 for comparisons with the literature.

7.5.5 Algorithms for mean-field VI

In this section, we discuss implementation details for our proposed mean-�eld VI algorithm,

which includes an analysis of stochastic gradient descent over our polyhedral sets.

7.5.5.1 Implementation details

Recall that the goal is to compute a product measure approximation to 𝜋 which has density

proportional to exp(−𝑉 ) on R𝑑 .

Building the family of maps. The �rst step is to build a familyM1 of increasing maps R→ R.

The speci�cation of these maps is left to the user; in Section 7.5.3, we have provided an example of

a family of maps with favorable approximation properties. For later purposes, it is also important

to center the maps to ensure that they have mean zero under 𝜌 ; this is done by computing the

expectations of the maps via one-dimensional Gaussian quadrature and subtracting the means.

Let 𝐽 denote the size of |M1 | and writeM1 = {𝑇1, . . . ,𝑇𝐽 }.

Parameterization of the cone. As discussed in Section 7.4.3, it is useful to augment the

cone with translations. Once the one-dimensional familyM1 has been speci�ed, it generates the

𝑑-dimensional augmented cone of maps parameterized by (𝜆, 𝑣) ∈ R𝐽𝑑+ × R𝑑 : the corresponding

map 𝑇 𝜆,𝑣 is given by 𝑇 𝜆,𝑣 (𝑥) = 𝛼𝑥 +∑𝑑
𝑖=1

∑𝐽

𝑗=1 𝜆𝑖, 𝑗𝑇𝑗 (𝑥𝑖) 𝑒𝑖 + 𝑣 .
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Construction of the 𝑄 matrix. For concreteness, let us �x the reference measure 𝜌 to be the

standard Gaussian N(0, 𝐼𝑑). We must compute the 𝐽𝑑 × 𝐽𝑑 matrix 𝑄 , with entries 𝑄 (𝑖, 𝑗);(𝑖 ′, 𝑗 ′) B∫
〈𝑇𝑗 (𝑥𝑖) 𝑒𝑖,𝑇𝑗 ′ (𝑥𝑖 ′) 𝑒𝑖 ′〉 𝜌 (d𝑥). From this expression, it is clear that 𝑄 is block diagonal; in fact,

if we let 𝑄M1 denote the matrix corresponding to the one-dimensional family, with entries

𝑄
M1
𝑗, 𝑗 ′ B

∫
𝑇𝑗𝑇𝑗 ′ d𝜌1 (here 𝜌1 is the one-dimensional standard Gaussian), then 𝑄 = 𝐼𝑑 ⊗ 𝑄M1 , and

hence the full matrix 𝑄 never has to be stored in memory.

The entries of the 𝐽 × 𝐽 matrix 𝑄M1 can be precomputed, either via Monte Carlo sampling

from 𝜌1, or via one-dimensional Gaussian quadrature.

Computation of the gradient and projection. In order to apply the algorithms in Section 7.4,

we must specify the gradient of KL((𝑇 𝜆,𝑣 )♯𝜌 ‖𝜋) w.r.t. (𝜆, 𝑣) and the projection operator w.r.t. the

𝑄-norm, ‖ · ‖𝑄 . Recall that we compute the gradients and projections for the 𝜆 variable w.r.t. ‖ · ‖𝑄 ,

and for the 𝑣 variable in the standard Euclidean norm.

Using the change of variables formula,

KL((𝑇 𝜆,𝑣 )♯𝜌 ‖𝜋) =
∫
[𝑉 (𝑇 𝜆,𝑣 (𝑥)) − log det𝐷𝑇 𝜆 (𝑥)] 𝜌 (d𝑥) +

∫
log 𝜌 d𝜌 + log𝑍 .

The partial derivatives are therefore computed to be

𝜕𝜆𝑖, 𝑗KL((𝑇 𝜆,𝑣 )♯𝜌 ‖𝜋) =
∫ [

𝜕𝑖𝑉 (𝑇 𝜆,𝑣 (𝑥))𝑇𝑗 (𝑥𝑖) − 〈𝑒𝑖, (𝐷𝑇 𝜆)−1(𝑥) 𝑒𝑖〉𝑇 ′𝑗 (𝑥𝑖)
]
𝜌 (d𝑥) ,

∇𝑣KL((𝑇 𝜆,𝑣 )♯𝜌 ‖𝜋) =
∫
∇𝑉 (𝑇 𝜆,𝑣 (𝑥)) 𝜌 (d𝑥) .

(7.18)

For the terms explicitly involving 𝑉 , one can draw Monte Carlo samples from the Gaussian 𝜌 and

approximate them via empirical averages (assuming access to evaluations of the partial derivatives

of 𝑉 ).
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To compute the second term, note that 𝐷𝑇 𝜆 is diagonal:

𝐷𝑇 𝜆 (𝑥) = 𝛼𝐼𝑑 + diag
( 𝐽∑︁
𝑗=1

𝜆𝑖, 𝑗𝑇
′
𝑗 (𝑥𝑖)

)𝑑
𝑖=1
.

Hence, inversion of 𝐷𝑇 𝜆 (𝑥) is very fast, requiring only 𝑂 (𝐽𝑑) time to compute 𝐷𝑇 𝜆 (𝑥) and then

𝑂 (𝑑) time to invert it. Moreover, the (𝑖, 𝑖)-entry of (𝐷𝑇 𝜆)−1(𝑥) only depends on 𝑥𝑖 , so the second

term reduces to a one-dimensional integral:

∫
〈𝑒𝑖, (𝐷𝑇 𝜆)−1(𝑥) 𝑒𝑖〉𝑇 ′𝑗 (𝑥𝑖) 𝜌 (d𝑥) =

∫
𝑇 ′𝑗 (𝑥𝑖)

𝛼 +∑𝐽

𝑗 ′=1 𝜆𝑖, 𝑗 ′𝑇
′
𝑗 ′ (𝑥𝑖)

𝜌1(d𝑥𝑖) .

In turn, this one-dimensional integral can be computed rapidly via Gaussian quadrature.

To summarize: the gradient of the potential energy term (the term involving 𝑉 ) can be

approximated via Monte Carlo sampling, and the gradient of the entropy term decomposes along

the coordinates and can therefore be dealt with via standard quadrature rules. Note that many

of these steps can be parallelized. In Section 7.5.5.2, we control the variance of the stochastic

gradient, thereby obtaining guarantees for SPGD.

To compute the projection of a point 𝜂 ∈ R𝐽𝑑 onto the non-negative orthant R𝐽𝑑+ w.r.t. ‖ · ‖𝑄 ,

one must solve the following optimization problem:

min
𝜆∈R𝐽 𝑑+

〈𝜆 − 𝜂,𝑄 (𝜆 − 𝜂)〉 .

Again, due to the block diagonal structure of 𝑄 , this is equivalent to solving 𝑑 independent

projection problems: in each one, we must project a point in R𝐽 onto R𝐽+ in the 𝑄M1-norm. This

is a smooth, convex problem that can itself be solved via, e.g., projected gradient descent, or

L-BFGS-B (Zhu et al., 1997), or any standard quadratic program solver.
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7.5.5.2 Convergence for stochastic mean-field VI

In Section 7.5.5.1, we noted that in general, the gradient of the KL divergence involves an

integral over 𝜌 , which can be approximated via Monte Carlo sampling. This leads to a stochastic

projected gradient algorithm formean-�eld VI, and this section is devoted to obtaining convergence

guarantees for SPGD.

Our goal here is not to conduct a comprehensive study, but rather to show how such guarantees

can be obtained, and hence we impose a number of simplifying assumptions. We do not work with

the cone augmented by translations, so that the maps are parameterized solely by 𝜆 ∈ R|M|+ (the

𝑣-component is easier to handle and only introduces extra notational burden into the proofs). Also,

we consider a stochastic approximation of the gradient of the potential term via a single sample

drawn from 𝜌 at each iteration, and we assume that the gradient of the entropy is computed exactly.

As discussed in Section 7.5.5.1, the gradient of the entropy can be handled via one-dimensional

quadrature.

Even with these simpli�cations, the variance bound is somewhat involved. Motivated by the

piecewise linear construction of Theorem 7.23, in which all maps 𝑇 ∈ M can be taken to be

bounded, we impose the following assumption.

(Ξ) There exists Ξ > 0 such that for the Gram matrix 𝑄M1 associated with the centered

univariate familyM1, we have the pointwise bound 〈𝑄−1, 𝑄 (𝑥)〉 ≤ Ξ𝐽 for all 𝑥 ∈ R, where

𝑄𝑇,𝑇 (𝑥) = 𝑇 (𝑥)𝑇 (𝑥) for 𝑇,𝑇 ∈ M1. Here, 𝐽 B |M1 |.

Similarly to Lemma 7.30, we can also quantify Ξ for the piecewise linear dictionary.

Lemma 7.32. LetM be the piecewise linear construction of Theorem 7.23. Then, Ξ . |M1 |2, where

M1 is the generating family in a single dimension. Since |M1 | = 𝐽 , the bound is equivalently Ξ . 𝐽 2.

The following lemma established a variance bound of the type (VB) which, when combined

with Theorem 7.14, proves Theorem 7.34.
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Lemma 7.33 (Variance bound for stochastic mean-�eld VI). Assume 𝜋 is well-conditioned (WC)

and thatM is generated from a univariate familyM1 satisfying (Ξ). Let 𝑄−1 ∇̂𝜆KL(·‖𝜋) denote

the stochastic gradient (see Appendix F.3.5). Let 𝜋★� denote the unique minimizer of KL(·‖𝜋) over

cone(M; 𝛼 id)♯𝜌 with 𝛼 = 1/
√
𝐿𝑉 . Then, the following second moment bound holds:

E[tr Cov(𝑄−1/2 ∇̂𝜆KL(𝜇𝜆‖𝜋))] ≤ 2𝐿2𝑉Ξ𝐽 𝑊
2
2 (𝜇𝜆, 𝜋★� ) + 4𝐿𝑉Ξ𝐽 (𝐿𝑉𝑊 2

2 (𝜋★� , 𝜋★) + 𝜅𝑑) .

Let us assume that the 𝜅𝑑 term is larger than 𝐿𝑉𝑊 2
2 (𝜋★� , 𝜋★); this can be guaranteed via the

approximation result in Section 7.5.3. The next theorem follows immediately from Theorem 7.14

and the previous lemma.

Theorem 7.34 (Convergence of stochastic mean-�eld VI). Assume that 𝜋 is well-conditioned

(WC) and thatM is regular (Υ) and generated by a univariate family satisfying (Ξ). Let 𝜋★� denote

the unique minimizer of KL(·‖𝜋) over cone(M; 𝛼 id)♯𝜌 with 𝛼 = 1/
√
𝐿𝑉 . Then, for all su�ciently

small 𝜀, the iterates of stochastic projected gradient descent yield a measure 𝜇(𝑡) with the guarantee
√
ℓ𝑉 E[𝑊2(𝜇(𝑡), 𝜋★� )] ≤ 𝜀, with a number of iterations bounded by

𝑡 &
Ξ𝜅2𝐽𝑑

𝜀2
log(
√
ℓ𝑉𝑊2(𝜇(0), 𝜋★� )/𝜀) ,

and step size ℎ � 𝜀2/(𝐿𝑉Ξ𝜅𝐽𝑑).

As with Theorem 7.29, we can state the following corollary given that Ξ is uniformly bounded

via Lemma 7.32.

Corollary 7.35 (End-to-end guarantees with SPGD). Consider the setting of Theorem 7.34. Then

the required runtime to estimate 𝜋★� becomes

𝑡 = 𝑂 (𝑑 𝐽 3𝜅2𝜀−2 log(
√
ℓ𝑉𝑑/𝜀)) .
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If 𝜋★� is meant to approximation 𝜋★, then we can use the approximation guarantees from Theorem 7.26

to obtain the complete convergence guarantee of

𝑡 = 𝑂 (𝜅8𝑑5/2𝜀−5 log(
√
ℓ𝑉𝑑/𝜀)) .

7.6 Numerical experiments

Figure 7.1: KDEs for the optimal product Gaus-
sian mixture and our algorithm.

Figure 7.2: Our algorithm is robust to the choice
of 𝛼 .

We showcase our proposed MFVI algorithm on numerical experiments. Experimental details

are deferred to Section F.4, and the code to reproduce the experiments is available here. Across

all experiments, which include low- and high-dimensional settings, we took the piecewise linear

dictionary (Theorem 7.23) with the same value for the size 𝐽 = |M1 | = 28 of the univariate family

(hence |M| = 𝐽𝑑), and we ran stochastic gradient descent (without acceleration) with a batch size

of 2000 samples per iteration.
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7.6.1 Product Gaussian mixture

In our �rst experiment, the target is a mixture of four Gaussians in R2 which is itself a product

measure. Despite the non-log-concavity, our algorithm correctly recovers the correct target.

Though, we note that this approach is sensitive to the initialization, but this is expected as the

landscape is non-convex.

7.6.2 Non-isotropic Gaussian

Next, we computed the mean-�eld approximation of a randomly generated centered and

non-isotropic Gaussian in dimension 𝑑 = 5. Letting Σ denote the covariance matrix, the mean-�eld

approximation is also a Gaussian with diagonal covariance and entries (ΣMF)𝑖,𝑖 = 1/(Σ−1)𝑖,𝑖 (see

Section F.4.2 for a calculation of this fact).

In Figure 7.2, we plot the𝑊 2
2 error between the covariance matrix of our algorithm iterate

(computed from samples) and ΣMF, which is a lower bound on the true𝑊 2
2 distance (cf. Cuesta-

Albertos et al., 1996).

In this case, the optimal parameter choice 𝛼∗ is known, though this is rarely the case in practice.

We ran our algorithm for various choices of 𝛼 , �xing all other parameters to be the same. We

see that our algorithm does not depend heavily on the choice of hyperparameter 𝛼 , and the

practitioner can safely choose a small value of 𝛼 without sacri�cing performance.

7.6.3 Synthetic Bayesian logistic regression

As a �nal example, we turn to Bayesian logistic regression on synthetic data; precise details

are deferred to Section F.4.3. In summary, we are given i.i.d. data (𝑋𝑖, 𝑌𝑖) ∈ R𝑑 × R for 𝑖 = 1, . . . , 𝑛,

(where 𝑑 = 20 and 𝑛 = 100) from which we want to recover a parameter 𝜃 . When assuming an
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improper (Lebesgue) prior on 𝜃 , the posterior is given by

𝑉 (𝜃 ) =
𝑛∑︁
𝑖=1

[
log(1 + exp(𝜃>𝑋𝑖)) − 𝑌𝑖 𝜃>𝑋𝑖

]
.

Note that 𝑉 is not strongly convex as 𝑉 (𝜃 ) behaves like a linear function as ‖𝜃 ‖ → +∞. With

𝑉 and ∇𝑉 in hand, our algorithm is fully implementable. As we considered an improper prior,

a comparison to CAVI is not possible. Instead, we compared against standard Langevin Monte

Carlo (LMC). The �nal histograms were generated using 2000 samples from both the mean-�eld

VI algorithm and LMC. Figure 7.3 contains the 20 marginals for both our approach and LMC,

which are closely aligned.

Figure 7.3: Histograms of the first ten marginals computed via our mean-field VI algorithm vs. Langevin
Monte Carlo for a 20-dimensional Bayesian logistic regression example.
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7.7 Extension to mixtures of product measures

In this section, we extend our methodology to approximations via mixtures of product mea-

sures. The motivation is simply that many more measures can be approximated via mixtures of

(approximate) product measures, e.g., Gibbs distributions with small gradient complexity (Austin,

2019; Eldan, 2018; Eldan and Gross, 2018; Jain et al., 2019).

In Section 7.5.4, we minimized KL(·‖𝜋) over cone(M; 𝛼 id)♯𝜌 , where cone(M; 𝛼 id) is param-

eterized by the pair (𝜆, 𝑣) ∈ M B R
|M|
+ × R𝑑 , equipped with the norm ‖·‖𝑄⊕𝐼𝑑 . In this section,

following Lambert et al. (2022), a mixture of product measures is speci�ed by a mixing measure

𝑃 ∈ P(M) and corresponds to the measure 𝜇𝑃 B
∫
(𝑇 𝜆,𝑣 )♯𝜌 𝑃 (d𝜆, d𝑣). We can now equip the

space P(M) with the Wasserstein geometry (with respect to ‖·‖𝑄⊕𝐼𝑑 ), and we shall derive the

Wasserstein gradient �ow of the functional 𝑃 ↦→ KL(𝜇𝑃 ‖𝜋).

This approach to mixture modelling is inspired by the distance on Gaussian mixtures proposed

in Chen et al. (2019); Delon and Desolneux (2020); see Bing et al. (2023) for a statistical perspective.

In this section, we again use the abstract parameterization 𝑇 𝜆,𝑣 = 𝛼 id+∑𝑇∈M 𝜆𝑇𝑇 + 𝑣 . Proofs

are given in Appendix F.5.

Theorem 7.36. The Wasserstein gradient �ow of 𝑃 ↦→ KL(𝜇𝑃 ‖𝜋) is the �ow (𝑃 (𝑡))𝑡>0 speci�ed as

follows. For each 𝑡 > 0, 𝑃 (𝑡) is the law of (𝜆(𝑡), 𝑣 (𝑡)), where

¤𝜆(𝑡)
𝑇

= −
∫ 〈
∇ log 𝜇𝑃 (𝑡 )

𝜋
◦𝑇 𝜆 (𝑡 ) ,𝑣 (𝑡 ) ,𝑇

〉
d𝜌 , for 𝑇 ∈ M ,

¤𝑣 (𝑡) = −
∫
∇ log 𝜇𝑃 (𝑡 )

𝜋
◦𝑇 𝜆 (𝑡 ) ,𝑣 (𝑡 ) d𝜌 .

In practice, we use a �nite number 𝐾 of mixture components, in which case

𝑃 =
1
𝐾

𝐾∑︁
𝑘=1

𝛿 (𝜆[𝑘],𝑣 [𝑘]) , 𝜇𝑃 =
1
𝐾

𝐾∑︁
𝑘=1
(𝑇 𝜆[𝑘],𝑣 [𝑘])♯𝜌 . (7.19)
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The system of ODEs above then becomes an interacting particle system:

¤𝜆(𝑡)
𝑇
[𝑘] = −

∫ 〈
∇ log 𝜇𝑃 (𝑡 )

𝜋
◦𝑇 𝜆 (𝑡 ) [𝑘],𝑣 (𝑡 ) [𝑘],𝑇

〉
d𝜌 , for 𝑇 ∈ M ,

¤𝑣 (𝑡) [𝑘] = −
∫
∇ log 𝜇𝑃 (𝑡 )

𝜋
◦𝑇 𝜆 (𝑡 ) [𝑘],𝑣 (𝑡 ) [𝑘] d𝜌 .

The particles interact through the common term log 𝜇𝑃 (𝑡 ) . More explicitly, by the change of

variables formula,

𝜇𝑃 =
1
𝐾

𝐾∑︁
𝑘=1

𝜌 ◦ (𝑇 𝜆[𝑘],𝑣 [𝑘])−1

det𝐷𝑇 𝜆[𝑘],𝑣 [𝑘] ◦ (𝑇 𝜆[𝑘],𝑣 [𝑘])−1
.

Note that computing ∇ log 𝜇𝑃 now requires taking the second derivative of the transport maps,

which hinders implementation. In this case, a smooth familyM is required.

The dynamics (7.19) maintains equal weights for each of the particles at each time. We can

similarly derive the gradient �ow with respect to the Wasserstein–Fisher–Rao (or Hellinger–

Kantorovich) geometry, which captures unbalanced optimal transport (Chizat et al., 2018; Liero

et al., 2016; 2018). The use of this geometry for sampling was pioneered in Lu et al. (2019).

Theorem 7.37. The Wasserstein–Fisher–Rao gradient �ow of 𝑃 ↦→ KL(𝜇𝑃 ‖𝜋), initialized at 𝑃 (0) =∑𝐾
𝑘=1𝑤

(0) [𝑘] 𝛿 (𝜆 (0) [𝑘],𝑣 (0) [𝑘]) with
∑𝐾
𝑘=1𝑤

(0) [𝑘] = 1, can be described as follows. For each time 𝑡 > 0,

let 𝑃 (𝑡) =
∑𝐾
𝑘=1𝑤

(𝑡) [𝑘] 𝛿 (𝜆 (𝑡 ) [𝑘],𝑣 (𝑡 ) [𝑘]) and 𝑟 (𝑡) [𝑘] B
√︁
𝑤 (𝑡) [𝑘]. Then,

¤𝜆(𝑡)
𝑇
[𝑘] = −

∫ 〈
∇ log 𝜇𝑃 (𝑡 )

𝜋
◦𝑇 𝜆 (𝑡 ) [𝑘],𝑣 (𝑡 ) [𝑘],𝑇

〉
d𝜌 , for 𝑇 ∈ M ,

¤𝑣 (𝑡) [𝑘] = −
∫
∇ log 𝜇𝑃 (𝑡 )

𝜋
◦𝑇 𝜆 (𝑡 ) [𝑘],𝑣 (𝑡 ) [𝑘] d𝜌 ,

¤𝑟 (𝑡) [𝑘] = −
(∫

log
𝜇𝑃 (𝑡 )

𝜋
◦𝑇 𝜆 (𝑡 ) [𝑘],𝑣 (𝑡 ) [𝑘] d𝜌 −

∫
log

𝜇𝑃 (𝑡 )

𝜋
d𝜇𝑃 (𝑡 )

)
𝑟 (𝑡) [𝑘] .

We leave it as an open question to obtain convergence rates for this �ow.
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A | Supplement to Chapter 2

A.1 Second-order error estimate

In this section, we outline a short proof of Theorem 2.2.

Theorem A.1. Suppose 𝑃 and 𝑄 have bounded densities with compact support. Then

OT𝜀 (𝑃,𝑄) −
1
2
𝑊 2

2 (𝑃,𝑄) + 𝜀 log((2𝜋𝜀)𝑑/2) ≤ −
𝜀

2
(H (𝑃) + H (𝑄)) + 𝜀

2

8
𝐼0(𝑃,𝑄), (A.1)

where 𝐼0(𝑃,𝑄) is the integrated Fisher information along the Wasserstein geodesic between 𝑃 and 𝑄 .

The proof hinges on the dynamic formulations of𝑊 2
2 (𝑃,𝑄) and OT𝜀 (𝑃,𝑄) (Benamou and

Brenier, 2000; Chizat et al., 2020; Conforti and Tamanini, 2021). We begin with the former:

1
2
𝑊 2

2 (𝑃,𝑄) = inf
𝜌,𝑣

∫ 1

0

∫
R𝑑

1
2
‖𝑣 (𝑡, 𝑥)‖22𝜌 (𝑡, 𝑥) d𝑥 d𝑡, (A.2)

subject to 𝜕𝑡𝜌 + ∇ · (𝜌𝑣) = 0, called the continuity equation, with 𝜌 (0, ·) = 𝑝 (·) and 𝜌 (1, ·) = 𝑞(·).

We let (𝜌0, 𝑣0) denote the joint minimizers to (A.2) satisfying these conditions.

Similarly, there exists a dynamic formulation for OT𝜀 (see Chizat et al., 2020; Conforti and

Tamanini, 2021, for more information): for two measures with bounded densities and compact
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support,

OT𝜀 (𝑃,𝑄) + 𝜀 log(Λ𝜀) = inf
𝜌,𝑣

∫ 1

0

∫
R𝑑

(
1
2
‖𝑣 (𝑡, 𝑥)‖22 +

𝜀2

8
‖∇𝑥 log(𝜌 (𝑡, 𝑥))‖22

)
𝜌 (𝑡, 𝑥) d𝑥 d𝑡 (A.3)

− 𝜀
2
(H (𝑃) + H (𝑄),

subject to the same conditions as (A.2), where Λ𝜀 = (2𝜋𝜀)𝑑/2.

If we plug in theminimizers from (A.2) into (A.3), we get exactly the result of (A.1) by optimality

OT𝜀 (𝑃,𝑄) + 𝜀 log(Λ𝜀) ≤
∫ 1

0

∫
R𝑑

1
2
‖𝑣0(𝑡, 𝑥)‖22𝜌0(𝑡, 𝑥) d𝑥 d𝑡 +

𝜀2

8
𝐼0(𝑃,𝑄) −

𝜀

2
(H (𝑃) + H (𝑄)),

=
1
2
𝑊 2

2 (𝑃,𝑄) +
𝜀2

8
𝐼0(𝑃,𝑄) −

𝜀

2
(H (𝑃) + H (𝑄)),

where we identify 𝐼0(𝑃,𝑄) =
∫ 1
0

∫
R𝑑
‖∇𝑥 log 𝜌0(𝑡, 𝑥)‖22𝜌0(𝑡, 𝑥) d𝑥 d𝑡 .

A.2 Laplace’s method proof

In this section, we prove a quantitative approximation to the integral

𝐼 (𝜀) := 1
Λ𝜀

∫
exp

(
−1
𝜀
𝑓 (𝑥)

)
d𝑥 , (A.4)

when 𝜀 → 0, with 𝑓 convex and su�ciently regular and where Λ𝜀 = (2𝜋𝜀)𝑑/2. This approximation

relies on expanding 𝑓 around its global minimum; assuming that 𝑓 is twice-di�erentiable, the

behavior of 𝑓 near its minimum will be quadratic, so that (A.4) will resemble a Gaussian integral

for 𝜀 su�ciently small.

Recall that for a positive de�nite matrix 𝑆 , we de�ne 𝐽 (𝑆) :=
√︁
det(𝑆).

In what follows, we write d2𝑓 (0, 𝑦), d3𝑓 (0, 𝑦) for the second and third total derivative of 𝑓 at
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𝑥 , respectively. That is, for 𝑦 ∈ R𝑑

d2𝑓 (𝑥,𝑦) := 𝑦>∇2𝑓 (𝑥)𝑦, d3𝑓 (𝑥,𝑦) :=
𝑑∑︁

𝑖, 𝑗,𝑘=1

𝜕3𝑓 (𝑥)
𝜕𝑦𝑖𝜕𝑦 𝑗 𝜕𝑦𝑘

𝑦𝑖𝑦 𝑗𝑦𝑘 .

We also de�ne the set 𝐵𝑟 (𝑎) := {𝑦 ∈ R𝑑 | ‖𝑦 − 𝑎‖ ≤ 𝑟 }, for some 𝑟 > 0 and 𝑎 ∈ R𝑑 .

Theorem A.2. Let 𝐼 (𝜀) be as in (A.4), with 𝑓 ∈ C𝛼+1,𝑚-strongly convex, 𝑀-smooth, and 𝛼 > 1.

Assume 𝑓 has a global minimum at 𝑥∗. Then there exist positive constants 𝑐 and 𝐶 depending on

𝑚,𝑀, 𝛼, 𝑑, and ‖ 𝑓 ‖C𝛼+1 such that for all 𝜀 ∈ (0, 1),

𝑐 ≤ 𝐽 (∇2𝑓 (𝑥∗))𝐼 (𝜀) ≤ 1 +𝐶 (𝜀 (𝛼−1)/2∧1) . (A.5)

Proof. Without loss of generality, we may assume that 𝑥∗ = 0. For the remainder of the proof, we

let 𝐴 := ∇2𝑓 (0). Let 𝜏 = 𝐶𝑚,𝑀,𝑑,𝛼
√︁
log(2𝜀−1), where the constant is to be decided later. We split the

desired integral into two parts:

𝐼 (𝜀) = 1
Λ𝜀

∫
𝐵𝜏
√
𝜀 (0)

𝑒
−1
𝜀
𝑓 (𝑦) d𝑦 + 1

Λ𝜀

∫
𝐵𝜏
√
𝜀 (0)𝑐

𝑒
−1
𝜀
𝑓 (𝑦) d𝑦 =: 𝐼1(𝜀) + 𝐼2(𝜀) .

Lower bounds Note that 𝐼2(𝜀) ≥ 0, so it su�ces to only prove 𝐼1(𝜀) ≥ 𝑐√
det(𝐴)

for some constant

𝑐 > 0.

Since 𝑓 ∈ C𝛼+1, we have the following Taylor expansion

−𝑓 (𝑦) ≥ −1
2
𝑦>𝐴𝑦 −𝐶 ‖𝑦‖ (𝛼+1)∧3 ≥ −𝑀

2
‖𝑦‖2 −𝐶 ‖𝑦‖ (𝛼+1)∧3
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for some constant 𝐶 > 0. Using this expansion, we arrive at

𝐼1(𝜀) =
1
Λ𝜀

∫
𝐵𝜏
√
𝜀 (0)

exp
[
−𝑀
2𝜀
‖𝑦‖2 − 𝐶

𝜀
‖𝑦‖ (𝛼+1)∧3

]
d𝑦

≥ 1
Λ𝜀

∫
𝐵𝜏
√
𝜀 (0)

exp
[
−𝑀
2𝜀
‖𝑦‖2 − 𝐶

𝜀
(𝜏
√
𝜀) (𝛼+1)∧3

]
d𝑦 .

Performing a change of measure and rearranging, we get

𝐽 (𝐴)𝐼1(𝜀) ≥ 𝑒−𝐶 (𝜏
√
𝜀) (𝛼+1)∧3/𝜀 𝐽 (𝐴)

(2𝑀𝜋)𝑑/2

∫
𝐵
𝜏
√
𝑀 (0)

𝑒−
1
2 ‖𝑦‖

2
d𝑦

& 𝑒−𝐶 (𝜏
√
𝜀) (𝛼+1)∧3/𝜀 𝐽 (𝐴)P(‖𝑌 ‖ ≤ 𝜏

√
𝑀) ,

where 𝑌 ∼ 𝑁 (0, 𝐼𝑑). Since 𝛼 > 1, the quantity 𝐶 (𝜏
√
𝜀) (𝛼+1)∧3/𝜀 is bounded as 𝜀 → 0, so we may

bound 𝑒−𝐶 (𝜏
√
𝜀) (𝛼+1)∧3/𝜀 from below by a constant. Since 𝐽 (𝐴) and P(‖𝑌 ‖ ≤ 𝜏

√
𝑀) are both also

bounded from below, we obtain that 𝐽 (𝐴)𝐼1(𝜀) ≥ 𝑐 > 0, as desired.

Upper bounds We �rst show that the contribution from 𝐼2(𝜀) is negligible. The strong convexity

of 𝑓 implies

𝑓 ≥ 𝑚
2
‖𝑦‖2,

leading us to the upper bound

𝐼2(𝜀) ≤
1
Λ𝜀

∫
𝐵𝜏
√
𝜀 (0)𝑐

𝑒−
𝑚
2𝜀 ‖𝑦‖

2
d𝑦

=
1

(2𝑚𝜋)𝑑/2

∫
𝐵𝜏 (0)𝑐

𝑒−
1
2 ‖𝑦‖

2
d𝑦

≤ 1
(2𝑚𝜋)𝑑/2

𝑒−
1
4𝜏

2
∫

𝑒−
1
4 ‖𝑦‖

2
d𝑦

. 𝑒−
1
4𝜏

2
,
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where in the penultimate inequality we have used the fact that 𝑒−
1
4 ‖𝑦‖

2 ≤ 𝑒− 1
4𝜏

2 on 𝐵𝜏 (0)𝑐 . Taking

𝐶𝑚,𝑀,𝑑,𝛼 su�ciently large in the de�nition of 𝜏 , we can make this term smaller than 𝜀.

For upper bounds on 𝐼1(𝜀), we proceed in a similar fashion. If 𝑓 ∈ C𝛼+1 for 𝛼 ∈ (1, 2], then we

employ the bound

−𝑓 (𝑦) ≤ −1
2
𝑦>𝐴𝑦 +𝐶 ‖𝑦‖𝛼+1 ,

yielding

𝐼1(𝜀) =
1
Λ𝜀

∫
𝐵𝜏
√
𝜀 (0)

𝑒−
1
𝜀
𝑓 (𝑦) d𝑦 ≤ 1

Λ𝜀

∫
𝐵𝜏
√
𝜀 (0)

𝑒−
1
2𝜀𝑦
>𝐴𝑦+𝐶

𝜀
‖𝑦‖𝛼+1 d𝑦 .

Performing the change of variables 𝑢 =
√︁
1/𝜀𝑦, we arrive at

𝐼1(𝜀) ≤
1

(2𝜋)𝑑/2

∫
𝐵𝜏 (0)

𝑒
−1
2 𝑢
>𝐴𝑢𝑒𝐶𝜀

(𝛼−1)/2‖𝑢‖𝛼+1 d𝑢

Since 𝛼 > 1, the term 𝐶𝜀 (𝛼−1)/2‖𝑢‖𝛼+1 is bounded above on 𝐵𝜏 (0), so that there exists a positive

constant 𝐶′ such that

𝑒𝐶𝜀
(𝛼−1)/2‖𝑢‖𝛼+1 ≤ 1 +𝐶′𝜀 (𝛼−1)/2‖𝑢‖𝛼+1 ∀𝑢 ∈ 𝐵𝜏 (0) .

We obtain

𝐼1(𝜀) ≤
1

(2𝜋)𝑑/2

∫
𝐵𝜏 (0)

𝑒
−1
2 𝑢
>𝐴𝑢 (1 +𝐶′𝜀 (𝛼−1)/2‖𝑢‖𝛼+1) d𝑢

≤ 1
(2𝜋)𝑑/2

∫
𝑒
−1
2 𝑢
>𝐴𝑢 (1 +𝐶′𝜀 (𝛼−1)/2‖𝑢‖𝛼+1) d𝑢.

Performing another change of variables yields

𝐼1(𝜀) ≤
1

(2𝜋)𝑑/2𝐽 (𝐴)

∫
(1 +𝐶′𝜀 (𝛼−1)/2‖𝐴−1/2𝑢‖𝛼+1)𝑒− 1

2 ‖𝑢‖
2
d𝑢
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We obtain

𝐽 (𝐴)𝐼1(𝜀) ≤ 1 +𝐶′′𝜀 (𝛼−1)/2 .

Combining this with the bound on 𝐽 (𝐴)𝐼2(𝜀) yields the bound for 𝛼 ≤ 2.

When 𝛼 > 2, we use the same technique but expand to the third order, yielding

𝐼1(𝜀) =
1
Λ𝜀

∫
𝐵𝜏
√
𝜀 (0)

𝑒−
1
𝜀
𝑓 (𝑦) d𝑦

≤ 1
Λ𝜀

∫
𝐵𝜏
√
𝜀 (0)

𝑒−
1
2𝜀𝑦
>𝐴𝑦− 1

6𝜀 d
3 𝑓 (0,𝑦)+𝐶

𝜀
‖𝑦‖𝛼+1 d𝑦

=
1

(2𝜋)𝑑/2

∫
𝐵𝜏 (0)

𝑒−
1
2𝑢
>𝐴𝑢− 𝜀1/2

6 d3 𝑓 (0,𝑢)+𝐶𝜀 (𝛼−1)/2‖𝑢‖𝛼+1 d𝑢

Since −𝜀1/26 d3𝑓 (0, 𝑢) +𝐶𝜀 (𝛼−1)/2‖𝑢‖𝛼+1 is bounded on 𝐵𝜏 (0), we have

𝑒−
𝜀1/2
6 d3 𝑓 (0,𝑢)+𝐶𝜀 (𝛼−1)/2‖𝑢‖𝛼+1 ≤ 1 − 𝜀

1/2

6
d3𝑓 (0, 𝑢) +𝐶𝜀 (𝛼−1)/2‖𝑢‖𝛼+1 + 𝑅(𝑢) ,

where 𝑅 is a positive remainder term satisfying 𝑅(𝑢) . 𝜀 ( d3𝑓 (0, 𝑢))2 + 𝜀𝛼−1‖𝑢‖2(𝛼+1) . We obtain

𝐼1(𝜀) ≤
1

(2𝜋)𝑑/2

∫
𝐵𝜏 (0)

(
1 − 𝜀

1/2

6
d3𝑓 (0, 𝑢) +𝐶𝜀 (𝛼−1)/2‖𝑢‖𝛼+1 + 𝑅(𝑢)

)
𝑒−

1
2𝑢
>𝐴𝑢 d𝑢 .

The symmetry of 𝐵𝜏 (0) and the fact that d3𝑓 (0, 𝑢)𝑒− 1
2𝑢
>𝐴𝑢 is an odd function of 𝑢 imply

∫
𝐵𝜏 (0)

d3𝑓 (0, 𝑢)𝑒− 1
2𝑢
>𝐴𝑢 d𝑢 = 0 ,
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so

𝐼1(𝜀) ≤
1

(2𝜋)𝑑/2

∫
(1 +𝐶𝜀 (𝛼−1)/2‖𝑢‖𝛼+1 + 𝑅(𝑢))𝑒− 1

2𝑢
>𝐴𝑢 d𝑢

=
1

(2𝜋)𝑑/2𝐽 (𝐴)

∫
(1 +𝐶𝜀 (𝛼−1)/2‖𝐴−1/2𝑢‖𝛼+1 + 𝑅(𝐴−1/2𝑢))𝑒− 1

2 ‖𝑢‖
2
d𝑢

≤ 1 +𝐶′′𝜀 (𝛼−1)/2 +𝐶′′𝜀 ,

which is the desired bound. �

Corollary A.3. Assume (E2) and (E3). For all 𝛼 ∈ (1, 3], there exist positive constants 𝑐 and 𝐶 such

that

𝑐 ≤ 𝐽 (∇2𝜑∗0 (𝑥∗))𝑍𝜀 (𝑥) ≤ 1 +𝐶𝜀 (𝛼−1)/2 , (A.6)

for all 𝜀 ∈ (0, 1) and 𝑥 ∈ supp(𝑃).

Proof. Take 𝑓 (·) = 𝐷 [·|𝑥∗] which is 1/𝐿-strongly convex, and 1/𝜇-smooth, with minimizer 𝑥∗ (see

(2.13)). The claim now follows from Theorem A.2. �

A.3 Omitted proofs

A.3.1 Proof of Proposition 2.1

It su�ces to show that

OT𝜀 (𝑃,𝑄) ≥ sup
𝜂∈𝐿1 (𝜋𝜀 )

∫
𝜂 d𝜋𝜀 − 𝜀

∬
𝑒 (𝜂 (𝑥,𝑦)−

1
2 ‖𝑥−𝑦‖

2)/𝜀 d𝑃 (𝑥) d𝑄 (𝑦) + 𝜀 ,

since the other direction follows from choosing 𝜂 (𝑥,𝑦) = 𝑓 (𝑥) + 𝑔(𝑦) and using (1.24).
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Write

𝛾 (𝑥,𝑦) = 𝑒 1
𝜀
(𝑓𝜀 (𝑥)+𝑔𝜀 (𝑦)− 1

2 ‖𝑥−𝑦‖
2)

for the 𝑃 ⊗ 𝑄 density of 𝜋𝜀 . The inequality

𝑎 log𝑎 ≥ 𝑎𝑏 − 𝑒𝑏 + 𝑎

holds for all 𝑎 ≥ 0 and 𝑏 ∈ R, as can be seen by noting that the right side is a concave function

of 𝑏 which achieves its maximum at 𝑏 = log𝑎. Applying this inequality with 𝑎 = 𝛾 (𝑥,𝑦) and

𝑏 = 1
𝜀
(𝜂 (𝑥,𝑦) − 1

2 ‖𝑥 − 𝑦‖
2) and integrating with respect to 𝑃 ⊗ 𝑄 yields

∫
log𝛾 d𝜋𝜀 ≥

1
𝜀

( ∫
𝜂 d𝜋𝜀 −

∫
1
2
‖𝑥 − 𝑦‖2 d𝜋𝜀 (𝑥,𝑦)

)
−

∬
𝑒 (𝜂 (𝑥,𝑦)−

1
2 ‖𝑥−𝑦‖

2)/𝜀 d𝑃 (𝑥) d𝑄 (𝑦) + 1

Multiplying by 𝜀 and using the fact that

∫
𝜀 log𝛾 d𝜋𝜀 =

∫
(𝑓𝜀 (𝑥) + 𝑔𝜀 (𝑦) −

1
2
‖𝑥 − 𝑦‖2) d𝜋𝜀 = OT𝜀 (𝑃,𝑄) −

∫
1
2
‖𝑥 − 𝑦‖2 d𝜋𝜀 (𝑥,𝑦)

yields the claim. �

A.3.2 Proof of Proposition 2.15

Proposition 2.15 follows from the following more general result by choosing 𝑃 = 𝑃𝑛 .

Proposition A.4. Let 𝑃 and 𝑄 be probability measures with support contained in Ω, and denote by

𝑃𝑛 and 𝑄𝑛 corresponding empirical measures. If 𝑃 is a probability measure with support in Ω such
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that TV(𝑃, 𝑃𝑛) ≤ 𝛿 for some 𝛿 ≥ 0, then

E
{

sup
𝜒 :Ω×Ω→R

∬
𝜒 (𝑥,𝑦) d𝜋𝜀,𝑛 (𝑥,𝑦) −

∬
(𝑒 𝜒 (𝑥,𝑦) − 1)𝛾 (𝑥,𝑦) d𝑃 (𝑥) d𝑄𝑛 (𝑦)

}
. 𝜀−1𝛿 + (𝜀−1 + 𝜀−𝑑/2) log(𝑛)𝑛−1/2 ,

where 𝜋𝜀,𝑛 is the optimal entropic plan for 𝑃 and 𝑄𝑛 , 𝛾 is the 𝑃 ⊗ 𝑄𝑛 density of the optimal entropic

plan for 𝑃 and 𝑄𝑛 , and the supremum is taken over all 𝜒 ∈ 𝐿1(𝜋𝜀,𝑛).

Proof. Write 𝑓𝜀 and 𝑔𝜀 for the optimal entropic potentials for 𝑃 and 𝑄𝑛 , so that

𝛾 (𝑥,𝑦) = exp
(
𝜀−1(𝑓𝜀 (𝑥) + 𝑔𝜀 (𝑦) −

1
2
‖𝑥 − 𝑦‖2)

)
.

Plugging in 𝜂 (𝑥,𝑦) = 𝜀𝜒 (𝑥,𝑦) + 𝑓𝜀 (𝑥) + 𝑔𝜀 (𝑦) into Proposition 2.1 gives

sup
𝜒 :Ω×Ω→R

∬
𝜒 d𝜋𝜀,𝑛 −

∬
(𝑒 𝜒 (𝑥,𝑦) − 1)𝛾 (𝑥,𝑦) d𝑃 (𝑥) d𝑄𝑛 (𝑦) ≤ 𝜀−1

(
OT𝜀 (𝑃,𝑄𝑛)

−
∫

𝑓𝜀 d𝑃 −
∫

𝑔𝜀 d𝑄𝑛
)
,

where we have used that 𝛾 is a probability density with respect to 𝑃 ⊗ 𝑄𝑛 by the optimality

conditions (1.27) and (1.28).

Let 𝑓𝜀,𝑛 and 𝑔𝜀,𝑛 be the optimal entropic dual potentials for 𝑃 and 𝑄𝑛. As in the proof of

Lemma A.8, the optimality of 𝑓𝜀 and 𝑔𝜀 for the pair (𝑃,𝑄𝑛) implies

∫
𝑓𝜀 d𝑃 +

∫
𝑔𝜀 d𝑄𝑛 ≥

∫
𝑓𝜀,𝑛 d𝑃 +

∫
𝑔𝜀,𝑛 d𝑄𝑛 − 𝜀

∬
𝑒

1
𝜀
(𝑓𝜀,𝑛 (𝑥)+𝑔𝜀,𝑛 (𝑦)− 1

2 ‖𝑥−𝑦‖
2) d𝑃 (𝑥) d𝑄𝑛 (𝑦) + 𝜀

=

∫
𝑓𝜀,𝑛 d𝑃 +

∫
𝑔𝜀,𝑛 d𝑄𝑛 ,
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since
∫
𝑒

1
𝜀
(𝑓𝜀,𝑛 (𝑥)+𝑔𝜀,𝑛 (𝑦)− 1

2 ‖𝑥−𝑦‖
2) d𝑄𝑛 (𝑦) = 1 by the dual optimality condition (1.27). Therefore

OT𝜀 (𝑃,𝑄𝑛) −
∫

𝑓𝜀 d𝑃 −
∫

𝑔𝜀 d𝑄𝑛 ≤
∫
(𝑓𝜀,𝑛 − 𝑓𝜀) (d𝑃 − d𝑃)

=

∫
(𝑓𝜀,𝑛 − 𝑓𝜀) (d𝑃 − d𝑃𝑛) +

∫
(𝑓𝜀,𝑛 − 𝑓𝜀) (d𝑃𝑛 − d𝑃)

By Genevay et al. (2019, Proposition 1), we may choose 𝑓𝜀,𝑛 and 𝑓𝜀 to satisfy


𝑓𝜀,𝑛

∞ , ‖ 𝑓𝜀 ‖∞ . 1, so

we may bound the second term as

∫
(𝑓𝜀,𝑛 − 𝑓𝜀) (d𝑃𝑛 − d𝑃) . TV(𝑃, 𝑃𝑛) ≤ 𝛿 .

Also, since 𝑓𝜀,𝑛 is independent of 𝑃𝑛 ,

E𝑓𝜀,𝑛 (d𝑃 − d𝑃𝑛) (𝑦) = 0 .

Altogether, we obtain

E sup
𝜒 :Ω×Ω→R

∬
𝜒 d𝜋𝜀,𝑛 −

∬
(𝑒 𝜒 (𝑥,𝑦) − 1)𝛾 (𝑥,𝑦) d𝑃 (𝑥) d𝑄𝑛 (𝑦) . 𝜀−1

(
𝛿 + E

∫
𝑓𝜀 (d𝑃𝑛 − d𝑃)

)
.

We conclude by again appealing to Genevay et al. (2019, Proposition 1): since 𝑓𝜀 is an optimal

entropic potential for the pair of compactly distributed probability measures (𝑃,𝑄𝑛), its derivatives

up to order 𝑠 are bounded by𝐶𝑠,𝑑,𝐾 (1 + 𝜀1−𝑠) on any compact set 𝐾 for any 𝑠 ≥ 0. Taking 𝐾 to be a

suitably large ball containing Ω and applying Lemma A.8 with 𝑠 = 𝑑/2 yields the claim. �

A.3.3 Proofs from Section 2.2.1

Proof of Lemma 2.12. Fix 𝑥 ∈ supp(𝑃) and let 𝑥∗ := 𝑇0(𝑥), and for notational convenience, write

𝑌 for the random variable with density 𝑞𝑥𝜀 , and denote its mean by 𝑌 . It su�ces to show the
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existence of a constant 𝐾 such that for any unit vector 𝑣 ,

E𝑒 (𝑣
> (𝑌−𝑥∗))2/4𝐿𝜀 ≤ 𝐾 . (A.7)

Indeed, by Young’s and Jensen’s inequalities, this implies

E𝑒 (𝑣
> (𝑌−𝑌 ))2/8𝐿𝜀 ≤ 𝑒 (𝑣> (𝑌−𝑥∗))2/4𝐿𝜀E𝑒 (𝑣> (𝑌−𝑥∗))2/4𝐿𝜀 ≤ 𝐾2 ,

and hence by another application of Jensen’s inequality that

E𝑒 (𝑣
> (𝑌−𝑌 ))2/𝐶𝜀 ≤ 2

for 𝐶 = 8𝐿𝐾2.

We prove (A.7) using the strong convexity of 𝐷 [𝑦 |𝑥∗]. By (2.13),

E𝑒 (𝑣
> (𝑌−𝑥∗))2/4𝐿𝜀 ≤ 1

𝑍𝜀 (𝑥)Λ𝜀

∫
𝑒−

1
𝜀
𝐷 [𝑦 |𝑥∗]+ 1

4𝐿𝜀 ‖𝑦−𝑥
∗‖2 d𝑦

≤ 1
𝑍𝜀 (𝑥)Λ𝜀

∫
𝑒−

1
4𝐿𝜀 ‖𝑦−𝑥

∗‖2 d𝑦

=
(2𝐿)𝑑/2
𝑍𝜀 (𝑥)

. 1 ,

where the �nal inequality uses Corollary A.3.

�

Proof of Lemma 2.13. Let us �rst �x an 𝑥 ∈ supp(𝑃), and write 𝑌 for the random variable with

density 𝑞𝑥𝜀 and 𝑌 for its mean, and write 𝑥∗ := 𝑇0(𝑥). Lemma 2.12 implies (see Vershynin, 2018,
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Proposition 2.5.2) that there exists a positive constant 𝐶 , independent of 𝑥 , such for any 𝑣 ∈ R𝑑 ,

E𝑒 (𝑣
> (𝑌−𝑥∗)) = 𝑒𝑣

> (𝑌−𝑥∗)E𝑒 (𝑣
> (𝑌−𝑌 )) ≤ 𝑒𝑣> (𝑌−𝑥∗)+𝐶𝜀‖𝑣 ‖2 ≤ 𝑒 1

4𝜀 ‖𝑌−𝑥
∗‖2+(𝐶+1)𝜀‖𝑣 ‖2 ,

where the last step uses Young’s inequality. Equivalently, for 𝑎 > (𝐶 + 1)𝜀, we have for all

𝑥 ∈ supp(𝑃) and 𝑣 ∈ R𝑑

∫
𝑒 (𝑣
> (𝑦−𝑥∗))−𝑎‖𝑣 ‖2𝑞𝑥𝜀 (𝑦) d𝑦 ≤ 𝑒

1
4𝜀 ‖𝑦

𝑥−𝑥∗‖2 .

Applying this inequality with 𝑣 = ℎ(𝑥) and integrating with respect to 𝑃 yields the claim. �

Proof of Lemma 2.14. It su�ces to prove the claim for 𝛼 ∈ (1, 2]. Let us �x an 𝑥 ∈ supp(𝑃). Since

𝜑∗0 ∈ C𝛼+1(Ω), Taylor’s theorem implies

𝐷 [𝑦 |𝑥∗] = −𝑥>𝑦 + 𝜑0(𝑥) + 𝜑∗0 (𝑦) =
1
2
(𝑦 − 𝑥∗)>∇2𝜑∗0 (𝑥∗) (𝑦 − 𝑥∗) + 𝑅(𝑦 |𝑥∗) ,

where the remainder satis�es

|𝑅(𝑦 |𝑥∗) | . ‖𝑦 − 𝑥∗‖1+𝛼 . (A.8)

We aim to bound

‖𝑦𝑥 − 𝑥∗‖ =




 1
𝑍𝜀 (𝑥)Λ𝜀

∫
(𝑦 − 𝑥∗)𝑒− 1

𝜀
𝐷 [𝑦 |𝑥∗] d𝑦






Let 𝜏 = 𝐶

√︁
log(2𝜀−1) for a su�ciently large constant 𝐶 . As in the proof of Theorem A.2, the
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contribution to the integral from the set 𝐵𝜏√𝜀 (𝑥∗)𝑐 is negligible; indeed, (2.13) implies




 1
𝑍𝜀 (𝑥)Λ𝜀

∫
𝐵𝜏
√
𝜀 (𝑥∗)𝑐
(𝑦 − 𝑥∗)𝑒− 1

𝜀
𝐷 [𝑦 |𝑥∗] d𝑦







≤ 1
𝑍𝜀 (𝑥)Λ𝜀

∫
𝐵𝜏
√
𝜀 (𝑥∗)𝑐

‖𝑦 − 𝑥∗‖𝑒− 1
2𝐿𝜀 ‖𝑦−𝑥

∗‖2 d𝑦

=
𝜀 (𝑑+1)/2

𝑍𝜀 (𝑥)Λ𝜀

∫
𝐵𝜏 (0)𝑐

‖𝑦‖𝑒− 1
2𝐿 ‖𝑦‖

2
d𝑦

≤ 𝜀 (𝑑+1)/2

𝑍𝜀 (𝑥)Λ𝜀

(∫
‖𝑦‖2𝑒− 1

2𝐿 ‖𝑦‖
2
d𝑦

)1/2 (∫
𝐵𝜏 (0)𝑐

𝑒−
1
2𝐿 ‖𝑦‖

2
d𝑦

)1/2
. 𝜀1/2P[‖𝑌 ‖ ≥ 𝜏] , 𝑌 ∼ N(0, 𝐼𝑑) ,

and this quantity can be made smaller than 𝜀 by choosing the constant in the de�nition of 𝜏

su�ciently large.

It remains to bound




 1
𝑍𝜀 (𝑥)Λ𝜀

∫
𝐵𝜏
√
𝜀 (𝑥∗)
(𝑦 − 𝑥∗)𝑒− 1

𝜀
𝑅(𝑦 |𝑥∗)𝑒−

1
2𝜀 (𝑦−𝑥

∗)>∇2𝜑∗0 (𝑥∗) (𝑦−𝑥∗) d𝑦






 =




 1
𝑍𝜀 (𝑥)Λ𝜀

∫
𝐵𝜏
√
𝜀 (𝑥∗)
(𝑦 − 𝑥∗)

(
𝑒−

1
𝜀
𝑅(𝑦 |𝑥∗) − 1

)
𝑒−

1
2𝜀 (𝑦−𝑥

∗)>∇2𝜑∗0 (𝑥∗) (𝑦−𝑥∗) d𝑦






 , (A.9)

where we have used that

∫
𝐵𝜏
√
𝜀 (𝑥∗)
(𝑦 − 𝑥∗)𝑒− 1

2𝜀 (𝑦−𝑥
∗)>∇2𝜑∗0 (𝑥∗) (𝑦−𝑥∗) d𝑦 = 0 .

By (A.8),
1
𝜀
|𝑅(𝑦 |𝑥∗) | . 1

𝜀
‖𝑦 − 𝑥∗‖1+𝛼 . 1 ∀𝑦 ∈ 𝐵𝜏√𝜀 (𝑥∗) ,

and since |𝑒𝑡 − 1| . |𝑡 | for |𝑡 | . 1, we obtain that

���𝑒− 1
𝜀
𝑅(𝑦 |𝑥∗) − 1

��� . 1
𝜀
‖𝑦 − 𝑥∗‖1+𝛼 ∀𝑦 ∈ 𝐵𝜏√𝜀 (𝑥∗) .
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Therefore (A.9) is bounded above by

𝐶

𝑍𝜀 (𝑥)Λ𝜀𝜀

∫
R𝑑
‖𝑦 − 𝑥∗‖2+𝛼 exp

(
− 1
2𝜀
(𝑦 − 𝑥∗)>∇2𝜑∗0 (𝑥∗) (𝑦 − 𝑥∗)

)
d𝑦 . 𝜀𝛼/2 ,

where in the last step we have applied Corollary A.3. We therefore obtain

‖E𝑞𝑥𝜀 (𝑌 ) − 𝑥
∗‖ . 𝜀𝛼/2 + 𝜀 .

Taking squares, we get the desired result. �

A.4 Supplementary results

Proposition A.5. For any 𝑥 ∈ supp(𝑃), if 𝑎 ∈ [𝐿𝜀, 1], then

E sup
ℎ:Ω→R𝑑

∫
𝑒 𝑗ℎ (𝑥,𝑦)

𝑞𝑥𝜀 (𝑦)
𝑞(𝑦) (d𝑄𝑛 − d𝑄) (𝑦) . (1 + 𝜀

−𝑑/2)𝑛−1/2 ,

where the implicit constant is uniform in 𝑥 .

Proof. To bound this process, we employ the following two lemmas:

Lemma A.6. If 𝑎 ≥ 𝐿𝜀, then for any 𝑣 ∈ R𝑑 ,

𝑣>(𝑦 − 𝑥∗) − 𝑎‖𝑣 ‖2 − 1
𝜀
𝐷 [𝑦 |𝑥∗] ≤ −𝜀𝐿

2
‖𝑣 ‖2 .

Proof. By (2.13), 𝐷 [𝑦 |𝑥∗] ≥ 1
2𝐿 ‖𝑦 − 𝑥

∗‖2. Combining this fact with Young’s inequality yields

𝑣>(𝑦 − 𝑥∗) − 𝑎‖𝑣 ‖2 − 1
𝜀
𝐷 [𝑦 |𝑥∗] ≤ 𝜀𝐿

2
‖𝑣 ‖2 + 1

2𝜀𝐿
‖𝑦 − 𝑥∗‖2 − 𝑎‖𝑣 ‖2 − 1

𝜀
𝐷 [𝑦 |𝑥∗] ≤ −𝜀𝐿

2
‖𝑣 ‖2 ,

as claimed. �
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By slight abuse of notation, for any 𝑣 ∈ R𝑑 , write 𝑗𝑣 : Ω → R for the function

𝑗𝑣 (𝑦) = 𝑣>(𝑦 −𝑇0(𝑥)) − 𝑎‖𝑣 ‖2 .

Let

J𝜀 = {𝑒 𝑗𝑣
𝑞𝑥𝜀 (𝑦)
𝑞(𝑦) : 𝑣 ∈ R𝑑} (A.10)

Lemma A.7. If 𝑎 ∈ [𝐿𝜀, 1], then

log𝑁 (𝜏,J𝜀, ‖ · ‖𝐿∞ (𝑄)) . 𝑑 log(𝐾/𝜏) ,

where 𝐾 . (1 + 𝜀−𝑑/2).

Proof. Fix 𝛿 ∈ (0, 1). Let N𝛿 be a 𝛿3/2-net with respect to the Euclidean metric of a ball of radius

𝛿−1/2 in R𝑑 , and consider the set

G𝛿 B
{
𝑒 𝑗𝑣
𝑞𝑥𝜀 (𝑦)
𝑞(𝑦) : 𝑣 ∈ N𝛿

}
∪ {𝑒 𝑗𝑤

𝑞𝑥𝜀 (𝑦)
𝑞(𝑦) } ,

where𝑤 ∈ R𝑑 is an arbitrary vector of norm 𝛿−1/2. By Lemma A.6, if 𝑎 > 𝐿𝜀 and ‖𝑣 ‖ ≥ 𝑅, then

sup
𝑦∈supp(𝑄)

𝑒 𝑗𝑣
𝑞𝑥𝜀 (𝑦)
𝑞(𝑦) ≤ sup

𝑦∈supp(𝑄)

1
𝑍𝜀 (𝑥)Λ𝜀𝑞(𝑦)

𝑒−
1

2𝜀𝐿𝑅
2 ≤ sup

𝑦∈supp(𝑄)

2𝐿
𝑍𝜀 (𝑥)Λ𝜀𝑞(𝑦)𝑅2

.

Therefore, if 𝑣 ∈ R𝑑 satis�es ‖𝑣 ‖ ≥ 𝛿−1/2, then

sup
𝑦∈supp(𝑄)

����𝑒 𝑗𝑤 (𝑦)𝑞𝑥𝜀 (𝑦)𝑞(𝑦) − 𝑒
𝑗𝑣 (𝑦)𝑞

𝑥
𝜀 (𝑦)
𝑞(𝑦)

���� ≤ sup
𝑦∈supp(𝑄)

4𝛿𝐿
𝑍𝜀 (𝑥)Λ𝜀𝑞(𝑦)

≤ 𝐾𝛿

for 𝐾 = sup𝑦∈supp(𝑄)
1+4𝐿

𝑍𝜀 (𝑥)Λ𝜀𝑞(𝑦) . 𝜀
−𝑑/2.
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On the other hand, if 𝑣 ∈ R𝑑 satis�es ‖𝑣 ‖ ≤ 𝛿−1/2, pick 𝑢 ∈ N𝛿 satisfying ‖𝑢 − 𝑣 ‖ ≤ 𝛿3/2. We

then have ����𝑒 𝑗𝑢 (𝑦)𝑞𝑥𝜀 (𝑦)𝑞(𝑦) − 𝑒
𝑗𝑣 (𝑦)𝑞

𝑥
𝜀 (𝑦)
𝑞(𝑦)

���� ≤ | 𝑗𝑢 (𝑦) − 𝑗𝑣 (𝑦) |𝑞(𝑦) ,

where we have used Lemma A.6 combined with the inequality

|𝑒𝑎 − 𝑒𝑏 | ≤ |𝑎 − 𝑏 | ∀𝑎, 𝑏 ≤ 0 .

Since ‖𝑢 − 𝑣 ‖ ≤ 𝛿3/2 and ‖𝑢‖ + ‖𝑣 ‖ ≤ 2𝛿−1/2, we have for any 𝑦 ∈ Ω,

| 𝑗𝑢 (𝑦) − 𝑗𝑣 (𝑦) | = | (𝑢 − 𝑣)>(𝑦 −𝑇0(𝑥)) − 𝑎(‖𝑢‖2 − ‖𝑣 ‖2) | . 𝛿3/2 + 𝛿𝑎 ,

where we have used the fact that 𝑦 and 𝑇0(𝑥) lie in the compact set Ω. Therefore, as long as 𝑎 ≤ 1,

this quantity is bounded by 𝐶𝛿 for a positive constant 𝐶 .

All told, we obtain that for any 𝑣 ∈ R𝑑 , there exists a 𝑔 ∈ G𝛿 such that



𝑒 𝑗𝑣 𝑞𝑥𝜀 (𝑦)𝑞(𝑦) − 𝑔





𝐿∞ (𝑄)

. 𝐾𝛿 ,

where 𝐾 . 1 + 𝜀−𝑑/2. Moreover, Lemma A.6 implies that, for any 𝑔 ∈ G𝛿 ,

‖𝑔‖𝐿∞ (𝑄) ≤ sup
𝑦∈supp(𝑄)

1
𝑍𝜀 (𝑥)Λ𝜀𝑞(𝑦)

≤ 𝐾.

By a volume argument, we may choose N𝛿 such that it satis�es

log |N𝛿 | . log(1/𝛿).
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We therefore obtain for any 𝜏 ≤ 𝐾 ,

log𝑁 (𝜏,J𝜀, ‖ · ‖𝐿∞ (𝑄)) ≤ log |G𝜏/𝐾 | . log(𝐾/𝜏) ,

as claimed. �

Returning to the empirical process, we obtain by a chaining bound (Giné and Nickl, 2021,

Theorem 3.5.1)

E sup
ℎ:Ω→R𝑑

∫
𝑒 𝑗ℎ (𝑥,𝑦)

𝑞𝑥𝜀 (𝑦)
𝑞(𝑦) (d𝑄𝑛 − d𝑄) (𝑦) = E sup𝑗∈J

∫
𝑗 (𝑦) (d𝑄𝑛 − d𝑄) (𝑦)

. 𝑛−1/2
∫ 𝐾

0

√︁
log(𝐾/𝜏) d𝜏

. 𝐾𝑛−1/2 .

Recalling that 𝐾 . (1 + 𝜀−𝑑/2) completes the proof. �

Lemma A.8. For a convex, compact 𝐾 ⊆ R𝑑 , for any real number 𝑠 ≥ 𝑑/2, and𝑀 > 0, let C𝑠 (𝐾 ;𝑀)

be the set of 𝑠-Hölder smooth functions with Hölder norm bounded by𝑀 . For any probability measure

𝜈 with support contained in 𝐾 and corresponding empirical measure 𝜈𝑛 , we have that

E sup
𝑔∈C𝑠 (𝐾 ;𝑀)

∫
𝑔(𝑦) (d𝜈𝑛 (𝑦) − d𝜈 (𝑦)) . 𝐶𝐾𝑀 log(𝑛)𝑛−1/2 .

Proof. We write F to be the set of functions in C𝑠 (𝐾 ; 1). A version of Dudley’s chaining bound

(see, e.g., von Luxburg and Bousquet, 2003, Theorem 16) therefore implies for any 𝛿 ≥ 0,

E sup
𝑔∈C𝑠 (𝐾 ;𝑀)

∫
𝑔(𝑦) (d𝜈𝑛 (𝑦) − d𝜈 (𝑦)) . 𝑀

(
𝛿 + 𝑛−1/2

∫ 1

𝛿

√︁
log𝑁 (𝜏, F , ‖ · ‖∞) d𝜏

)
.

Letting 𝑠 ≥ 𝑑/2 and applying standard covering number bounds for Hölder spaces (Vaart and
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Wellner, 1996, Theorem 2.7.1) implies

E sup
𝑔∈C𝑠 (𝐾 ;𝑀)

∫
𝑔(𝑦) (d𝜈𝑛 (𝑦) − d𝜈 (𝑦)) . 𝐶𝐾 inf

𝛿≥0
𝑀

(
𝛿 + 𝑛−1/2

∫ 1

𝛿

𝜏−1 d𝜏
)
.

Taking 𝛿 = 𝑛−1/2 yields

E sup
𝑔∈C𝑠 (𝐾 ;𝑀)

∫
𝑔(𝑦) (d𝜈𝑛 (𝑦) − d𝜈 (𝑦)) . 𝐶𝐾𝑀𝑛−1/2(1 − log(𝑛−1/2)) . 𝐶𝐾𝑀𝑛−1/2 log𝑛 ,

as claimed. �

Lemma A.9. Let 𝑃 and 𝑄 be compactly supported, and let (𝑓𝜀, 𝑔𝜀) denote the optimal dual potentials

corresponding to OT𝜀 (𝑃,𝑄). For any real number 𝑠 ≥ 0, the derivatives of (𝑓𝜀, 𝑔𝜀) up to order 𝑠 are

bounded by𝐶𝑠,𝑑,𝐾 (1 + 𝜀1−𝑠) on any compact set 𝐾 , where𝐶𝑠,𝑑,𝐾 > 0 is some constant independent of 𝜀.

Proof. It su�ces to show the claim for 𝑓𝜀 . Let 𝑟 be a positive integer, and let 𝜆 ∈ [0, 1]. By Genevay

et al. (2019, Theorem 2), it holds that

‖ 𝑓𝜀 ‖C𝑟 = 𝑂 (1 + 𝜀1−𝑟 ) .

For any 𝑠 ≥ 0, we can write 𝑠 = 𝑟 + (1 − 𝜆) for some 𝜆 ∈ (0, 1) and 𝑟 ∈ N. Consequently, any

such 𝑠 can be written as 𝑠 = 𝜆𝑟 + (1 − 𝜆) (𝑟 + 1), from which we can now apply an interpolation

inequality between the two integers (Lunardi, 2009):

‖ 𝑓𝜀 ‖C𝜆𝑟+(1−𝜆) (𝑟+1) . ‖ 𝑓𝜀 ‖𝜆C𝑟 ‖ 𝑓𝜀 ‖
1−𝜆
C𝑟+1

. (1 + 𝜀1−𝑟 )𝜆 (1 + 𝜀−𝑟 )1−𝜆

≤ 1 + 𝜀 (1−𝑟 )𝜆−𝑟 (1−𝜆)

= 1 + 𝜀−𝑟+𝜆

= 1 + 𝜀1−𝑠 .
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Thus, ‖ 𝑓𝜀 ‖C𝑠 = 𝑂 (1 + 𝜀1−𝑠) for any 𝑠 ≥ 0, as desired. �

Corollary A.10. If 𝑃 and 𝑄 are compactly supported, then

EOT𝜀 (𝑃,𝑄𝑛) − OT𝜀 (𝑃,𝑄) . (1 + 𝜀1−𝑑/2) log(𝑛)𝑛−1/2 .

Proof. Let (𝑓𝜀,𝑛, 𝑔𝜀𝑛 ) be the optimal dual potentials for 𝑃 and 𝑄𝑛 . Following Mena and Niles-Weed

(2019, Proposition 2), observe that

OT𝜀 (𝑃,𝑄𝑛) − OT𝜀 (𝑃,𝑄) =
∫

𝑓(𝜀,𝑛) d𝑃 +
∫

𝑔(𝜀,𝑛) d𝑄𝑛 − sup
𝑓 ,𝑔

{ ∫
𝑓 d𝑃 +

∫
𝑔 d𝑄

− 𝜀
∬

𝑒 (𝑓 (𝑥)+𝑔(𝑦)−
1
2 ‖𝑥−𝑦‖

2)/𝜀 d𝑃 (𝑥) d𝑄 (𝑦) + 𝜀
}

≤
∫

𝑔(𝜀,𝑛) (𝑦) (d𝑄𝑛 (𝑦) − d𝑄 (𝑦)) ,

where the bound follows from choosing (𝑓(𝜀,𝑛), 𝑔(𝜀,𝑛)) in the supremum and using

∫
𝑒 (𝑓(𝜀,𝑛) (𝑥)+𝑔(𝜀,𝑛) (𝑦)−

1
2 ‖𝑥−𝑦‖

2)/𝜀 d𝑃 (𝑥) = 1 ∀𝑦 ∈ R𝑑

by the dual optimality condition (1.28).

We conclude by applying Lemma A.9: the derivatives of 𝑔𝜀,𝑛 up to order 𝑠 are bounded by

𝐶𝑠,𝑑,𝐾 (1 + 𝜀1−𝑠) on any compact set 𝐾 for any 𝑠 ≥ 0, so we may take 𝐾 to be a suitably large ball

containing the support of 𝑃 and 𝑄 and apply Lemma A.8 with 𝑠 = 𝑑/2. �

A.5 Proof of Theorem 2.16

We recall the notation from the main text. For convenience, we consider 𝛼 ≥ 1 + 𝜄 for some

𝜄 > 0 su�ciently small, but �xed. Let 𝑠 := 𝛼 + 1, which de�nes the regularity of the conjugate

Brenier potential 𝜑∗0 , thus 𝑠 ∈ [2+ 𝜄, 4] for our problem considerations, since smoothness is capped
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at 𝛼 = 3. Let S be the following discrete subset

S B {𝑠min = 𝑠1 < 𝑠2 < · · · < 𝑠𝑁 = 𝑠max} ,

where 𝑠min = 2 + 𝜄, 𝑠𝑁 = 4, with increments 𝑠 𝑗 − 𝑠 𝑗−1 � (log𝑛)−1, and set

𝜀𝑠 = (𝑛/log𝑛)−1/2(𝑑+𝑠) , 𝜓𝑛 (𝑠) = (𝜀𝑠)𝑠 = (𝑛/log𝑛)−𝑠/2(𝑑+𝑠) .

Let D𝑛 := {(𝑋𝑖, 𝑌𝑖)}𝑛𝑖=1 denote our initial dataset with hold-out dataset D′𝑛 . The latter gives rise to

empirical measures 𝑃 ′𝑛 and𝑄′𝑛 . Our choice of smoothness parameter is given by the following rule:

𝑠 B max{𝑠 ∈ S : ‖𝑇𝜀𝑠 −𝑇𝜀𝑠 ′ ‖
2
𝐿2 (𝑃 ′𝑛) . 𝜓𝑛 (𝑠

′) ,∀ 𝑠′ ≤ 𝑠, 𝑠′ ∈ S} . (A.11)

The proof closely follows an exposition of Lepski’s method due to Hütter and Mao (2017).

For a given probability measure and its empirical counterpart from 𝑛 samples, written 𝜌 and

𝜌𝑛 , we will frequently return to the empirical process over a given function classM, written

‖𝜌 − 𝜌𝑛‖M B sup
𝑓 ∈M

����∫ 𝑓 d(𝜌 − 𝜌𝑛)
���� .

We will consider the following function classes: F𝜀 will denote the class of entropic Kantorovich

potentials for a regularization parameter 𝜀, and J𝜀 be the function class from (A.10). H𝑁 will

denote the random, 𝑃𝑛-measurable set of 𝑁 2 bounded functions of the form

‖𝑇𝑠𝑖 (𝑥) −𝑇𝑠 𝑗 (𝑥)‖22 ,

for 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁 }, where we recall that 𝑁 is the cardinality of S.

Without loss of generality, we can assume 𝜑∗0 ∈ C𝑠𝑖 for some 𝑠𝑖 ∈ S. We de�ne the event

E 𝑗 B {𝑠 = 𝑠 𝑗 } for all 𝑗 ∈ [𝑁 ], and denote our estimator by 𝑇𝑠 (for clarity, we omit the explicit
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dependence on 𝜀). The ratio between the risk of 𝑇𝑠 and the oracle rate𝜓𝑛 (𝑠𝑖) can be written as

E[‖𝑇𝑠 −𝑇0‖2𝐿2 (𝑃)𝜓𝑛 (𝑠𝑖)
−1] =

𝑖−1∑︁
𝑗=1
E[‖𝑇𝑠 𝑗 −𝑇0‖2𝐿2 (𝑃)𝜓𝑛 (𝑠𝑖)

−11(E 𝑗 )]

+
𝑁∑︁
𝑗=𝑖

E[‖𝑇𝑠 𝑗 −𝑇0‖2𝐿2 (𝑃)𝜓𝑛 (𝑠𝑖)
−11(E 𝑗 )] .

Our goal is to show that the right-hand side is upper bounded by an absolute constant. We study

the two terms above separately.

Let us �rst focus on the terms where 𝑗 ≥ 𝑖 , i.e. our estimator of the smoothness of the optimal

transport map is larger than the actual smoothness parameter. Inside the expectation, we can

write via Young’s inequality

‖𝑇𝑠 𝑗 −𝑇0‖2𝐿2 (𝑃) . ‖𝑇𝑠 𝑗 −𝑇𝑠𝑖 ‖
2
𝐿2 (𝑃) + ‖𝑇𝑠𝑖 −𝑇0‖

2
𝐿2 (𝑃)

= ‖𝑇𝑠 𝑗 −𝑇𝑠𝑖 ‖2𝐿2 (𝑃 ′𝑛) + ‖𝑇𝑠𝑖 −𝑇0‖
2
𝐿2 (𝑃) +

∫
ℎ̃ d(𝑃 − 𝑃 ′𝑛)

≤ ‖𝑇𝑠 𝑗 −𝑇𝑠𝑖 ‖2𝐿2 (𝑃 ′𝑛) + ‖𝑇𝑠𝑖 −𝑇0‖
2
𝐿2 (𝑃) + ‖𝑃 − 𝑃

′
𝑛‖H𝑁

,

where ℎ̃ = ‖𝑇𝑠 𝑗 −𝑇𝑠𝑖 ‖22. We conclude by taking expectations. The �rst term on the right-hand side is

bounded by𝜓𝑛 (𝑠𝑖): our estimator 𝑠 = 𝑠 𝑗 under the event E 𝑗 , and our criterion for 𝑠 , namely (A.11),

and 𝑠𝑖 ≤ 𝑠 𝑗 by assumption. For the second term: as 𝜑∗0 ∈ C𝑠𝑖 , our main theorem (Theorem 2.5) tells

us that

E‖𝑇𝑠𝑖 −𝑇0‖2𝐿2 (𝑃) . 𝜓𝑛 (𝑠𝑖) .

The third term, by Hoe�ding’s inequality and a union bound, satis�es

E‖𝑃 ′𝑛 − 𝑃 ‖H𝑁
= E[E[‖𝑃 ′𝑛 − 𝑃 ‖H𝑁

| 𝑃𝑛]] . log log(𝑛)/
√
𝑛 ,

where we used that 𝑁 � log𝑛. Note that the third term is in fact faster than any 𝜓𝑛 (𝑠𝑖) for any
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choice of 𝑠𝑖 ∈ S. Altogether, this gives the following bound

𝑁∑︁
𝑗=𝑖

E[‖𝑇𝑠 𝑗 −𝑇0‖2𝐿2 (𝑃)𝜓𝑛 (𝑠𝑖)
−11(E 𝑗 )] . (𝑐20 + 𝑐20)

𝑁∑︁
𝑗=𝑖

P(E 𝑗 ) + 𝑐20 ≤ 𝐶0 ,

for three di�erent constants 𝑐0, 𝑐0, 𝑐0 > 0.

We now turn our attention to the case where 𝑗 < 𝑖 , which is more technical. Focusing on one

term in the summand, we want to choose 𝑡 𝑗 to appropriately balance

E[‖𝑇𝑠 𝑗 −𝑇0‖2𝐿2 (𝑃)𝜓𝑛 (𝑠𝑖)
−11(E 𝑗 )] ≤ 𝑡 𝑗P(E 𝑗 ) +

∫ ∞

𝑡 𝑗

P(‖𝑇𝑠 𝑗 −𝑇0‖2𝐿2 (𝑃)𝜓𝑛 (𝑠𝑖)
−1 ≥ 𝑡) d𝑡 .

By de�nition of the estimator, we can upper bound P(E 𝑗 ) by two events, leading to

P(E 𝑗 ) ≤
𝑖−1∑︁
𝑙=1

(
P(‖𝑇𝑠𝑖 −𝑇0‖2𝐿2 (𝑃 ′𝑛)𝜓𝑛 (𝑠𝑙 )

−1 > 𝑐20/4) + P(‖𝑇𝑠𝑙 −𝑇0‖2𝐿2 (𝑃 ′𝑛)𝜓𝑛 (𝑠𝑙 )
−1 > 𝑐20/4)

)
. (A.12)

Indeed, since 𝑠 𝑗 < 𝑠𝑖 and since we are on the set E 𝑗 , there must exist an 𝑠 𝑗 < 𝑠′ < 𝑠𝑖 such that

‖𝑇𝑠𝑖 −𝑇𝑠 ′‖2𝐿2 (𝑃 ′𝑛)𝜓𝑛 (𝑠
′) > 𝑐0.

By Young’s inequality, we can break this up into two possible events, whereby summing over

all possible 𝑠′ gives the above bound (we replace 𝑠′ by 𝑠𝑙 ). Finally, we note that we also have the

inequality

P(‖𝑇𝑠𝑖 −𝑇0‖2𝐿2 (𝑃 ′𝑛)𝜓𝑛 (𝑠𝑙 )
−1 > 𝑐20/4) ≤ P(‖𝑇𝑠𝑖 −𝑇0‖2𝐿2 (𝑃 ′𝑛)𝜓𝑛 (𝑠𝑖)

−1 > 𝑐20/4) ,

since𝜓𝑛 (·) is decreasing. It remains to bound these two tail probabilities across all 𝑙 < 𝑖 , where

note the norm is measured in 𝐿2(𝑃 ′𝑛). To continue, we require the following lemma.

200



Proposition A.11. There exist absolute constants 𝑐,𝐶 > 0 such that for 𝑡 ≥ 𝑐 ,

P
(
‖𝑇𝑠 −𝑇0‖2𝐿2 (𝑃)𝜓𝑛 (𝑠)

−1 ≥ 𝑐𝑡
)
≤ exp

(
−𝑡

2 log(𝑛)
𝐶

)
.

Proof. For any choice of 𝑠 ∈ (2, 4], it holds that

‖𝑇𝑠 −𝑇0‖2𝐿2 (𝑃) . 𝜀
𝑠/2 + ‖𝑄𝑛 −𝑄 ‖J𝜀 + 𝜀−1‖𝑃𝑛 − 𝑃 ‖F𝜀 ,

which stems from the calculations that appear between Theorem 2.6 and Theorem 2.10. Both

‖𝑄𝑛 −𝑄 ‖J𝜀 and ‖𝑃𝑛 − 𝑃 ‖F𝜀 are subGaussian random variables via McDiarmid’s inequality: for

two constants 𝑎, 𝑏 > 0, it holds that for 𝑡 large enough

P(‖𝑄𝑛 −𝑄 ‖J𝜀 ≥ (1 + 𝑡) (𝜀−𝑑𝑛−1)1/2) ≤ 𝑒−𝑎𝑡
2/2 ,

P(𝜀−1‖𝑃𝑛 − 𝑃 ‖F𝜀 ≥ (𝜀−1𝑛−1)1/2𝑡 + 𝜀−𝑑/2𝑛−1/2) ≤ 𝑒−𝑏𝑡
2/2 .

Consequently, we can merge these via a union bound; taking the worst case constant, we have

that for 𝑡 ≥ 𝑐𝜀−𝑑/2𝑛−1/2, for 𝑐 > 0 su�ciently large, it holds that

P(‖𝑇𝑠 −𝑇0‖2𝐿2 (𝑃) & 𝜀
𝑠/2 + 𝜀−𝑑/2𝑛−1/2𝑡) ≤ 𝑒−𝑐𝑡2/2 .

Dividing through by𝜓𝑛 (𝑠) B (𝑛/log(𝑛))−
𝑠

2(𝑑+𝑠) completes the proof. �

We can also obtain tail bounds under 𝐿2(𝑃 ′𝑛) at virtually no cost. Indeed, for any 𝑠 ∈ S,

‖𝑇𝑠 −𝑇0‖2𝐿2 (𝑃 ′𝑛) . ‖𝑇𝑠 −𝑇0‖
2
𝐿2 (𝑃) + ‖𝑃

′
𝑛 − 𝑃 ‖H𝑁

,

where the last term has expectation bounded above by log log(𝑛)𝑛−1/2 up to a constant factor

(indeed, since 𝑇0 = 𝑇𝑠𝑖 , this is perfectly �ne at the cost of adding one more function to the set). By
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employing a further union bound, we can state Proposition A.11 as

P
(
‖𝑇𝑠 −𝑇0‖2𝐿2 (𝑃 ′𝑛)𝜓𝑛 (𝑠)

−1 ≥ 𝑐𝑡
)
≤ 2 exp

(
−𝑡

2 log(𝑛)
𝐶

)
, (A.13)

for any 𝑠 ∈ S, where the constants that appear are slightly di�erent. Indeed, since log log(𝑛)/
√
𝑛 �

𝜓𝑛 (𝑠), nothing is lost by incorporating this additional term.

Returning to (A.12), we can take 𝑐0 su�ciently large in both terms, we can employ (A.13) for

all the terms in the summand, which results in

P(E 𝑗 ) ≤ 𝑛−𝑐
2
0/(8𝐶) .

For the integrated tail, we use a similar argument, appealing to Proposition A.11 directly.

Indeed, for 𝑡 ≥ 𝐶𝜓𝑛 (𝑠 𝑗 )/𝜓𝑛 (𝑠𝑖), the following bound holds:

P
(
‖𝑇𝑠 𝑗 −𝑇0‖2𝐿2 (𝑃)𝜓𝑛 (𝑠𝑖)

−1 ≥ 𝑡
)
≤ exp

(
−𝑡

2 log(𝑛)
𝐶

𝜓𝑛 (𝑠𝑖)
𝜓𝑛 (𝑠 𝑗 )

)
. (A.14)

Choosing 𝑡 𝑗 = 𝑐1
√︁
𝜓𝑛 (𝑠 𝑗 )/𝜓𝑛 (𝑠𝑖), the tail can be upper bounded as

∫ ∞

𝑡 𝑗

exp
(
−𝑡

2 log(𝑛)
𝐶

𝜓𝑛 (𝑠𝑖)
𝜓𝑛 (𝑠 𝑗 )

)
d𝑡 ≤

(
𝜓𝑛 (𝑠 𝑗 )𝐶

𝜓𝑛 (𝑠𝑖) log(𝑛)

) √︄
𝜓𝑛 (𝑠𝑖)
𝜓𝑛 (𝑠 𝑗 )𝑐21

exp
(
−𝑐1 log(𝑛)

𝐶

)
=

√︄
𝜓𝑛 (𝑠 𝑗 )
𝜓𝑛 (𝑠𝑖)

𝐶

𝑐1 log(𝑛)
exp

(
−𝑐1 log(𝑛)

𝐶

)
.
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Merging everything together, we obtain rather crudely that

𝑖−1∑︁
𝑗=1
E[‖𝑇𝑠 𝑗 −𝑇0‖2𝐿2 (𝑃)𝜓𝑛 (𝑠𝑖)

−11(E 𝑗 )] ≤
𝑖−1∑︁
𝑗=1

©­«𝑡 𝑗𝑛−𝑐20/(8𝐶) +
√︄
𝜓𝑛 (𝑠 𝑗 )
𝜓𝑛 (𝑠𝑖)

𝐶

𝑐1 log(𝑛)
exp

(
−𝑐1 log(𝑛)

𝐶

)ª®¬
≤

𝑖−1∑︁
𝑗=1

1
log𝑛

� 1 ,

since there exist 𝑁 � log(𝑛) terms. This completes the proof.
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B | Supplement to Chapter 3

B.1 Reminders on semi-discrete entropic optimal transport

We recall in this section some known results on entropic optimal transport that will be needed

later. Let 𝜇, 𝜈 ∈ P(Ω), where Ω ⊂ 𝐵(0;𝑅) is a compact set.

Lemma B.1 (Genevay et al., 2019). The entropic potential (𝜑𝜇→𝜈𝜀 ,𝜓
𝜇→𝜈
𝜀 ) have a bounded amplitude,

in the sense that

max
𝑥∈Ω

𝜑
𝜇→𝜈
𝜀 −min

𝑥∈Ω
𝜑
𝜇→𝜈
𝜀 ≤ 𝑐𝑅 (B.1)

for some absolute constant 𝑐 , and similarly for𝜓 𝜇→𝜈𝜀 .

Assume now that 𝜈 =
∑𝐽

𝑗=1 𝜈 𝑗𝛿𝑦 𝑗 is a discrete measure. In this situation, only the values of

the dual potential 𝜓 𝜇→𝜈𝜀 on the points 𝑦1, . . . , 𝑦𝐽 are relevant. We therefore consider 𝜓 𝜇→𝜈𝜀 as a

vector in R𝐽 . The potentials 𝜑𝜇→𝜈𝜀 and𝜓 𝜇→𝜈𝜀 are dual of one another, in the sense of the 𝜀-Legendre

transform. Given a �nite measure 𝜌 , the 𝜀-Legendre transform of a function ℎ with respect to 𝜌 is

given by

Φ
𝜌
𝜀 (ℎ) (𝑥) = 𝜀 log

∫
𝑒 (〈𝑥,𝑦〉−ℎ(𝑥))/𝜀 d𝜌 (𝑥) . (B.2)

Modifying (1.27) and (1.28) for entropic Brenier maps tell us that 𝜑𝜇→𝜈𝜀 = Φ𝜈𝜀 (𝜓
𝜇→𝜈
𝜀 ) and vice-versa.

In the semi-discrete setting, it is also convenient to introduce the 𝜀-Legendre transform with
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respect to the counting measure 𝜎 on {𝑦1, . . . , 𝑦𝐽 }. For a vector𝜓 ∈ R𝐽 , we have

Φ𝜀 (𝜓 ) (𝑥) B Φ𝜎𝜀 (𝜓 ) (𝑥) = 𝜀 log
∑︁

𝑒 (〈𝑥,𝑦 𝑗 〉−𝜓 (𝑦 𝑗 ))/𝜀 . (B.3)

The Φ𝜀 transform and the Φ𝜈𝜀 transform are linked through the relation

Φ𝜈𝜀 (𝜓 ) = Φ𝜀 (𝜓 ) where 𝜓 (𝑦 𝑗 ) = 𝜓 (𝑦 𝑗 ) − 𝜀 log𝜈 𝑗 , (B.4)

where we call𝜓 a shifted potential. With this notation, the optimality condition on the potentials

can be rephrased. Let

𝐹
𝜇→𝜈
𝜀 : 𝜓 ∈ R𝐽 →

∫
Φ𝜀 (𝜓 ) d𝜇 +

∫
𝜓 d𝜈 . (B.5)

Then, the function 𝐹 𝜇→𝜈𝜀 is minimized at𝜓 𝜇→𝜈𝜀 . For𝜓 ∈ R𝐽 and 𝑥 ∈ R𝑑 , we introduce the probability

measure supported on {𝑦1, . . . , 𝑦𝐽 } given by

∀𝑖 ∈ [𝐽 ], 𝜋𝑥𝜀 [𝜓 ] (𝑦𝑖) =
𝑒 (〈𝑥,𝑦𝑖 〉−𝜓 (𝑦𝑖 ))/𝜀∑𝐽

𝑗=1 𝑒
(〈𝑥,𝑦 𝑗 〉−𝜓 (𝑦 𝑗 ))/𝜀

= 𝑒 (〈𝑥,𝑦𝑖 〉−Φ𝜀 (𝜓 ) (𝑥)−𝜓 (𝑦𝑖 ))/𝜀 . (B.6)

A computation gives ∇𝐹 𝜇→𝜈𝜀 (𝜓 ) =
∫
𝜋𝑥𝜀 [𝜓 ] d𝜇 (𝑥) − 𝜈 , so that at optimality, we have

∫
𝜋𝑥𝜀 [𝜓

𝜇→𝜈
𝜀 ] d𝜇 (𝑥) = 𝜈. (B.7)

In this case, 𝜋𝑥𝜀 = 𝜋𝑥𝜀 [𝜓
𝜇→𝜈
𝜀 ] is the conditional distribution of the second marginal of 𝜋𝜀 given that

the �rst is equal to 𝑥 . More generally, for any potential𝜓 , the �rst order condition implies that𝜓

is equal to𝜓 𝜇→𝜈𝜓𝜀 , the optimal dual potential between 𝜇 an 𝜈𝜓 =
∫
𝜋𝑥𝜀 [𝜓 ] d𝜇 (𝑥).
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B.2 Bound on the approximation error

Proof of Theorem 3.5. Let 𝑖, 𝑗 ∈ [𝐽 ]. We de�ne the 𝑗th slack at 𝑥 ∈ 𝐿𝑖 by

1
2
Δ𝑖 𝑗 (𝑥) = −〈𝑥,𝑦 𝑗 〉 + 𝜑0(𝑥) +𝜓0(𝑦 𝑗 ). (B.8)

As 𝜑0 is the Legendre transform of𝜓0, we have Δ𝑖 𝑗 (𝑥) ≥ 0. If the cells 𝐿𝑖 and 𝐿 𝑗 have a nonempty

intersection, the set 𝐻𝑖 𝑗 (𝑡) = {𝑥 ∈ 𝐿𝑖 : Δ𝑖 𝑗 (𝑥) = 𝑡} represents the trace on 𝐿𝑖 of the hyperplane

spanned by the boundary between 𝐿𝑖 and 𝐿 𝑗 , shifted by 𝑡 . It is stated by Altschuler et al. (2022)

that for every nonnegative measurable function 𝑓 : R→ R+,∫
𝐿𝑖

𝑓 (Δ𝑖 𝑗 (𝑥))𝑝 (𝑥) d𝑥 =
1

2‖𝑦𝑖 − 𝑦 𝑗 ‖

∫ ∞

0
𝑓 (𝑡)ℎ𝑖 𝑗 (𝑡) d𝑡, (B.9)

where ℎ𝑖 𝑗 (𝑡) =
∫
𝐻𝑖 𝑗 (𝑡)

𝑝 (𝑥) dH𝑑−1(𝑥) andH𝑑−1 is the (𝑑 − 1)-dimensional Hausdor� measure. In

particular,𝑤𝑖 𝑗 = ℎ𝑖 𝑗 (0) is the (weighted) surface of the boundary between the 𝑖th and 𝑗 th Laguerre

cells (should it exist). Given 𝑥 ∈ 𝐿𝑖 , let 𝑠 (𝑥) = min 𝑗≠𝑖 12Δ𝑖 𝑗 (𝑥). When the point 𝑥 is su�ciently

inside its Laguerre cell, the conditional probability 𝜋𝑥𝜀 becomes extremely concentrated around

the point 𝑦𝑖 , as the next lemma shows. Note that 𝜋𝑥0 = 𝛿𝑦𝑖 when 𝑥 ∈ 𝐿𝑖 .

Lemma B.2. Let 𝑥 ∈ 𝐿𝑖 . For 𝜀 small enough, it holds that for every 𝑗 ∈ [𝐽 ], |𝜋𝑥𝜀 (𝑦 𝑗 ) − 𝜋𝑥0 (𝑦 𝑗 ) | ≤

𝑐𝑒−𝑠 (𝑥)/𝜀 , where 𝑐 depends on 𝐽 , the distances ‖𝑦𝑖 − 𝑦 𝑗 ‖ and on the quantities𝑤𝑖 𝑗 .

Such a result was already stated in Delalande (2022, Corollary 2.2), although while requiring

that the source measure 𝑃 has a Hölder continuous density. Only assumption (S1) is needed here.

Proof. According to Altschuler et al. (2022, Proposition 4.6), for 𝜀 small enough,

𝜀−1‖𝜓𝜀 −𝜓0‖∞ ≤ 𝐶, (B.10)
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where𝜓𝜀 is the shifted version of𝜓𝜀 (see (B.3)) and 𝐶 depends on the distances ‖𝑦𝑖 − 𝑦 𝑗 ‖ and on

the𝑤𝑖 𝑗s. Following Delalande (2022, Proof of Corollary 2.2) and (B.6), we have for 𝑗 ≠ 𝑖

|𝜋𝑥𝜀 (𝑦 𝑗 ) − 𝜋𝑥0 (𝑦 𝑗 ) | = 𝜋𝑥𝜀 (𝑦 𝑗 ) =
𝑒 (〈𝑥,𝑦 𝑗 〉−𝜓𝜀 (𝑦 𝑗 ))/𝜀∑𝐽

𝑗 ′=1 𝑒
(〈𝑥,𝑦 𝑗 ′〉−𝜓𝜀 (𝑦 𝑗 ′))/𝜀

≤ 𝑒2𝐶 𝑒 (〈𝑥,𝑦 𝑗 〉−𝜓0 (𝑦 𝑗 ))/𝜀∑𝐽

𝑗 ′=1 𝑒
(〈𝑥,𝑦 𝑗 ′〉−𝜓0 (𝑦 𝑗 ′))/𝜀

≤ 𝑒2𝐶𝑒−𝑠 (𝑥)/𝜀 .

A similar computation yields that |𝜋𝑥𝜀 (𝑦𝑖) − 𝜋𝑥0 (𝑦𝑖) | = |𝜋𝑥𝜀 (𝑦𝑖) − 1| ≤ 𝐽𝑒2𝐶𝑒−𝑠 (𝑥)/𝜀 . �

We can bound for any 𝑥 ∈ 𝐿𝑖 ,

‖𝑇𝜀 (𝑥) −𝑇0(𝑥)‖ = ‖
𝐽∑︁
𝑗=1
𝑦 𝑗 (𝜋𝑥𝜀 (𝑦 𝑗 ) − 𝜋𝑥0 (𝑦 𝑗 ))‖ ≤ 𝑐

𝐽∑︁
𝑗=1
‖𝑦 𝑗 ‖𝑒−𝑠 (𝑥)/𝜀 . (B.11)

Therefore, letting 𝐶′ denote a constant, which may depend on 𝐽 , whose value may change from

line to line, we obtain

‖𝑇𝜀 −𝑇0‖2𝐿2 (𝑃) =
𝐽∑︁
𝑖=1

∫
𝐿𝑖

‖𝑇𝜀 (𝑥) −𝑇0(𝑥)‖2 d𝑃 (𝑥) ≤ 𝐶′
𝐽∑︁
𝑖=1

∫
𝐿𝑖

𝐽∑︁
𝑗=1

𝑒−2𝑠 (𝑥)/𝜀 d𝑃 (𝑥) (B.12)

≤ 𝐶′
∑︁
𝑖≠ 𝑗

∫
𝐿𝑖

𝑒−Δ𝑖 𝑗 (𝑥)/𝜀 d𝑃 (𝑥) ≤ 𝐶′
∑︁
𝑖≠ 𝑗

1
2‖𝑦𝑖 − 𝑦 𝑗 ‖

∫ ∞

0
𝑒−𝑡/𝜀ℎ𝑖 𝑗 (𝑡) d𝑡 , (B.13)

where in the second equality, we used the de�nition of 𝑠 (𝑥). Assumption (S1) ensures that the

functions ℎ𝑖 𝑗s are bounded, which implies that the right-hand side in (B.13) is of order 𝜀. �

B.3 Stability of entropic transport plans

Proof of Proposition 3.10. Note that we may assume without loss of generality that 𝜈 � 𝜈′ and

that KL(𝜈 ‖𝜈′) < ∞, for otherwise the bound is vacuous. For notational convenience, we omit

the dependence on 𝜀 in the subscripts. Write 𝜋 𝜇,𝜈 = 𝛾 𝜇,𝜈 (𝑥,𝑦)d𝜇 (𝑥)d𝜈 (𝑦) for the entropic optimal

plan between 𝜇 and 𝜈 , where 𝛾 𝜇,𝜈 = exp
( 1
𝜀
(〈𝑥,𝑦〉 − 𝜑𝜇→𝜈 (𝑥) −𝜓 𝜇→𝜈 (𝑦))

)
, and analogously de�ne

𝛾 𝜇
′,𝜈 ′ = exp

( 1
𝜀
(〈𝑥,𝑦〉 − 𝜑𝜇 ′→𝜈 ′ (𝑥) −𝜓 𝜇 ′→𝜈 ′ (𝑦))

)
.
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Consider the measure 𝛾 𝜇 ′,𝜈 ′ (𝑥,𝑦) d𝜇 (𝑥) d𝜈′(𝑦). The �rst-order optimality condition for the pair

of potentials (𝜑𝜇 ′→𝜈 ′,𝜓 𝜇 ′→𝜈 ′) implies that

∫
𝛾 𝜇
′,𝜈 ′ (𝑦) d𝜈′(𝑦) = 1 ∀𝑥 ∈ Ω , (B.14)

so that 𝛾 𝜇 ′,𝜈 ′ (𝑥,𝑦) d𝜈′(𝑦) is a probability measure. Let us write d𝜋𝑥 (𝑦) = 𝛾 𝜇,𝜈 (𝑥,𝑦) d𝜈 (𝑦) and

d𝜌𝑥 (𝑦) = 𝛾 𝜇 ′,𝜈 ′ (𝑥,𝑦) d𝜈′(𝑦).

We make the following observations: �rst,𝑇 𝜇→𝜈 (𝑥) =
∫
𝑦 d𝜋𝑥 (𝑦) and𝑇 𝜇 ′→𝜈 ′ (𝑥) =

∫
𝑦 d𝜌𝑥 (𝑦).

Second, the support of 𝜌𝑥 lies inside 𝐵(0;𝑅); since any Lipschitz function 𝑓 on 𝐵(0;𝑅) satis�es

sup𝑥 𝑓 (𝑥) − inf𝑥 𝑓 (𝑥) ≤ 2𝑅, Hoe�ding’s lemma (see Boucheron et al., 2013, Lemma 2.2) implies

that if 𝑓 is Lipschitz and
∫
𝑓 d𝜌𝑥 = 0, then

∫
𝑒𝑡 𝑓 d𝜌𝑥 ≤ 𝑒2𝑅2𝑡2 ∀𝑡 ∈ R .

This implies (Bobkov and Götze, 1999, Theorem 3.1) that

𝑊1(𝜋𝑥 , 𝜌𝑥 )2 ≤ 8𝑅2KL(𝜋𝑥 ‖𝜌𝑥 ) . (B.15)

Third, Jensen’s inequality implies that for any coupling 𝛾 between 𝜋𝑥 and 𝜌𝑥 ,

∫
‖𝑦 − 𝑦′‖ d𝛾 (𝑦,𝑦′) ≥





∫ (𝑦 − 𝑦′) d𝛾 (𝑦,𝑦′)



 = ‖𝑇 𝜇→𝜈 (𝑥) −𝑇 𝜇 ′→𝜈 ′ (𝑥)‖ , (B.16)

so that in particular, ‖𝑇 𝜇→𝜈 (𝑥) −𝑇 𝜇 ′→𝜈 ′ (𝑥)‖ ≤𝑊1(𝜋𝑥 , 𝜌𝑥 ). Combining these facts, we obtain

1
8𝑅2
‖𝑇 𝜇→𝜈 (𝑥) −𝑇 𝜇 ′→𝜈 ′ (𝑥)‖2 ≤ KL(𝜋𝑥 ‖𝜌𝑥 ) =

∫
log

(
𝛾 𝜇,𝜈

𝛾 𝜇
′,𝜈 ′
(𝑥,𝑦) d𝜈

d𝜈′
(𝑦)

)
𝛾 𝜇,𝜈 (𝑥,𝑦) d𝜈 (𝑦) . (B.17)
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Integrating both sides of this equation with respect to 𝜇 yields

1
8𝑅2
‖𝑇 𝜇→𝜈 (𝑥) −𝑇 𝜇 ′→𝜈 ′ (𝑥)‖2

𝐿2 (𝜇) ≤
∫

log
(
𝛾 𝜇,𝜈

𝛾 𝜇
′,𝜈 ′
(𝑥,𝑦) d𝜈

d𝜈′
(𝑦)

)
d𝜋 𝜇,𝜈 (𝑥,𝑦) . (B.18)

Expanding the de�nition of 𝛾 𝜇,𝜈 and 𝛾 𝜇 ′,𝜈 ′ and using that

∫
log

d𝜈
d𝜈′
(𝑦) d𝜋 𝜇,𝜈 (𝑥,𝑦) =

∫
log

d𝜈
d𝜈′
(𝑦) d𝜈 (𝑦) = KL(𝜈 ‖𝜈′)

yields the claim. �

We now record two corollaries of this bound, which apply when either the source or the target

measures of the entropic maps agree.

Corollary B.3. For any 𝜇, 𝜈, 𝜈′ supported in 𝐵(0;𝑅),

1
8𝑅2
‖𝑇 𝜇→𝜈𝜀 −𝑇 𝜇→𝜈

′

𝜀 ‖2
𝐿2 (𝜇) ≤ 𝜀

−1
∫
(𝜓 𝜇→𝜈

′

𝜀 −𝜓 𝜇→𝜈𝜀 ) d(𝜈 − 𝜈′) + KL(𝜈 ‖𝜈′) . (B.19)

Proof. We apply Proposition 3.10 with 𝜇 = 𝜇′, which yields (once again omitting the dependency

in 𝜀)

1
8𝑅2
‖𝑇 𝜇→𝜈𝜀 −𝑇 𝜇→𝜈

′

𝜀 ‖2
𝐿2 (𝜇) ≤ 𝜀

−1
(∫
(𝜑𝜇→𝜈 ′ − 𝜑𝜇→𝜈 ) d𝜇 +

∫
(𝜓 𝜇→𝜈 ′ −𝜓 𝜇→𝜈 ) d𝜈

)
+ KL(𝜈 ‖𝜈′) .

(B.20)

By de�nition, (𝜑𝜇→𝜈 ′,𝜓 𝜇→𝜈 ′) minimizes the expression

∫
𝜑 d𝜇 +

∫
𝜓 d𝜈′ + 𝜀

∬
𝑒 (〈𝑥,𝑦〉−𝜑 (𝑥)−𝜓 (𝑦))/𝜀 d𝜇 (𝑥) d𝜈′(𝑦) − 𝜀 ,
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so, recalling that
∬
𝑒 (〈𝑥,𝑦〉−𝜑

𝜇→𝜈 ′ (𝑥)−𝜓 𝜇→𝜈 ′ (𝑦))/𝜀 d𝜇 (𝑥) d𝜈′(𝑦) = 1, we have in particular

∫
𝜑𝜇→𝜈

′
d𝜇 +

∫
𝜓 𝜇→𝜈

′
d𝜈′ ≤

∫
𝜑𝜇→𝜈 d𝜇 +

∫
𝜓 𝜇→𝜈 d𝜈′

+ 𝜀
∬

𝑒 (〈𝑥,𝑦〉−𝜑
𝜇→𝜈 (𝑥)−𝜓 𝜇→𝜈 (𝑦))/𝜀 d𝜇 (𝑥) d𝜈′(𝑦) − 𝜀

=

∫
𝜑𝜇→𝜈 d𝜇 +

∫
𝜓 𝜇→𝜈 d𝜈′ ,

where we have used that the �rst-order optimality condition for (𝜑𝜇→𝜈 ,𝜓 𝜇→𝜈 ) implies that∬
𝑒 (〈𝑥,𝑦〉−𝜑

𝜇→𝜈 (𝑥)−𝜓 𝜇→𝜈 (𝑦))/𝜀 d𝜇 (𝑥) d𝜈′(𝑦) = 1 as well (recall (1.27)). This implies

∫
(𝜑𝜇→𝜈 ′ − 𝜑𝜇→𝜈 ) d𝜇 ≤ −

∫
(𝜓 𝜇→𝜈 ′ −𝜓 𝜇→𝜈 ) d𝜈′ . (B.21)

Applying this inequality to (B.20) yields

1
8𝑅2
‖𝑇 𝜇→𝜈𝜀 −𝑇 𝜇→𝜈

′

𝜀 ‖2
𝐿2 (𝜇) ≤ 𝜀

−1
∫
(𝜓 𝜇→𝜈 ′ −𝜓 𝜇→𝜈 ) d(𝜈 − 𝜈′) + KL(𝜈 ‖𝜈′).

�

Corollary B.4. For any 𝜇, 𝜇′, 𝜈 supported in 𝐵(0;𝑅),

1
8𝑅2
‖𝑇 𝜇→𝜈𝜀 −𝑇 𝜇

′→𝜈
𝜀 ‖2

𝐿2 (𝜇) ≤ 𝜀
−1

∫
(𝜑𝜇

′→𝜈
𝜀 − 𝜑𝜇→𝜈𝜀 ) d(𝜇 − 𝜇′) . (B.22)

Proof. We apply Proposition 3.10 with 𝜈 = 𝜈′, yielding (dropping the dependency on 𝜀)

1
8𝑅2
‖𝑇 𝜇→𝜈 −𝑇 𝜇 ′→𝜈 ‖2

𝐿2 (𝜇) ≤ 𝜀
−1

(∫
(𝜑𝜇 ′→𝜈 − 𝜑𝜇→𝜈 ) d𝜇 +

∫
(𝜓 𝜇 ′→𝜈 −𝜓 𝜇→𝜈 ) d𝜈

)
. (B.23)

An argument analogous to the one used in the proof of Corollary B.3 gives the inequality

∫
𝜑𝜇
′→𝜈 d𝜇′ +

∫
𝜓 𝜇
′→𝜈 d𝜈 ≤

∫
𝜑𝜇→𝜈 d𝜇′ +

∫
𝜓 𝜇→𝜈 d𝜈 , (B.24)
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or, equivalently, ∫
(𝜓 𝜇 ′→𝜈 −𝜓 𝜇→𝜈 ) d𝜈 ≤ −

∫
(𝜑𝜇 ′→𝜈 − 𝜑𝜇→𝜈 ) d𝜇′ , (B.25)

and combining this inequality with (B.23) proves the claim. �

B.4 Strong convexity of the entropic semi-dual problem

Proposition B.5 (Strong convexity of 𝐹 𝜇→𝜈𝜀 ). Let 𝜈 =
∑𝐽

𝑗=1 𝜈 𝑗𝛿𝑦 𝑗 be a measure supported on

{𝑦1, . . . , 𝑦𝐽 } ⊆ 𝐵(0;𝑅) and let 𝜇 supported on a compact convex set Ω ⊆ 𝐵(0;𝑅) with a density 𝑝

satisfying 𝑝min ≤ 𝑝 ≤ 𝑝max for some 𝑝max ≥ 𝑝min > 0. For𝜓 ∈ R𝐽 , de�ne 𝜈𝜓 =
∫
𝜋𝑥𝜀 [𝜓 ] d𝜇 (𝑥) and

assume that 𝜈𝜓 ≥ 𝜆𝜈 for some 0 < 𝜆 ≤ 1. Then, we have for 𝜀 ∈ (0, 1)

𝐹
𝜇→𝜈
𝜀 (𝜓 ) −min

𝜓
𝐹
𝜇→𝜈
𝜀 ≥ 𝐶𝜆 · Var𝜈 (𝜓 −𝜓 𝜇→𝜈𝜀 ), (B.26)

where 𝐶 =

(
𝑒2𝑅

2 𝑝max
𝑝min
+ 𝜀

)−1
𝑝min
𝑝max

.

Proof. As 𝜇 and 𝜀 are �xed, we will simply write𝜓𝜈 instead of𝜓
𝜇→𝜈
𝜀 , and write similarly 𝐹𝜈 = 𝐹

𝜇→𝜈
𝜀 .

Recall the de�nition (B.3) of the shifted potential𝜓𝜈 (𝑦 𝑗 ) = 𝜓𝜈 (𝑦 𝑗 )−𝜀 log𝜈 𝑗 . According to Delalande

(2022, Theorem 3.2), the functional 𝐹𝜈 is minimized at the vector𝜓𝜈 , with

∀𝑣 ∈ R𝐽 , Var𝜈 (𝑣) ≤
(
𝑒2𝑅

2 𝑝max

𝑝min
+ 𝜀

)
𝑣>∇2𝐹𝜈 (𝜓𝜈 )𝑣 . (B.27)

For 𝑡 ∈ [0, 1], let𝜓𝑡 = 𝜓𝜈 + 𝑡 (𝜓 −𝜓𝜈 ) and let 𝜈𝑡 =
∫
𝜋𝑥𝜀 [𝜓𝑡 ] d𝜇 (𝑥). The potential𝜓𝑡 is the (shifted)

entropic Brenier potential between 𝜇 and 𝜈𝑡 , so that it minimizes the functional 𝐹𝜈𝑡 (see Section B.1).

Also, note that ∇2𝐹𝜈 does not depend on 𝜈 , so that

𝑣>∇2𝐹𝜈 (𝜓𝑡 )𝑣 = 𝑣>∇2𝐹𝜈𝑡 (𝜓𝑡 )𝑣 ≥
(
𝑒2𝑅

2 𝑝max

𝑝min
+ 𝜀

)−1
Var𝜈𝑡 (𝑣). (B.28)
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Let 𝑣 = 𝜓 −𝜓 𝜇→𝜈𝜀 . A Taylor expansion of 𝐹𝜈 gives

𝐹𝜈 (𝜓 ) − 𝐹𝜈 (𝜓𝜈 ) =
∫ 1

0
𝑣>∇2𝐹𝜈 (𝜓𝑡 )𝑣 d𝑡 ≥

(
𝑒2𝑅

2 𝑝max

𝑝min
+ 𝜀

)−1 ∫ 1

0
Var𝜈𝑡 (𝑣) d𝑡 . (B.29)

Lemma B.6. Write 𝜈𝑡 =
∑𝐽

𝑗=1 𝜈𝑡, 𝑗𝛿𝑦 𝑗 . Then, for all 𝑡 ∈ [0, 1] and 𝑗 ∈ [𝐽 ], we have 𝜈𝑡, 𝑗 ≥
𝑝min
𝑝max

𝜈1−𝑡0, 𝑗 𝜈
𝑡
1, 𝑗 .

This lemma is enough to conclude the proof. Indeed, 𝜈1 = 𝜈𝜓 ≥ 𝜆𝜈 , so that it implies that

Var𝜈𝑡 (𝑣) ≥
𝑝min
𝑝max

𝜆Var𝜈 (𝑣). �

Proof of Lemma B.6. According to Delalande (2022, Proof of Proposition 4.1),

Φ𝜀 (𝜓𝑡 ) (𝑡𝑥 + (1 − 𝑡)𝑦) ≤ 𝑡Φ𝜀 (𝜓 𝜇→𝜈𝜀 ) (𝑥) + (1 − 𝑡)Φ𝜀 (𝜓 ) (𝑦). (B.30)

Therefore, if we letℎ𝑡 (𝑥) = 𝑒 (〈𝑥,𝑦 𝑗 〉−𝜓𝑡 (𝑦 𝑗 )−Φ𝜀 (𝜓𝑡 ) (𝑥))/𝜀 , thenwe haveℎ𝑡 (𝑡𝑥+(1−𝑡)𝑦) ≥ ℎ0(𝑥)𝑡ℎ1(𝑦)1−𝑡 .

By the Prékopa-Leindler inequality,

𝜈𝑡, 𝑗 =

∫
ℎ𝑡 (𝑥) d𝜇 (𝑥) ≥ 𝑝min

∫
X
ℎ𝑡 (𝑥) d𝑥 ≥ 𝑝min

(∫
X
ℎ0(𝑥) d𝑥

)𝑡 (∫
X
ℎ1(𝑥) d𝑥

)1−𝑡
≥ 𝑝min

𝑝max
𝜈𝑡0, 𝑗𝜈

1−𝑡
1, 𝑗 .

�

Proof of Proposition 3.12. As in the previous proof, we drop the 𝜀 and 𝜇 dependency in our notation.

Write 𝜈𝑘 =
∑𝐽

𝑗=1 𝜈𝑘,𝑗𝛿𝑦 𝑗 for 𝑘 = 0, 1, and de�ne as before the shifted potentials𝜓𝜈𝑘 (𝑦 𝑗 ) = 𝜓𝜈1 (𝑦 𝑗 ) −

𝜀 log𝜈𝑘,𝑗 . Let 𝜃 > 0 be a parameter to �x. According to Proposition B.5, Lemma B.15, and using

the inequality 𝐹𝜈1 (𝜓𝜈1) ≤ 𝐹𝜈1 (𝜓𝜈0), we have

𝐶𝜆Var𝜈0 (𝜓𝜈1 −𝜓𝜈0) ≤ 𝐹𝜈0 (𝜓𝜈1) − 𝐹𝜈0 (𝜓𝜈0) ≤ 𝐹𝜈0 (𝜓𝜈1) − 𝐹𝜈1 (𝜓𝜈1) + 𝐹𝜈1 (𝜓𝜈0) − 𝐹𝜈0 (𝜓𝜈0)

=

∫
(𝜓𝜈1 −𝜓𝜈0) ( d𝜈0 − d𝜈1)

≤ 𝜃
2
Var𝜈0 (𝜓𝜈1 −𝜓𝜈0) +

1
2𝜃
𝜒2(𝜈1‖𝜈0).
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We pick 𝜃 = 𝐶𝜆 to conclude that

Var𝜈0 (𝜓𝜈1 −𝜓𝜈0) ≤
1
(𝐶𝜆)2 𝜒

2(𝜈1‖𝜈0). (B.31)

Therefore, using the inequality | log(𝑎/𝑏) | ≤ |𝑎 − 𝑏 |/min{𝑎, 𝑏} for 𝑎, 𝑏 > 0,

Var𝜈0 (𝜓1 −𝜓0) ≤ 2Var𝜈0 (𝜓1 −𝜓0) + 2
𝐽∑︁
𝑗=1
𝜈0, 𝑗

(
log

(
𝜈1, 𝑗

𝜈0, 𝑗

))2
≤ 2
(𝐶𝜆)2 𝜒

2(𝜈1‖𝜈0) + 2
𝐽∑︁
𝑗=1
𝜈0, 𝑗

(
𝜈1, 𝑗 − 𝜈0, 𝑗

min{𝜈0, 𝑗 , 𝜈1, 𝑗 }

)2
≤ 2
(𝐶𝜆)2 𝜒

2(𝜈1‖𝜈0) +
2
𝜆2

𝐽∑︁
𝑗=1

1
𝜈0, 𝑗
(𝜈1, 𝑗 − 𝜈0, 𝑗 )2 ≤

(
2
(𝐶𝜆)2 +

2
𝜆2

)
𝜒2(𝜈1‖𝜈0).

�

B.5 Control of the fluctuations in the one-sample case

Lemma B.7 (Sample complexity in the one-sample case). Assume that 𝑃 satisfy (S1) and that 𝑄

satisfy (S2). Then, it holds that E‖𝑇 𝑃→𝑄𝑛
𝜀 −𝑇𝜀 ‖2𝐿2 (𝑃) . 𝜀

−1𝑛−1.

Proof. To ease notation, we write 𝑇𝜀,𝑛 = 𝑇
𝑃→𝑄𝑛
𝜀 and𝜓𝜀,𝑛 = 𝜓

𝑃→𝑄𝑛
𝜀 . As explained in Section 3.2, the

stability result Proposition 3.10 implies that

E‖𝑇𝜀,𝑛 −𝑇𝜀 ‖2𝐿2 (𝑃) ≤
8𝑅2

𝜀

(E[Var𝑄 (𝜓𝜀,𝑛 −𝜓𝜀)]
2

+ E[𝜒
2(𝑄𝑛‖𝑄)]
2

)
+ 8𝑅2E[𝜒2(𝑄𝑛‖𝑄)] . (B.32)

Write 𝑄 =
∑𝐽

𝑗=1 𝑞 𝑗𝛿𝑦 𝑗 and 𝑄𝑛 =
∑𝐽

𝑗=1 𝑞 𝑗𝛿𝑦 𝑗 , and introduce the event 𝐸 = {∀𝑗 ∈ [𝐽 ], 𝑞 𝑗 ≥ 𝑞 𝑗/2}. If

𝐸 is satis�ed, we have 𝑄𝑛 ≥ 𝑄/2, so that Proposition 3.12 yields

Var𝑄 (𝜓𝜀,𝑛 −𝜓𝜀) ≤ 𝐶𝜒2(𝑄𝑛‖𝑄). (B.33)
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If 𝐸 is not satis�ed, we use the fact that the entropic potentials have a bounded amplitude (see

Lemma B.1), to obtain that

Var𝑄 (𝜓𝜀,𝑛 −𝜓𝜀) ≤ 𝐶′. (B.34)

Lemma B.8. Let 𝐸 be the event that 𝑄𝑛 ≥ 𝑄/2. Then P(𝐸𝑐) ≤ 𝐽𝑒−𝑐𝑞min𝑛 for some 𝑐 > 0.

Proof. By Vershynin (2018, Exercise 2.3.2), we have P(𝐸𝑐) ≤ ∑𝐽

𝑗=1 P(𝑞 𝑗 < 𝑞 𝑗/2) ≤ 𝐽𝑒−𝑐𝑞min𝑛 for

some 𝑐 > 0. �

We obtain

E‖𝑇𝜀,𝑛 −𝑇𝜀 ‖2𝐿2 (𝑃) .
𝑅2

𝜀
E[𝜒2(𝑄𝑛‖𝑄)] +

𝑅2

𝜀
𝐽𝑒−𝑐𝑞min𝑛 . 𝜀−1𝑛−1 (B.35)

by Lemma B.16. �

B.6 Control of the fluctuations in the two-sample case

The goal of this section is to prove Theorem 3.8. We will actually prove a more general result,

and show that for any discrete measure 𝜈 =
∑𝐽

𝑗=1 𝜈 𝑗𝛿𝑦 𝑗 supported on {𝑦1, . . . , 𝑦𝐽 } with 𝜈 𝑗 ≥ 𝜈min > 0

for all 𝑗 ∈ [𝐽 ], we have for log(1/𝜀) . 𝑛/log(𝑛),

E‖𝑇 𝑃𝑛→𝜈𝜀 −𝑇 𝑃→𝜈𝜀 ‖2
𝐿2 (𝑃) . 𝜀

−1𝑛−1. (B.36)

Theorem 3.8 follows from (B.36) by conditioning on 𝑄𝑛 . Let 𝐸 be the event that 𝑄𝑛 ≥ 𝑄/2. Then,

by Lemma B.8,

E‖𝑇𝜀 −𝑇 𝑃→𝑄𝑛
𝜀 ‖2

𝐿2 (𝑃) ≤ E
[
E[‖𝑇𝜀 −𝑇 𝑃→𝑄𝑛

𝜀 ‖2
𝐿2 (𝑃) |𝑄𝑛]1{𝐸}

]
+ 𝑅2P(𝐸𝑐)

≤ 𝐶𝜀−1𝑛−1 + 𝑅2𝐽𝑒−𝑐𝑞min𝑛 . 𝜀−1𝑛−1.

We obtain Theorem 3.8 by combining this bound with Lemma B.7.
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To prove (B.36), we �rst use Corollary B.4 which yields

E‖𝑇 𝑃𝑛→𝜈𝜀 −𝑇 𝑃→𝜈𝜀 ‖2
𝐿2 (𝑃) ≤ 8𝑅2𝜀−1E

∫
(𝜑𝑃𝑛→𝜈𝜀 − 𝜑𝑃→𝜈𝜀 ) d(𝑃𝑛 − 𝑃)

= 8𝑅2𝜀−1E
∫
(Φ𝜀 (𝜓𝑃𝑛→𝜈𝜀 ) − Φ𝜀 (𝜓𝑃→𝜈𝜀 )) d(𝑃𝑛 − 𝑃),

(B.37)

where we recall that for a potential𝜓 , the shifted potential𝜓 is given by𝜓 𝑗 = 𝜓 𝑗 − 𝜀 log𝜈 𝑗 . The

remainder of the proof consists in bounding this integral by using localization arguments and

standard bounds on suprema of empirical processes. Our �rst goal is to show that the potential

𝜓
𝑃𝑛→𝜈
𝜀 is close to to the potential 𝜓𝑃→𝜈𝜀 for the ∞-norm. It will be convenient to work with the

“𝐿∞-variance”

Var∞(𝜓 ) = inf
𝑐∈R

max
𝑗∈[𝐽 ]
|𝜓 (𝑦 𝑗 ) − 𝑐 |2 =

(
max𝜓 −min𝜓

2

)2
. (B.38)

As the measure 𝜈 is lower bounded, it holds that

Var𝜈 (𝜓 ) ≥ 𝜈minVar∞(𝜓 ). (B.39)

Lemma B.9 (Supremum of 𝜀-Legendre transforms). Let𝜓0 be a �xed potential and let 𝜏 > 0. Then,

for all 𝑗 ∈ [𝐽 ],

E

[
sup

Var∞ (𝜓−𝜓0)≤𝜏2

����∫ (𝜋𝑥𝜀 (𝜓 ) 𝑗 − 𝜋𝑥𝜀 (𝜓0) 𝑗 ) d(𝑃 − 𝑃𝑛) (𝑥)
����] ≤ 𝐶√︂

𝐽 max{log(𝜏/𝜀), 1}
𝑛

(B.40)

E

[
sup

Var∞ (𝜓−𝜓0)≤𝜏2

����∫ (Φ𝜀 (𝜓 ) (𝑥) − Φ𝜀 (𝜓0)) (𝑥) d(𝑃 − 𝑃𝑛) (𝑥)
����] ≤ 𝐶𝜏√︂ 𝐽

𝑛
(B.41)

for some absolute constant 𝐶 .

Proof. For a metric space (𝐴,𝑑) and 𝑢 > 0, we let 𝑁 (𝑢,𝐴,𝑑) be the covering number of 𝐴 at

scale 𝑢, that is the smallest number of balls of radius 𝑢 needed to cover 𝐴. Let 𝐵 be the 𝐿∞-ball

of radius 𝜏 in R𝐽 , centered at 𝜓0, and let ‖ · ‖∞ denote the ∞-norm. For 0 < 𝑢 ≤ 𝜏 , we have

log𝑁 (𝑢, 𝐵, ‖ · ‖∞) ≤ 𝐽 log(𝜏/𝑢).
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We start with the second inequality. Note that𝜓 ↦→ Φ𝜀 (𝜓 ) is 1-Lipschitz continuous, and that

the functionalΦ𝜀 satis�esΦ𝜀 (𝜓+𝑐) = Φ𝜀 (𝜓 )+𝑐 for all 𝑐 ∈ R. Then the set {𝜓 : Var∞(𝜓−𝜓0) ≤ 𝜏2} is

equal to the set {𝜓+𝑐 : 𝜓 ∈ 𝐵, 𝑐 ∈ R}. As
∫
𝑐 d(𝑃−𝑃𝑛) = 0, we can therefore restrict the supremum

to vectors𝜓 ∈ 𝐵. Furthermore, an envelope function of the class {Φ𝜀 (𝜓 ) − Φ𝜀 (𝜓0) : 𝜓 ∈ 𝐵} is the

constant function equal to 𝜏 . Therefore, by Lemma B.17, we obtain

E

[
sup

‖𝜓−𝜓0‖∞≤𝜏

����∫ (Φ𝜀 (𝜓 ) − Φ𝜀 (𝜓0)) ( d𝑃 − d𝑃𝑛)
����]

≤ 𝑐0√
𝑛

∫ 𝑐1𝜏

0

√︁
𝐽 log 2𝑁 (𝑢, {Φ𝜀 (𝜓 ) : 𝜓 ∈ 𝐵}, ‖ · ‖∞) d𝑢 ≤

√︂
𝑐3𝐽𝜏

𝑛
.

We repeat the same argument for the �rst inequality. The functional 𝜋𝑥𝜀 is invariant by

translation: 𝜋𝑥𝜀 (𝜓 + 𝑐) = 𝜋𝑥𝜀 (𝜓 ) for all 𝑐 ∈ R. This implies that

sup
Var∞ (𝜓−𝜓0)≤𝜏2

����∫ (Φ𝜀 (𝜓 ) (𝑥) − Φ𝜀 (𝜓0)) (𝑥) d(𝑃 − 𝑃𝑛) (𝑥)
���� =

sup
‖𝜓−𝜓0‖∞≤𝜏

����∫ (Φ𝜀 (𝜓 ) (𝑥) − Φ𝜀 (𝜓0)) (𝑥) d(𝑃 − 𝑃𝑛) (𝑥)
���� .

As the function 𝜓 ↦→ 𝜋𝑥𝜀 (𝜓 ) 𝑗 is 𝜀−1-Lipschitz continuous for every 𝑥 ∈ R𝑑 , we have for

0 < 𝑢 ≤ 𝜏/𝜀,

log𝑁 (𝑢, {𝑥 ↦→ 𝜋𝑥𝜀 (𝜓 ) 𝑗 : 𝜓 ∈ 𝐵}, ‖ · ‖∞) ≤ 𝐽 log(𝜏/(𝑢𝜀)) .

Remarking furthermore that 0 ≤ 𝜋𝑥𝜀 (𝜓 ) 𝑗 ≤ 1 (so that the class of functions {𝑥 ↦→ 𝜋𝑥𝜀 (𝜓 ) 𝑗 : 𝜓 ∈ 𝐵}

admits the constant function 1 as an envelope function), we obtain the following control using
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Lemma B.17:

E

[
sup

‖𝜓−𝜓0‖∞≤𝜏

����∫ (𝜋𝑥𝜀 (𝜓 ) 𝑗 − 𝜋𝑥𝜀 (𝜓0) 𝑗 ) ( d𝑃 − d𝑃𝑛) (𝑥)
����]

≤ 𝑐0√
𝑛

∫ 𝑐1

0

√︃
𝐽 log 2𝑁 (𝑢, {𝑥 ↦→ 𝜋𝑥𝜀 (𝜓 ) 𝑗 : 𝜓 ∈ 𝐵}, ‖ · ‖∞) d𝑢

≤
√︂
𝑐2𝐽 max{log(𝜏/𝜀), 1}

𝑛
,

where 𝑐0, 𝑐1 and 𝑐2 are absolute constants, and the last line follows from arguing whether 𝑐1 < 𝜏/𝜀

or not. �

Proposition B.10. Assume that 𝑃 satis�es (S1) and let 𝜈 =
∑𝐽

𝑗=1 𝜈 𝑗𝛿𝑦 𝑗 be a measure supported on

{𝑦1, . . . , 𝑦𝐽 } ⊂ 𝐵(0;𝑅), with 𝜈 𝑗 ≥ 𝑞min for all 𝑗 ∈ [𝐽 ]. Then, for all 0 < 𝜀 ≤ 1 with log(1/𝜀) .

𝑛/log(𝑛), it holds that

EVar∞(𝜓𝑃𝑛→𝜈𝜀 −𝜓𝑃→𝜈𝜀 ) . 𝑛−1. (B.42)

Proof. To alleviate notation, we will write 𝜓𝑛 = 𝜓
𝑃𝑛→𝜈
𝜀 and 𝜓0 = 𝜓𝑃→𝜈𝜀 . Similarly, we write

𝐹𝑛 = 𝐹
𝑃𝑛→𝜈
𝜀 and 𝐹0 = 𝐹𝑃→𝜈𝜀 . Let 𝜈𝑛 =

∫
𝜋𝑥𝜀 (𝜓

𝑃𝑛→𝜈
𝜀 ) d𝑃 (𝑥). Under the event 𝐸 = {𝜈𝑛 ≥ 𝜈/2}, we

have according to Proposition B.5 and the fact that𝜓𝑛 minimizes 𝐹𝑛 ,

𝐶𝜈minVar∞(𝜓𝑛 −𝜓0) ≤ 𝐶Var𝜈 (𝜓𝑛 −𝜓0)

≤ 𝐹0(𝜓𝑛) − 𝐹0(𝜓0)

≤ 𝐹0(𝜓𝑛) − 𝐹𝑛 (𝜓𝑛) + 𝐹𝑛 (𝜓0) − 𝐹0(𝜓0)

=

∫
(Φ𝜀 (𝜓𝑛) − Φ𝜀 (𝜓0)) d(𝑃 − 𝑃𝑛)

(B.43)

Let us bound P(𝐸𝑐). As𝜓𝑛 is the minimum of 𝐹𝑛 , we have 𝜈 =
∫
𝜋𝑥𝜀 (𝜓𝑛) 𝑗 d𝑃𝑛 (𝑥) (see Section B.1).

Therefore, we may write 𝜈𝑛,𝑗 =
∫
𝜋𝑥𝜀 (𝜓𝑛) 𝑗 d𝑃𝑛 (𝑥) +

∫
𝜋𝑥𝜀 (𝜓𝑛) 𝑗 d(𝑃 − 𝑃𝑛) (𝑥) = 𝜈 𝑗 + 𝑍 𝑗 , where

𝑍 𝑗 =

∫
𝜋𝑥𝜀 (𝜓𝑛) 𝑗 d(𝑃 − 𝑃𝑛) (𝑥) =

∫
(𝜋𝑥𝜀 (𝜓𝑛) 𝑗 − 𝜋𝑥𝜀 (𝜓0) 𝑗 ) d(𝑃 − 𝑃𝑛) (𝑥).
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Note that Var∞(𝜓𝑛 −𝜓0) . 𝑅2 (see Lemma B.1), so that by Lemma B.9 and Lemma B.17,

P(𝐸𝑐) ≤
𝐽∑︁
𝑗=1
P( |𝑍 𝑗 | > 𝜈 𝑗/2) ≤ 𝐽 exp

(
−𝑐

√
𝑛𝑞min

(
√︁
𝐽 log(1/𝜀) + log𝑛

)
. 𝑛−1, (B.44)

under the condition log(1/𝜀) . 𝑛/log(𝑛).

For 𝑘 ≥ 0, let 𝑎𝑘 = 2𝑘/
√
𝑛 and �x some 𝑝 > 2. Let

𝐵𝑎 = sup
Var∞ (𝜓−𝜓0)≤𝑎2

����∫ (Φ𝜀 (𝜓 ) − Φ𝜀 (𝜓0)) d(𝑃 − 𝑃𝑛)
����

. Assume that 𝐸 is satis�ed and that Var∞(𝜓0 −𝜓𝑛) ∈ [𝑎2, 𝑏2]. Then, according to (B.43), it holds

that 𝐵𝑏 ≥ 𝑐𝑎2. Using Markov’s inequality, Lemma B.9 and Lemma B.17, we bound

EVar∞(𝜓𝑛 −𝜓0) ≤ 𝑎20 +
∑︁
𝑘≥0
P(Var∞(𝜓𝑛 −𝜓0) ∈ [𝑎2𝑘 , 𝑎

2
𝑘+1] and 𝐸)𝑎

2
𝑘+1 +𝐶P(𝐸

𝑐)

. 𝑛−1 +
∑︁
𝑘≥0
P

(
𝐵𝑎𝑘+1 ≥ 𝑐𝑎2𝑘

)
𝑎2
𝑘+1 . 𝑛

−1 +
∑︁
𝑘≥0

E[𝐵𝑝𝑎𝑘+1]
𝑎
2𝑝
𝑘

𝑎2
𝑘+1

. 𝑛−1 +
∑︁
𝑘≥0

(2𝑘/𝑛)𝑝

(4𝑘/𝑛)𝑝
4𝑘+1

𝑛
. 𝑛−1 +

∑︁
𝑘≥0

22𝑘−𝑝𝑘

𝑛
. 𝑛−1.

�

Proposition B.11. Under the same assumptions than Proposition B.10, it holds that

E‖𝑇 𝑃𝑛→𝜈𝜀 −𝑇 𝑃→𝜈𝜀 ‖2∞ . 𝜀−1𝑛−1. (B.45)

Proof. Let 𝑍 = Var∞(𝜓𝑛 −𝜓0). Let once again 𝑎𝑘 = 2𝑘/
√
𝑛 for 𝑘 ≥ 1, with 𝑎0 = 0. Fix some 𝑝 > 2,

with 𝑞 =
𝑝

𝑝−1 . For 𝑎 > 0, let 𝐷𝑎 = supVar∞ (𝜓−𝜓0)≤𝑎2
���∫ (Φ𝜀 (𝜓 ) − Φ𝜀 (𝜓0)) d(𝑃 − 𝑃𝑛)

���. By Hölder
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inequality and Markov inequality, we obtain,

E

∫
(Φ𝜀 (𝜓𝑛) − Φ𝜀 (𝜓0)) d(𝑃 − 𝑃𝑛)

≤
∑︁
𝑘≥0
E

1{𝑍 ∈ [𝑎2𝑘 , 𝑎2𝑘+1]} sup
Var∞ (𝜓−𝜓0)≤𝑎2𝑘+1

∫
(Φ𝜀 (𝜓 ) − Φ𝜀 (𝜓0)) d(𝑃 − 𝑃𝑛)


≤ E[𝐷𝑎1] +

∑︁
𝑘≥1

(
P(𝑍 ≥ 𝑎2

𝑘
)
)1/𝑞
E

[
𝐷
𝑝
𝑎𝑘+1

]1/𝑝
. 𝑛−1 +

∑︁
𝑘≥0

(
E[𝑍 ]
𝑎2
𝑘

)1/𝑞
2𝑘

𝑛
.

∑︁
𝑘≥0

2𝑘 (1−2/𝑞)

𝑛
. 𝑛−1,

where we use Proposition B.10, Lemma B.9 and Lemma B.17 at the last line. (B.37) then gives the

conclusion. �

B.7 A lower bound for the performance of the 1NN

estimator

In this section, we prove Proposition 3.14. We let 𝑃 be the Lebesgue measure on Ω = [0, 1]𝑑 ,

and let 𝑦0 = (0, 1/2, . . . , 1/2) and 𝑦1 = (1, 1/2, . . . , 1/2). We denote by 𝑃𝑛 an empirical measure

consisting of i.i.d. samples from 𝑃 . As in Section B.6, we work in a general setting of a generic

discrete target measure 𝜈 , which may either be �xed or may be a random measure independent

of 𝑃𝑛. We let 𝜈 =
∑
𝑗=0,1 𝜈 𝑗𝛿𝑦 𝑗 for 𝜈0, 𝜈1 ≥ 1

4 ; this latter condition will hold with overwhelming

probability if 𝜈 is an empirical measure 𝑄𝑛 corresponding to 𝑛 i.i.d. samples from 𝑄 = 1
2𝛿𝑦0 +

1
2𝛿𝑦1 .

Following Manole et al. (2024a), we de�ne the one-nearest neighbor estimator𝑇1NN in this general

context by

𝑇1NN(𝑥) =
𝑛∑︁
𝑖=1

∑︁
𝑗=0,1

1𝑉𝑖 (𝑥) (𝑛𝜋 (𝑋𝑖, 𝑦 𝑗 )) ,

where 𝜋 is the empirical optimal coupling between 𝑃𝑛 and 𝜈 .
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We �rst examine the structure of the Brenier map𝑇0 = ∇𝜑0. The considerations in Section 3.1.3

imply that

𝑇0(𝑥) =


𝑦0 〈𝑒1, 𝑥〉 ≤ 𝜈0

𝑦1 〈𝑒1, 𝑥〉 > 𝜈0 ,

where 𝑒1 is the �rst elementary basis vector. The potential 𝜑0 is not di�erentiable on the separating

hyperplane 〈𝑒1, 𝑥〉 = 𝜈0, which has measure 0 under 𝑃 , but we may arbitrarily assign points on

this hyperplane to 𝑦0.

Similar arguments imply that the empirical transport plan 𝜋 between 𝑃𝑛 and 𝜈 has the following

property: there exists a (random) threshold 𝜏 ∈ (0, 1) such that

𝜋 (𝑥,𝑦0) =


1 〈𝑒1, 𝑥〉 < 𝜏

0 〈𝑒1, 𝑥〉 > 𝜏 .

The set 〈𝑒1, 𝑥〉 = 𝜏 may not have measure 0 under 𝑃𝑛 , and 𝜋 (𝑥,𝑦0) may take values strictly between

0 and 1 on this set.

The following lemma shows that 𝜏 is close to 𝜈0 with high probability.

Lemma B.12. For any 𝑡 ≥ 0,

(𝜏 ≥ 𝜈0 + 𝑡) ≤ 𝑒−2𝑛𝑡
2
.

Proof. If 𝜏 ≥ 𝜈0 + 𝑡 , this implies that 𝑃𝑛 ({𝑥 : 〈𝑒1, 𝑥〉 < 𝜈0 + 𝑡}) ≤ 𝜈0. On the other hand,

𝑛𝑃𝑛 ({𝑥 : 〈𝑒1, 𝑥〉 < 𝜈0 + 𝑡} is a Bin(𝑛, 𝜈0 + 𝑡) random variable. The result then follows from

Hoe�ding’s inequality (Boucheron et al., 2013, Theorem 2.8). �

Let us write 𝐻 for the halfspace {𝑥 : 〈𝑒1, 𝑥〉 ≤ 𝜈0}, and 𝐻̂ for the halfspace {𝑥 : 〈𝑒1, 𝑥〉 ≤ 𝜏}.

Let 𝑥 be any point in Ω such that 𝑥 ∈ 𝐻 . We are interested in the event that there exists an

element 𝑋𝑖 ∈ {𝑋1, . . . , 𝑋𝑛} such that a) 𝑥 ∈ 𝑉𝑖 and b) 𝑋𝑖 ∈ 𝐻̂𝑐 . Call this event E(𝑥). On this event,

𝑇1NN(𝑥) = 𝑦1 and 𝑇0(𝑥) = 𝑦0, so ‖𝑇1NN(𝑥) −𝑇0(𝑥)‖2 = 1.
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We therefore obtain

E‖𝑇1NN −𝑇0‖2𝐿2 (𝑃) = E
∫
‖𝑇1NN(𝑥) −𝑇0(𝑥)‖2 d𝑃 (𝑥)

≥ E
∫
𝐻

‖𝑇1NN(𝑥) −𝑇0(𝑥)‖21{E(𝑥)} d𝑃 (𝑥)

& E

∫
𝐻

1{E(𝑥)} d𝑃 (𝑥)

=

∫
𝐻

(E(𝑥)) d𝑃 (𝑥) ,

where the �nal equality follows from the Fubini–Tonelli theorem.

We now lower bound the probability of E(𝑥). Let us writeA𝑡 for the event that 𝜏 < 𝜈0 + 𝑡 , for

𝑡 > 0 to be speci�ed, and write 𝐻𝑡 for the halfspace {𝑥 : 〈𝑒1, 𝑥〉 ≤ 𝜈0 + 𝑡}. Given any 𝑥 ∈ 𝐻 , write

Δ = 𝑑 (𝑥, 𝐻𝑐
𝑡 ), and let 𝐵 be a ball of radius 2Δ around 𝑥 , intersected with Ω.

Denote by F (𝑥) the event that there are no samples in 𝑉 = 𝐵 ∩ 𝐻𝑡 but there is at least one

point in 𝐵 ∩ 𝐻𝑐
𝑡 . Then F (𝑥) ∩ A𝑡 ⊆ E(𝑥), since on F (𝑥) the nearest neighbor to 𝑥 must be a

sample in 𝐻𝑐
𝑡 , and on A𝑡 we have 𝐻𝑐

𝑡 ⊆ 𝐻̂𝑐 .

Lemma B.13.

(F (𝑥) ∩ A𝑡 ) ≥ (1 − vol(𝑉 ))𝑛 − (1 − vol(𝐵))𝑛 − 𝑒−2𝑛𝑡
2
.

Proof. We �rst compute (F (𝑥)). The probability that there are no samples in 𝑉 is (1 − vol(𝑉 ))𝑛 ,

and this event may be written as the disjoint union of F (𝑥) and the event that all of 𝐵 is empty.

The latter event has probability (1 − vol(𝐵))𝑛 . Therefore

(1 − vol(𝑉 ))𝑛 = (F (𝑥)) + (1 − vol(𝐵))𝑛 .

Since
(
A𝑐
𝑡

)
≤ 𝑒−2𝑛𝑡2 , the claim follows. �

We need the following lemma.
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Lemma B.14. Assume that Δ > 0 and that 𝑑 (𝑥, 𝜕Ω) ≥ 2Δ. There exist positive constants 𝑐𝑑,0 < 1

and 𝑐𝑑,1 such that

vol(𝑉 ) ≤ 𝑐𝑑,0 vol(𝐵) (B.46)

and

vol(𝐵) ≥ 𝑐𝑑,1Δ𝑑 (B.47)

Proof. This is immediate from a scaling argument: since 𝑑 (𝑥, 𝜕Ω) ≥ 2Δ, the set 𝐵 is a Euclidean

ball of radius 2Δ, and the set𝑉 is a Euclidean ball of radius 2Δ minus a spherical dome cut o� by a

hyperplane at distance Δ from the center. When Δ = 1, it is clear that the claimed inequalities

hold, and the general case is obtained by dilation. �

We assume in what follows that 𝑑 (𝑥, 𝜕Ω) ≥ 2Δ. The inequalities (1 + 𝑥)𝑛 ≥ 1 + 𝑛𝑥 and

𝑒𝑥 ≤ 1 + 𝑥 + 𝑥2, valid for all 𝑥 ∈ [−1, 0] and 𝑛 ≥ 1, imply that for any 𝛿 > 0 there exists a constant

𝑐𝑑,𝛿 > 0 such that if Δ ≤ 𝑐𝑑,𝛿𝑛−1/𝑑 , then we will have

(1 − vol(𝑉 ))𝑛 ≥ 1 − 𝑛𝑐𝑑,0 vol(𝐵) (B.48)

(1 − vol(𝐵))𝑛 ≤ 𝑒−𝑛 vol(𝐵) ≤ 1 − (1 − 𝛿)𝑛 vol(𝐵) (B.49)

Choosing 𝛿 su�ciently small, we obtain the existence of a small 𝑐𝑑,3 > 0 such that if Δ ≤ 𝑐𝑑,3𝑛−1/𝑑 ,

then

(1 − vol(𝑉 ))𝑛 − (1 − vol(𝐵))𝑛 ≥ 𝐶𝑑𝑛Δ𝑑 .

De�ne Δ𝑛 = 𝑐𝑑,4𝑛−1/𝑑 . Putting it all together, consider the set

𝑆 = {𝑥 ∈ 𝐻 ∩ Ω : Δ𝑛/2 ≤ 𝑑 (𝑥, 𝐻𝑐
𝑡 ) ≤ Δ𝑛, 𝑑 (𝑥, 𝜕Ω) ≥ 2Δ𝑛} .

The above considerations imply that (E(𝑥)) ≥ 𝐶𝑑𝑛(Δ𝑛/2)𝑑 − 𝑒−2𝑛𝑡
2 ≥ 𝐶′

𝑑
− 𝑒−2𝑛𝑡2 for all 𝑥 ∈ 𝑆 .
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Choosing 𝑡 to be a su�ciently large constant multiple of 𝑛−1/2, we obtain

∫
𝐻

(E(𝑥)) d𝑃 (𝑥) ≥
∫
𝑆

(E(𝑥)) d𝑃 (𝑥) &𝑑 vol(𝑆) .

Since 𝑡 � 𝑛−1/2, we will have that 𝑡 � Δ𝑛 for 𝑛 su�ciently large (as 𝑑 ≥ 3). Therefore, for 𝑛 large

enough, the set 𝑆 contains the set

𝑆′ = {𝑥 ∈ Ω : 𝜈0 − Δ𝑛 + 𝑡 ≤ 〈𝑒1, 𝑥〉 ≤ 𝜈0 − Δ𝑛/2 + 𝑡, 2Δ𝑛 ≤ 〈𝑒 𝑗 , 𝑥〉 ≤ 1 − 2Δ𝑛 ∀𝑗 = 2, . . . , 𝑑} .

Since vol(𝑆′) &𝑑 Δ𝑛 & 𝑛
−1/𝑑 , the claim follows.

B.8 Auxiliary lemmas

Lemma B.15 (Young’s inequality). Let 𝑄0, 𝑄1 be probability measures with 𝑄1 � 𝑄0 and let 𝑓 be a

function. Then, for 𝜃 > 0,

∫
𝑓 ( d𝑄0 − d𝑄1) ≤

𝜃Var𝑄0 (𝑓 )
2

+ 𝜒
2(𝑄1‖𝑄0)

2𝜃
. (B.50)

Proof. Recall Young’s inequality: for 𝑎, 𝑏 ∈ R, 𝑎𝑏 ≤ 𝑎2

2 +
𝑏2

2 . As the left-hand side is invariant

by translation, we may assume without loss of generality that
∫
𝑓 d𝑄0 = 0, so that Var𝑄0 (𝑓 ) =∫

𝑓 2 d𝑄0. We write

∫
𝑓 ( d𝑄0 − d𝑄1) =

∫
(
√
𝜃 𝑓 )

(
1 − d𝑄1

d𝑄0

)
√
𝜃

d𝑄0 ≤
𝜃

2

∫
𝑓 2 d𝑄0 +

1
2𝜃

∫ (
1 − d𝑄1

d𝑄0

)2
d𝑄0

=
𝜃Var𝑄0 (𝑓 )

2
+ 𝜒

2(𝑄1‖𝑄0)
2𝜃

.

�

Lemma B.16 (Expectation of empirical 𝜒2-divergence). Let 𝑄 =
∑𝐽

𝑗=1 𝑞 𝑗𝛿𝑦 𝑗 be a discrete measure
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supported on 𝐽 atoms, and let 𝑄𝑛 denote its empirical measure, consisting of 𝑛 i.i.d. samples. Then,

E[𝜒2(𝑄𝑛‖𝑄)] =
𝐽 − 1
𝑛

. (B.51)

Proof. We can write 𝑄𝑛 =
∑𝐽

𝑗=1 𝑞 𝑗𝛿𝑦 𝑗 , where 𝑞 𝑗 is a binomial random variable with parameters 𝑛

and 𝑞 𝑗 . We obtain

𝜒2(𝑄𝑛‖𝑄) =
𝐽∑︁
𝑗=1

(𝑞 𝑗 − 𝑞 𝑗 )2

𝑞 𝑗
.

Taking expectations, our bound reads

E[𝜒2(𝑄𝑛‖𝑄)] =
𝐽∑︁
𝑗=1

Var(𝑞 𝑗 )
𝑞 𝑗

=

𝐽∑︁
𝑗=1

𝑞 𝑗 (1 − 𝑞 𝑗 )
𝑛𝑞 𝑗

=
𝐽 − 1
𝑛

.

�

Lemma B.17 (Control of suprema of empirical processes). Let 𝑋1, . . . , 𝑋𝑛 be an i.i.d. sample from

some probability measure 𝑃 on R𝑑 , with 𝑃𝑛 the associated empirical measure. Consider F a class of

functions R𝑑 → R with ‖ 𝑓 ‖∞ ≤ 𝐴 for all 𝑓 ∈ F . For 𝑢 > 0, let 𝑁 (𝑢) be the 𝑢-covering numbers of

F , that is the minimal number of balls of radius 𝑢 for the ‖ · ‖∞-metric required to cover F . Then,

E

[
sup
𝑓 ∈F

����∫ 𝑓 d(𝑃𝑛 − 𝑃)
����] ≤ 𝐶0√

𝑛

∫ 𝐶1𝐴

0

√︁
log 2𝑁 (𝑢) d𝑢 =:

𝐼
√
𝑛

(B.52)

for two positive absolute constants 𝐶0 and 𝐶1. Furthermore, for all 𝑡 > 0,

P

(
sup
𝑓 ∈F

����∫ 𝑓 d(𝑃𝑛 − 𝑃)
���� > 𝑡 ) ≤ exp

(
− 𝐶2

√
𝑛𝑡

𝐼 +𝐴 log𝑛

)
, (B.53)
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for some positive absolute constant 𝐶2. Eventually, for all 𝑝 ≥ 2,

E

[
sup
𝑓 ∈F

����∫ 𝑓 d(𝑃𝑛 − 𝑃)
����𝑝 ]1/𝑝 ≤ 𝐶𝑝 𝐼 +𝐴√𝑛 . (B.54)

Proof. See Vaart and Wellner (1996, Theorem 2.14.2 and Theorem 2.14.5). �
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C | Supplement to Chapter 4

C.1 Connecting the two dynamic formulations

In this section, we reconcile (at a formal level) two versions of the dynamic formulation for

entropic optimal transport. We will start with (4.10) and show that this is equivalent to (4.9) by a

reparameterization.

We begin by recognizing thatΔp𝑡 = ∇·(p𝑡∇ log p𝑡 ), which allows us to write the Fokker–Planck

equation as

𝜕𝑡p𝑡 + ∇ · ((𝑣𝑡 − 𝜀
2∇ log p𝑡 )p𝑡 ) = 0 , (C.1)

Inserting 𝑏𝑡 B 𝑣𝑡 − 𝜀
2∇ log p𝑡 into (4.10), we expand the square and arrive at

inf
(p𝑡 ,𝑏𝑡 )

∫ 1

0

∫ (1
2
‖𝑏𝑡 (𝑥)‖2 +

𝜀2

8
‖∇ log p𝑡 (𝑥)‖2 +

𝜀

2
𝑏>𝑡 ∇ log p𝑡

)
p𝑡 (𝑥) d𝑥 d𝑡 .

Up to the cross-term, this aligns with (4.9); it remains to eliminate the cross term. Using integration-

by-parts and (C.1), we obtain

∫ 1

0

∫
(𝑏𝑡p𝑡 )>∇ log p𝑡 d𝑥 d𝑡 = −

∫ 1

0

∫
∇ · (𝑏𝑡p𝑡 ) log p𝑡 d𝑥 d𝑡 =

∫ 1

0

∫
(𝜕𝑡p𝑡 ) log p𝑡 d𝑥 d𝑡 .
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Though, we have (by product rule) the equivalence

𝜕𝑡 (p𝑡 log p𝑡 ) − 𝜕𝑡p𝑡 = (𝜕𝑡p𝑡 ) log p𝑡 .

Exchanging partial derivatives under the integral, this yields the following simpli�cation

∫ 1

0

∫
(𝜕𝑡p𝑡 ) log p𝑡 d𝑥 d𝑡 =

∫ 1

0

∫
𝜕𝑡 (p𝑡 log p𝑡 ) d𝑥 d𝑡 −

∫ 1

0

∫
𝜕𝑡p𝑡 d𝑥 d𝑡

=

∫ 1

0
𝜕𝑡

∫
p𝑡 log p𝑡 d𝑥 d𝑡 −

∫ 1

0
𝜕𝑡

∫
p𝑡 d𝑥 d𝑡

=

∫ 1

0
𝜕𝑡H(p𝑡 ) d𝑡 + 0

= H(p1) − H (p0) ,

where p1 = 𝜈 and p0 = 𝜇. We see that (4.10) is equivalent to

𝜀

2
(H (𝜈) − H (𝜇)) + inf

(p𝑡 ,𝑏𝑡 )

∫ 1

0

∫ (1
2
‖𝑏𝑡 (𝑥)‖2 +

𝜀2

8
‖∇ log p𝑡 (𝑥)‖2

)
p𝑡 (𝑥) d𝑥 d𝑡 .

C.2 Connecting Markov processes and entropic Brenier

maps

Here we prove Proposition 4.1. To continue, we require the following lemma.

Lemma C.1. Fix any 𝑡 ∈ [0, 1]. Under M, the random variables 𝑋0 and 𝑋1 are conditionally

independent given 𝑋𝑡 .

Proof. A calculation shows that the joint density of𝑋0,𝑋1, and𝑋𝑡 with respect to 𝜇0⊗𝜇1⊗Lebesgue

equals

Λ𝜀Λ𝑡 (1−𝑡)𝜀𝑒
− 1
2𝜀𝑡 (1−𝑡) ‖𝑥𝑡−((1−𝑡)𝑥0+𝑡𝑥1)‖

2
𝑒
(𝑓 (𝑥0)+𝑔(𝑥1)−12 ‖𝑥0−𝑥1‖

2)/𝜀
= F𝑡 (𝑥𝑡 , 𝑥0)G𝑡 (𝑥𝑡 , 𝑥1) ,
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where

F𝑡 (𝑥𝑡 , 𝑥0) = Λ𝜀𝑡𝑒
𝑓 (𝑥0)/𝜀𝑒−

1
2𝜀𝑡 ‖𝑥𝑡−𝑥0‖

2
and G𝑡 (𝑥𝑡 , 𝑥1) = Λ(1−𝑡)𝜀𝑒

𝑔(𝑥1)/𝜀𝑒
− 1
2𝜀 (1−𝑡) ‖𝑥𝑡−𝑥1‖

2
.

Since this density factors, the law of𝑋0 and𝑋1 given𝑋𝑡 is a product measure, proving the claim. �

Proof of Proposition 4.1. First, we prove that M is Markov. Let (𝑋𝑡 )𝑡∈[0,1] be distributed according

toM. It su�ces to show that for any integrable 𝑎 ∈ 𝜎 (𝑋 [0,𝑡]), 𝑏 ∈ 𝜎 (𝑋 [𝑡,1]), we have the identity

E[𝑎𝑏 |𝑋𝑡 ] = E[𝑎 |𝑋𝑡 ]E[𝑏 |𝑋𝑡 ] a.s.

Using the tower property and the fact that, conditioned on 𝑋0 and 𝑋1, the law of the path is a

Brownian bridge between 𝑋0 and 𝑋1, and hence is Markov, we have

EM [𝑎𝑏 |𝑋𝑡 ] = E[E[𝑎𝑏 |𝑋0, 𝑋𝑡 , 𝑋1] |𝑋𝑡 ] = E[E[𝑎 |𝑋0, 𝑋𝑡 ]E[𝑏 |𝑋𝑡 , 𝑋1] |𝑋𝑡 ] .

By Lemma C.1, the sigma-algebras 𝜎 (𝑋0, 𝑋𝑡 ) and 𝜎 (𝑋𝑡 , 𝑋1) are conditionally independent given

𝑋𝑡 , hence

E[E[𝑎 |𝑋0, 𝑋𝑡 ]E[𝑏 |𝑋𝑡 , 𝑋1] |𝑋𝑡 ] = E[E[𝑎 |𝑋0, 𝑋𝑡 ] |𝑋𝑡 ]E[E[𝑏 |𝑋0, 𝑋𝑡 ] |𝑋𝑡 ] = E[𝑎 |𝑋𝑡 ]E[𝑏 |𝑋𝑡 ] ,

as claimed.

The proof of the second statement follows directly from the computations presented be-

low (4.15), which hold under no additional assumptions.

We now prove the third statement. Following the approach of Föllmer (1985), the representation

ofM as a mixture of Brownian bridges shows that the law of 𝑋 [0,𝑡] for any 𝑡 < 1 has �nite entropy

with respect to the law of 𝑋0 +
√
𝜀𝐵𝑡 , for 𝑋 ∼ 𝜇0. Hence, to verify the representation in terms of
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the SDE, it su�ces to compute the stochastic derivative:

lim
ℎ→0

1
ℎ
E[𝑋𝑡+ℎ − 𝑋𝑡 |𝑋 [0,𝑡]] ,

where the limit is taken in 𝐿2. Using the the fact that the process is Markov and, conditioned on

𝑋0 and 𝑋1, the path is a Brownian bridge, we obtain

lim
ℎ→0

1
ℎ
E[𝑋𝑡+ℎ − 𝑋𝑡 |𝑋 [0,𝑡]] = lim

ℎ→0

1
ℎ
E[E[𝑋𝑡+ℎ − 𝑋𝑡 |𝑋0, 𝑋𝑡 , 𝑋1] |𝑋𝑡 ] =

1
1 − 𝑡 E[𝑋1 − 𝑋𝑡 |𝑋𝑡 ] .

Recalling the computations in Lemma C.1, we observe that, conditioned on 𝑋𝑡 = 𝑥𝑡 , the variable

𝑋1 has 𝜇1 density proportional to G𝑡 (𝑥𝑡 , 𝑥1). Since 𝜋 is a probability measure, in particular we

have that 𝑒𝑔 lies in 𝐿1(𝜇1). We can therefore apply dominated convergence to obtain

1
1 − 𝑡 E[𝑋1 − 𝑋𝑡 |𝑋𝑡 = 𝑥𝑡 ] =

∫
𝑥1−𝑥𝑡
1−𝑡 G𝑡 (𝑥𝑡 , 𝑥1)𝜇1(d𝑥1)∫
G𝑡 (𝑥𝑡 , 𝑥1)𝜇1(d𝑥1)

= 𝜀∇ logH(1−𝑡)𝜀 [exp(𝑔/𝜀)𝜇1] (𝑥𝑡 ) ,

as desired.

For the fourth statement, we require the following claim.

Claim: The joint probability measure 𝜋𝑡 (𝑧, 𝑥1), de�ned as

exp((−(1 − 𝑡) 𝑓1−𝑡 (𝑧) + (1 − 𝑡)𝑔(𝑥1) − 1
2 ‖𝑧 − 𝑥1‖

2))/((1 − 𝑡)𝜀))m𝑡 (d𝑧)𝜇1(d𝑥1) ,

is the optimal entropic coupling from m𝑡 to 𝜌 with regularization parameter (1 − 𝑡)𝜀, where

𝑓1−𝑡 (𝑧) B 𝜀 logH(1−𝑡)𝜀 [𝑒𝑔/𝜀𝜇1] (𝑧). Under this claim, it is easy to verify that the de�nition of ∇𝜑1−𝑡

is precisely this conditional expectation, which concludes the proof.

To prove the claim, we notice that 𝜋𝑡 is already in the correct form of an optimal entropic

coupling, and 𝜋𝑡 ∈ Γ(m𝑡 , ?) by construction. Thus, it su�ces to only check the second marginal.
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By the second part, above, we have that

m𝑡 (𝑧) = H(1−𝑡)𝜀 [exp(𝑔/𝜀)𝜇1] (𝑧)H𝑡𝜀 [exp(𝑓 /𝜀)𝜇0] (𝑧) .

Integrating, performing the appropriate cancellations, and applying the semigroup property, we

have

∫
𝜋𝑡 (𝑧, d𝑥1) d𝑧 = 𝑒𝑔(𝑥1)/𝜀𝜇1(d𝑥1)H(1−𝑡)𝜀 [H𝑡𝜀 [𝑒 𝑓 /𝜀𝜇0]] (𝑥1) = 𝑒𝑔(𝑥1)/𝜀𝜇1(d𝑥1)H𝜀 [𝑒 𝑓 /𝜀𝜇0] (𝑥1) ,

which proves the claim. �

C.3 Proofs for Section 4.4

C.3.1 One-sample analysis

Proof of Proposition 4.5. First, we recognize that a path with law P̃ (resp. P̄) can be obtained by

sampling a Brownian bridge between (𝑋0, 𝑋1) ∼ 𝜋𝑛 (resp. 𝜋𝑛), by Proposition 4.1. Thus, by the

data processing inequality,

E[KL(P̃[0,𝜏] ‖P̄[0,𝜏])] ≤ E[KL(P̃‖P̄)] ≤ E[KL(𝜋𝑛‖𝜋𝑛)] = E
[∫

log(𝜋𝑛/𝜋𝑛) d𝜋𝑛
]
,

where the above manipulations are valid as both 𝜋𝑛 and 𝜋𝑛 have densities with respect to 𝜇 ⊗ 𝜈𝑛 .

Completing the expansion by explicitly writing out the densities, we obtain

E[KL(P̃[0,𝜏] ‖P̄[0,𝜏])] ≤
1
𝜀
E
[∫
(𝑓 + 𝑔 − 𝑓 − 𝑔★) d𝜋𝑛

]
=
1
𝜀
E
[
OT𝜀 (𝜇, 𝜈𝑛) −

∫
𝑓 d𝜇 −

∫
𝑔★ d𝜈𝑛

]
.
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We now employ the rounding trick of Stromme (2024): the rounded potential 𝑓 satis�es

𝑓 = argmax
𝑓 ∈𝐿1 (𝜇)

D𝜇𝜈𝑛
𝜀 (𝑓 , 𝑔★) ;

Therefore, in particular, D𝜇𝜈𝑛
𝜀 (𝑓 , 𝑔★) ≥ D

𝜇𝜈𝑛
𝜀 (𝑓 ★, 𝑔★). Continuing from above, we obtain

E[KL(P̃[0,𝜏] ‖P̄[0,𝜏])] ≤
1
𝜀
E[OT𝜀 (𝜇, 𝜈𝑛) −

∫
𝑓 ★ d𝜇 −

∫
𝑔★ d𝜈𝑛]

=
1
𝜀
E[OT𝜀 (𝜇, 𝜈𝑛) −

∫
𝑓 ★ d𝜇 −

∫
𝑔★ d𝜈]

=
1
𝜀
E[OT𝜀 (𝜇, 𝜈𝑛) − OT𝜀 (𝜇, 𝜈)] ,

where in the penultimate equality we observed that 𝑔 is independent of the data 𝑌1, . . . , 𝑌𝑛 . Com-

bined with Theorem 2.6 of Groppe and Hundrieser (2024), the proof is complete. �

Proof of Proposition 4.6. We start by applying Girsanov’s theorem to obtain a di�erence in the

drifts, which can be re-written as di�erences in entropic Brenier maps:

E[KL(P★[0,𝜏] ‖P̄[0,𝜏])] ≤
∫ 𝜏

0
E‖𝑏𝑡 − 𝑏★𝑡 ‖2𝐿2 (p𝑡 ) d𝑡 =

∫ 𝜏

0
(1 − 𝑡)−2E‖∇𝜑1−𝑡 − ∇𝜑★1−𝑡 ‖2𝐿2 (p𝑡 ) d𝑡 . (C.2)

The result then follows from Lemma C.2, where we lazily bound the resulting integral:

E[KL(P★[0,𝜏] ‖P̄[0,𝜏])] ≤
𝑅2𝜀−k

𝑛

∫ 𝜏

0
(1 − 𝑡)−k−2 d𝑡 ≤ 𝑅

2𝜀−k

𝑛
(1 − 𝜏)−k−2 .

�

Lemma C.2 (Point-wise drift bound). Under the assumptions of Proposition 4.6, let 𝜑1−𝑡 be the

entropic Brenier map between p̄𝑡 and 𝜈𝑛 and 𝜑★1−𝑡 be the entropic Brenier map between p★𝑡 and 𝜈 , both

231



with regularization parameter (1 − 𝑡)𝜀. Then

E‖∇𝜑1−𝑡 − ∇𝜑★1−𝑡 ‖2𝐿2 (p𝑡 ) .
𝑅2

𝑛
((1 − 𝑡)𝜀)−k .

Proof. Setting some notation, we express ∇𝜑★1−𝑡 as the conditional expectation of the optimal

entropic coupling 𝜋★𝑡 between p★𝑡 and 𝜈 (recall Proposition 4.1), where we write

𝜋★𝑡 (𝑧,𝑦) = 𝛾★𝑡 (𝑧,𝑦)p★𝑡 (d𝑧)𝜈 (d𝑦) .

The rest of our proof follows a technique due to Stromme (2024): by triangle inequality, we

can add and subtract the following term

1
𝑛

𝑛∑︁
𝑗=1
𝑌𝑗𝛾

★
𝑡 (𝑧,𝑌𝑗 ) ,

into the integrand in (C.2), resulting in

E‖∇𝜑1−𝑡 − ∇𝜑★1−𝑡 ‖2𝐿2 (p★𝑡 ) . E‖∇𝜑1−𝑡 − 𝑛
−1 ∑𝑛

𝑗=1𝑌𝑗𝛾
★
𝑡 (·, 𝑌𝑗 )‖2𝐿2 (p★𝑡 )

+ E‖𝑛−1 ∑𝑛
𝑗=1𝑌𝑗𝛾

★
𝑡 (·, 𝑌𝑗 ) − ∇𝜑★1−𝑡 ‖2𝐿2 (p★𝑡 ) .

(C.3)

For the second term, with the same manipulations as Stromme (2024, Lemma 20), we obtain a �nal

bound of

E‖𝑛−1∑𝑛
𝑗=1𝑌𝑗𝛾

★
𝑡 (·, 𝑌𝑗 ) − ∇𝜑★1−𝑡 ‖2𝐿2 (p★𝑡 ) =

𝑅2

𝑛
‖𝛾★𝑡 ‖2𝐿2 (p★𝑡 ⊗𝜈) ≤

𝑅2

𝑛
((1 − 𝑡)𝜀)−k ,

where the �nal inequality is also due to Stromme (2024, Lemma 16). To control the �rst term in
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(C.3), we also appeal to his calculations of the same theorem: observing that, from (4.25)

∇𝜑1−𝑡 (𝑧) =
1
𝑛

𝑛∑︁
𝑗=1
𝑌𝑗

exp((𝑔★(𝑌𝑗 ) − 1
2(1−𝑡) ‖𝑧 − 𝑌𝑗 ‖

2)/𝜀)
1
𝑛

∑𝑛
𝑗=1 exp((𝑔★(𝑌𝑗 ) − 1

2(1−𝑡) ‖𝑧 − 𝑌𝑗 ‖2)/𝜀)
=
1
𝑛

𝑛∑︁
𝑗=1
𝑌𝑗𝛾𝑡 (𝑧,𝑌𝑗 ) .

Since the following equality is true

𝛾𝑡 (𝑧,𝑌𝑗 ) =
𝛾★𝑡 (𝑧,𝑌𝑗 )

1
𝑛

∑𝑛
𝑘=1 𝛾

★
𝑡 (𝑧,𝑌𝑘)

,

we can verbatim apply the remaining arguments of Stromme (2024, Lemma 20). Indeed, for �xed

𝑥 ∈ R𝑑 , we have

‖𝑛−1∑𝑛
𝑗=1𝑌𝑗 (𝛾★𝑡 (𝑥,𝑌𝑗 ) − 𝛾𝑡 (𝑥,𝑌𝑗 ))‖2 ≤ 𝑅2

��∑𝑛
𝑗=1𝛾

★
𝑡 (𝑥,𝑌𝑗 ) − 1

��2 .
Taking the 𝐿2(p★𝑡 ) norm and the outer expectation, we see that the remaining term is nothing but

the �rst component of the gradient of the dual entropic objective function (see Proposition C.6),

which can be bounded via Lemma C.7, resulting in the chain of inequalities

E‖𝑛−1∑𝑛
𝑗=1𝑌𝑗 (𝛾★𝑡 (·, 𝑌𝑗 ) − 𝛾𝑡 (·, 𝑌𝑗 ))‖2𝐿2 (p★𝑡 ) .

𝑅2

𝑛
‖𝛾★𝑡 ‖2𝐿2 (p★𝑡 ⊗𝜈) ≤

𝑅2

𝑛
((1 − 𝑡)𝜀)−k ,

where the last inequality again holds via Stromme (2024, Lemma 16).

�
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C.3.2 Completing the results

Proof of Proposition 4.7. This proof closely follows the ideas of Chen et al. (2022b). Applying

Girsanov’s theorem, we obtain

TV2(P̂[0,𝜏], P̃[0,𝜏]) . KL(P̃[0,𝜏] ‖P̂[0,𝜏]) =
𝑁−1∑︁
𝑘=0

∫ (𝑘+1)𝜂

𝑘𝜂

EP̃[0,𝜏 ] ‖𝑏𝑘𝜂 (𝑋𝑘𝜂) − 𝑏𝑡 (𝑋𝑡 )‖
2 d𝑡 .

Recall that 𝜂 ∈ (0, 1) is a chosen step-size based on 𝑁 , the number of steps to be taken. As in prior

analyses, we hope to uniformly bound the integrand above for any 𝑡 ∈ [𝑘𝜂, (𝑘 + 1)𝜂]. Adding and

subtracting the appropriate terms, we have

EP̃[0,𝜏 ] ‖𝑏𝑘𝜂 (𝑋𝑘𝜂) − 𝑏𝑡 (𝑋𝑡 )‖
2 . EP̃[0,𝜏 ] ‖𝑏𝑘𝜂 (𝑋𝑘𝜂) − 𝑏𝑡 (𝑋𝑘𝜂)‖

2 + EP̃[0,𝜏 ] ‖𝑏𝑡 (𝑋𝑘𝜂) − 𝑏𝑡 (𝑋𝑡 )‖
2 . (C.4)

By the semigroup property, we �rst notice that

H1−𝑘𝜂 [𝑒𝑔/𝜀𝜈𝑛] = H𝑡−𝑘𝜂 [H1−𝑡 [𝑒𝑔/𝜀𝜈𝑛]] .

We can verbatim apply Lemma 16 of Chen et al. (2022b) with 𝒒 B H1−𝑡 [𝑒𝑔/𝜀𝜈𝑛], 𝑴0 = id and

𝑴1 = (𝑡 − 𝑘𝜂)𝐼 , since H1−𝑘𝜂 [𝑒𝑔/𝜀𝜈𝑛] = 𝒒 ∗ N (0, (𝑡 − 𝑘𝜂)𝐼 ). This gives

‖𝑏𝑘𝜂 (𝑋𝑘𝜂) − 𝑏𝑡 (𝑋𝑘𝜂)‖2 =



𝜀∇ log 𝒒 ∗ N (0, (𝑡 − 𝑘𝜂)𝐼 )

𝒒
(𝑋𝑘𝜂)




2
. 𝐿2𝑡 𝜂𝑑 + 𝐿2𝑡 𝜂2‖𝜀∇ log 𝒒(𝑋𝑘ℎ)‖2 .

Since 𝜀 log 𝒒 is 𝐿𝑡 -smooth, we obtain the bounds

EP̃[0,𝜏 ] ‖𝜀∇ log 𝒒(𝑋𝑘ℎ)‖
2 . EP̃[0,𝜏 ] ‖𝜀∇ log 𝒒(𝑋𝑡 )‖

2 + 𝐿2𝑡 ‖𝑋𝑡 − 𝑋𝑘ℎ‖2

≤ 𝜀𝐿𝑡𝑑 + 𝐿2𝑡 EP̃[0,𝜏 ] ‖𝑋𝑡 − 𝑋𝑘ℎ‖
2 .
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where the �nal inequality is a standard smoothness inequality (see Lemma C.5). Similarly, the

second term on the right-hand side of (C.4) can be bounded by

EP̃[0,𝜏 ] ‖𝑏𝑡 (𝑋𝑘𝜂) − 𝑏𝑡 (𝑋𝑡 )‖
2 ≤ 𝐿2𝑡 EP̃[0,𝜏 ] ‖𝑋𝑘𝜂 − 𝑋𝑡 ‖

2.

Combining the terms, we obtain

EP̃[0,𝜏 ] ‖𝑏𝑘𝜂 (𝑋𝑘𝜂) − 𝑏𝑡 (𝑋𝑡 )‖
2 . 𝜀𝐿2𝑡 𝜂𝑑 + 𝐿2𝑡 EP̃[0,𝜏 ] ‖𝑋𝑘𝜂 − 𝑋𝑡 ‖

2 ,

where, to simplify, we use the fact that 𝜂 ≤ 1/𝐿𝑡 (with 𝐿𝑡 ≥ 1), and that 𝜂2 ≤ 𝜂 for 𝜂 ∈ [0, 1]. We

now bound the remaining expectation. Under P̃[0,𝜏] , we can write

𝑋𝑡 =

∫ 𝑡

0
𝑏𝑠 (𝑋𝑠) d𝑠 +

√
𝜀𝐵𝑡 , 𝑋𝑘ℎ =

∫ 𝑘𝜂

0
𝑏𝑠 (𝑋𝑠) d𝑠 +

√
𝜀𝐵𝑘𝜂 ,

and thus

𝑋𝑡 − 𝑋𝑘𝜂 =
∫ 𝑡

𝑘𝜂

𝑏𝑠 (𝑋𝑠) d𝑠 +
√
𝜀 (𝐵𝑡 − 𝐵𝑘𝜂) .

Taking squared expectations, writing 𝛿 B 𝑡 − 𝑘𝜂 ≤ 𝜂 (recall that 𝑡 ∈ [𝑘𝜂, (𝑘 + 1)𝜂)), we obtain

(through an application of the triangle inequality and Jensen’s inequality)

EP̃[0,𝜏 ] ‖𝑋𝑡 − 𝑋𝑘𝜂 ‖
2 . 𝜀EP̃[0,𝜏 ] ‖𝐵𝑡 − 𝐵𝑘𝜂 ‖

2 + 𝛿
∫ 𝑡

𝑘𝜂

EP̃[0,𝜏 ] ‖𝑏𝑠 (𝑋𝑠)‖
2 d𝑠

. 𝜀𝜂𝑑 + 𝛿2𝐿𝑡𝑑

≤ (𝜀 + 1)𝜂𝑑

where we again used Lemma C.5. Combining all like terms, we obtain the �nal result.

The estimates for the Lipschitz constant follow from Lemma C.4. �
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C.4 Proofs for Section 4.4.3

C.4.1 Computing Eqation 4.26

The Föllmer drift is a special case of the Schrödinger bridge, where 𝜇 = 𝛿𝑎 for any 𝑎 ∈ R𝑑 . Let

(𝑓 F, 𝑔F) denote the optimal entropic potentials in this setting. Note that they these potentials are

de�ned up to translation (i.e., the solution is the same if we take 𝑓 F + 𝑐 and 𝑔F − 𝑐 for any 𝑐 ∈ R).

So, we further impose the condition that 𝑓 F(𝑎) = 0 = 𝑐 . Then the optimality conditions yield

𝑔F(𝑦) = 1
2𝜀
‖𝑦‖2 . (C.5)

Plugging this into the expression for the Schrödinger bridge drift, we obtain

𝑏F𝑡 (𝑧) = 𝜀∇ logH(1−𝑡)𝜀 [𝑒
1
2𝜀 ‖·‖

2
𝜈] (𝑧) = (1 − 𝑡)−1

(
−𝑧 +

∫
𝑦𝑒

1
2𝜀 ‖𝑦‖

2− 1
2(1−𝑡)𝜀 ‖𝑧−𝑦‖

2
𝜈 (d𝑦)∫

𝑒
1
2𝜀 ‖𝑦‖

2− 1
2(1−𝑡)𝜀 ‖𝑧−𝑦‖

2
𝜈 (d𝑦)

)
.

Replacing the integrals with respect to 𝜈 with their empirical counterparts yields the estimator.

C.4.2 Proof of Proposition 4.9

Our goal is to prove the following lemma.

Lemma C.3. Let p𝜏 be the Föllmer bridge at time 𝜏 ∈ [0, 1) between 𝜇 = 𝛿0 and 𝜈 ∈ P2(R𝑑) with

𝜀 = 1 and suppose the squared second moment of 𝜈 is bounded above by 𝑑 . Then

𝑊 2
2 (p𝜏 , 𝜈) ≤ 𝑑 (1 − 𝜏) .

Proof. Note that p𝜏 = P1−𝜏 , where P1−𝜏 is the reverse bridge, which starts at 𝜈 and ends at 𝜇 = 𝛿0.

This reverse bridge is well known to satisfy a simple SDE (Föllmer, 1985): the measure P1−𝜏 is the
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law of 𝑌1−𝜏 , where 𝑌𝑠 solves

d𝑌𝑠 = −
𝑌𝑠

1 − 𝑠 d𝑠 + d𝐵𝑠, 𝑌0 ∼ 𝜈,

which has the explicit solution

𝑌𝑠 = (1 − 𝑠)𝑌0 + (1 − 𝑠)
∫ 𝑠

0

1
1 − 𝑟 d𝐵𝑟 .

In particular, we obtain

𝑊 2
2 (P𝑠, 𝜈) ≤ E‖𝑌𝑠 − 𝑌0‖2

= E





−𝑠𝑌0 + (1 − 𝑠) ∫ 𝑠

0

1
1 − 𝑟 d𝐵𝑟





2
= 𝑠2E‖𝑌0‖2 + 𝑑𝑠 (1 − 𝑠)

≤ 𝑑𝑠 ,

which proves the claim. �

C.5 Technical lemmas

LemmaC.4 (Hessian calculation and bounds). Let (p𝑡 , 𝑏𝑡 ) be the optimal density-drift pair satisfying

the Fokker–Planck equation (4.10) between 𝜇0 and 𝜇1. For 𝑡 ∈ [0, 1), 𝑏𝑡 is Lipschitz with constant 𝐿𝑡

given by

𝐿𝑡 B sup
𝑥

‖∇𝑏𝑡 (𝑥)‖op ≤
1

(1 − 𝑡)

(
1 ∨ ‖∇2𝜑1−𝑡 (𝑥)‖op

)
,
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where ∇𝜑1−𝑡 is the entropic Brenier map between p𝑡 and 𝜇1 with regularization parameter (1 − 𝑡)𝜀.

Moreover, if the support of 𝜇1 is contained in 𝐵(0, 𝑅), then

𝐿𝑡 ≤ (1 − 𝑡)−1(1 ∨ 𝑅2((1 − 𝑡)𝜀)−1) . (C.6)

Proof. Taking the Jacobian of 𝑏𝑡 , we arrive at

∇𝑏𝑡 (𝑥) = (1 − 𝑡)−1(∇2𝜑1−𝑡 (𝑥) − 𝐼 ) ,

As entropic Brenier potentials are convex (recall that their Hessians are covariance matrices; see

(4.7)), we have the bounds

−(1 − 𝑡)−1𝐼 � ∇𝑏𝑡 (𝑥) � (1 − 𝑡)−1∇2𝜑1−𝑡 (𝑥) .

The �rst claim follows by considering the larger of the two operator norms of both sides.

The second claim follows from the fact that since 𝜑1−𝑡 is an optimal entropic Brenier potential,

its Hessian is the conditional covariance of an optimal entropic coupling 𝜋𝑡 ∈ Γ(p𝑡 , 𝜇1), so

‖∇2𝜑1−𝑡 (𝑧)‖op =
1

(1 − 𝑡)𝜀 ‖Cov𝜋𝑡 [𝑌 |𝑋𝑡 = 𝑧] ‖op ≤
𝑅2

(1 − 𝑡)𝜀 ,

since supp(𝜇1) ⊆ 𝐵(0, 𝑅). �

Lemma C.5. Let (p𝑡 , 𝑏𝑡 ) be the optimal density-drift pair satisfying the Fokker–Planck equation

(4.10) between 𝜇0 and 𝜇1. Then for any 𝑡 ∈ [0, 1)

Ep𝑡 ‖𝑏𝑡 ‖2 ≤
𝜀

2
𝐿𝑡𝑑 .

Proof. This proof follows the ideas of Vempala and Wibisono (2019, Lemma 9). We note that the
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generator given by the forward Schrödinger bridge with volatility 𝜀 is

L𝑡 𝑓 =
𝜀

2
Δ𝑓 − 〈𝑏𝑡 ,∇𝑓 〉 ,

for a smooth function 𝑓 . Writing 𝑏𝑡 = ∇(𝜀 logH1−𝑡 [𝑒𝑔/𝜀𝜇1]), we obtain

0 = Ep𝑡L𝑡 (𝜀 logH1−𝑡 [𝑒𝑔/𝜀𝜇1]) =⇒ Ep𝑡 ‖𝑏𝑡 (𝑋𝑡 )‖2 =
𝜀

2
Ep𝑡 [∇ · 𝑏𝑡 ] ≤

𝜀

2
𝐿𝑡𝑑 .

�

Lemma C.6. (Stromme, 2024, Proposition 3.1) Let 𝑃,𝑄 be probability measures on R𝑑 , and �x 𝜀 > 0.

For every pair ℎ1 = (𝑓1, 𝑔1) ∈ 𝐿∞(𝑃) × 𝐿∞(𝑄), there exists an element of 𝐿∞(𝑃) × 𝐿∞(𝑄) which we

denote by ∇D𝑃𝑄
𝜀 (𝑓1, 𝑔1) such that for all ℎ0 = (𝑓0, 𝑔0) ∈ 𝐿∞(𝑃) × 𝐿∞(𝑄),

〈∇D𝑃𝑄
𝜀 (ℎ1), ℎ0〉𝐿2 (𝑃)×𝐿2 (𝑄) =

∫
𝑓0(𝑥)

(
1 −

∫
𝑒−𝜀

−1 (𝑐 (𝑥,𝑦)−𝑓1 (𝑥)−𝑔1 (𝑦)) d𝑄 (𝑦)
)
d𝑃 (𝑥)

+
∫

𝑔0(𝑦)
(
1 −

∫
𝑒−𝜀

−1 (𝑐 (𝑥,𝑦)−𝑓1 (𝑥)−𝑔1 (𝑦)) d𝑃 (𝑥)
)
d𝑄 (𝑥).

In other words, the gradient of D𝑃𝑄
𝜀 at (𝑓1, 𝑔1) is the marginal error corresponding to (𝑓1, 𝑔1).

Lemma C.7. Following Proposition C.6, suppose 𝑃 = 𝜇 and𝑄 = 𝜈𝑛 , where 𝜈𝑛 is the empirical measure

of some measure 𝜈 on the basis of 𝑛 i.i.d. samples. Let (𝑓 ★, 𝑔★) be the optimal entropic potentials

between 𝜇 and 𝜈 , which induce an optimal entropic coupling 𝜋★ (recall (1.26)). Then

E‖∇D𝜇𝜈𝑛
𝜀 (𝑓 ★, 𝑔★)‖2𝐿2 (𝜇)×𝐿2 (𝜈𝑛) .

‖𝛾★‖2
𝐿2 (𝜇⊗𝜈)

𝑛
,

where the expectation is with respect to the data, and 𝛾★ = d𝜋★
d(𝜇⊗𝜈) .

Proof. Writing out the squared-norm of the gradient explicitly in the norm 𝐿2(𝜇) × 𝐿2(𝜈𝑛), we
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obtain

E‖∇D𝜇𝜈𝑛
𝜀 (𝑓 ★, 𝑔★)‖2𝐿2 (𝜇)×𝐿2 (𝜈𝑛) = E

∫ ( 1
𝑛

𝑛∑︁
𝑗=1
𝛾★(𝑥,𝑌𝑗 ) − 1

)2
𝜇 (d𝑥)

+ E1
𝑛

𝑛∑︁
𝑗=1

(∫
𝛾★(𝑥,𝑌𝑗 )𝜇 (d𝑥) − 1

)2
.

Note that by the optimality conditions,
∫
𝛾★(𝑥,𝑌𝑗 )𝜇 (d𝑥) = 1 for all𝑌𝑗 . Thus, writing𝑍 𝑗 B 𝛾★(𝑥,𝑌𝑗 )

which are i.i.d., we see that

E

∫ ( 1
𝑛

𝑛∑︁
𝑗=1
𝛾★(𝑥,𝑌𝑗 ) − 1

)2
𝜇 (d𝑥) =

∫
E
( 1
𝑛

𝑛∑︁
𝑗=1
(𝑍 𝑗 − E[𝑍 𝑗 ])

)2
= Var𝜇⊗𝜈

( 1
𝑛

𝑛∑︁
𝑗=1

𝑍 𝑗

)
=
1
𝑛
Var𝜇⊗𝜈 (𝑍1) .

The remaining component of the squared gradient vanishes, and we obtain

E‖∇D𝜇𝜈𝑛
𝜀 (𝑓 ★, 𝑔★)‖2𝐿2 (𝜇)×𝐿2 (𝜈𝑛) =

1
𝑛
Var𝜇⊗𝜈 (𝛾★) ≤

‖𝛾★‖2
𝐿2 (𝜇⊗𝜈)

𝑛
.

�
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D | Supplement to Chapter 5

D.1 Proof of the Cramér–Rao lower bound

For any smooth and compactly supported test function ℎ : R𝑑 → R, integration by parts yields

E𝑃∇ℎ =

∫
∇ℎ d𝑃 = −

∫
(ℎ ∇ ln 𝑃) d𝑃 =

∫
(ℎ − E𝑃ℎ) ∇𝑉 d𝑃

where we used the fact that E𝑃∇ ln 𝑃 = 0. Therefore,

〈E𝑃∇ℎ, (E𝑃∇2𝑉 )−1 E𝑃∇ℎ〉 =
∫
(ℎ − E𝑃ℎ) 〈∇𝑉 , (E𝑃∇2𝑉 )−1 E𝑃∇ℎ〉 d𝑃 . (D.1)

Applying the Cauchy–Schwarz inequality,

(D.1) 6

√︄
(Var𝑃 ℎ)

∫
〈E𝑃∇ℎ, (E𝑃∇2𝑉 )−1 (∇𝑉 )⊗2 (E𝑃∇2𝑉 )−1 E𝑃∇ℎ〉 d𝑃 .

Integration by parts shows that
∫
∇𝑉 ⊗2 d𝑃 =

∫
∇2𝑉 d𝑃 , and upon rearranging we deduce that

Var𝑃 ℎ > 〈E𝑃∇ℎ, (E𝑃∇2𝑉 )−1 E𝑃∇ℎ〉 . (D.2)

By approximation, this continues to hold for any locally Lipschitz ℎ : R𝑑 → R with E𝑃 ‖∇ℎ‖ < ∞.

Specializing the inequality (D.2) to ℎ := 〈𝑒, ·〉 for a unit vector 𝑒 ∈ R𝑑 then recovers the
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Cramér–Rao inequality of Lemma 5.5.

D.2 Gaussian case

Suppose 𝑃 = N(0, 𝐴) and 𝑄 = N(0, 𝐵) are Gaussians. Then, it is known that the Hessian of

the Brenier potential is given by (see Gelbrich, 1990)

∇2𝜑0(𝑥) = 𝐴−1/2 (𝐴1/2𝐵𝐴1/2)1/2𝐴−1/2 .

If we have𝐴−1 � 𝛽𝐼 and 𝐵−1 � 𝛼𝐼 � 0, then Ca�arelli’s contraction theorem (Theorem 5.1) implies

‖∇2𝜑0‖op ≤
√︁
𝛽/𝛼 .

This matches the bound of Altschuler et al. (2021, Lemma 2).

For 𝜀 > 0, the upper bound from Theorem 5.6 implies



∇2𝜑𝜀

op ≤ 1
2

(√︁
4𝛽/𝛼 + 𝜀2𝛽2 − 𝜀𝛽

)
. (D.3)

On the other hand, from Janati et al. (2020); Mallasto et al. (2022), it is known that

∇2𝜑𝜀 (𝑥) = 𝐴−1/2
(
𝐴1/2𝐵𝐴1/2 + 𝜀

2

4
𝐼
)1/2

𝐴−1/2 − 𝜀
2
𝐴−1 .

In particular, if we take 𝐴 = 𝛽−1𝐼 and 𝐵 = 𝛼−1𝐼 , then (D.3) is an equality. Hence, Theorem 5.6 is

sharp for every 𝜀 > 0.
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E | Supplement to Chapter 6

E.1 Proof of Lemma 6.1

We temporarily omit the superscript in 𝜈 for ease of reading. Note that

E𝑍∼𝜋𝜀 (·|𝑥) [𝑒 〈ℎ,𝑍 〉] = 𝑒−𝜑𝜀 (𝑥)/𝜀
∫

𝑒 (〈𝑥+𝜀ℎ,𝑧〉−𝜓𝜀 (𝑧))/𝜀 d𝜈 (𝑧) = 𝑒 (𝜑𝜀 (𝑥+𝜀ℎ)−𝜑𝜀 (𝑥))/𝜀 .

From this we can conclude, since for all 𝑧 ∈ R𝑑

dTℎ𝜋𝜀 (·|𝑥)
d𝜈

(𝑧) = 𝑒 (〈𝑥+𝜀ℎ,𝑧〉−𝜑𝜀 (𝑥)−𝜓𝜀 (𝑧))/𝜀𝑒 (𝜑𝜀 (𝑥)−𝜑𝜀 (𝑥+𝜀ℎ))/𝜀

= 𝑒 (〈𝑥+𝜀ℎ,𝑧〉−𝜑𝜀 (𝑥+𝜀ℎ)−𝜓𝜀 (𝑧))/𝜀

=
d𝜋𝜀 (·|𝑥 + 𝜀ℎ)

d𝜈
(𝑧) .

E.2 Proof of Corollary 6.2

If the domain of 𝜑𝜈𝜀 is not R𝑑 , then 𝐻max(𝜑𝜈𝜀 ) = +∞, and the proposition is vacuous. Otherwise,

�x 𝑥 ∈ R𝑑 . By de�nition of tilt stability, it su�ces to compute an upper bound on the covariance

of Tℎ𝜋𝜈𝜀 (·|𝑥) which holds uniformly over all tilts ℎ ∈ R𝑑 . This follows by direct computation, as
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Lemma 6.1 and (6.10) imply that

Cov(Tℎ𝜋𝜈𝜀 (·|𝑥)) = Cov(𝜋𝜈𝜀 (·|𝑥 + 𝜀ℎ)) � 𝐻max(𝜑𝜈𝜀 )𝐼 ,

where the last inequality holds by taking the supremum over both 𝑥 and ℎ arguments. Note that

the argument is symmetric for the other conditional entropic coupling.

E.3 Proof of Proposition 6.8

We assume that 𝜑𝜈𝜀 is �nite everywhere, for otherwise there is nothing to prove. We have that

𝑇
𝜇
𝜀 (𝑥) −𝑇 𝜈𝜀 (𝑥) =

∫
𝑦 d𝜋 𝜇𝜀 (𝑦 |𝑥) −

∫
𝑧 d𝜋𝜈𝜀 (𝑧 |𝑥)

=

∬
𝑦𝛾

𝜇
𝜀 (𝑥,𝑦) d𝜏 (𝑦, 𝑧) −

∫
𝑧 d𝜋𝜈𝜀 (𝑧 |𝑥)

=

∬
(𝑦 − 𝑧)𝛾 𝜇𝜀 (𝑥,𝑦) d𝜏 (𝑦, 𝑧) +

∬
𝑧 (𝛾 𝜇𝜀 (𝑥,𝑦) d𝜏 (𝑦, 𝑧) − d𝜋𝜈𝜀 (𝑧 |𝑥))

=

∬
(𝑦 − 𝑧)𝛾 𝜇𝜀 (𝑥,𝑦) d𝜏 (𝑦, 𝑧) +

∫
𝑧 d(𝑄 (𝑧 |𝑥) − 𝜋𝜈𝜀 (𝑧 |𝑥)) .

Taking the 𝐿2(𝜌)-norm of both sides and applying Minkowski’s and Jensen’s inequalities

yields

‖𝑇 𝜇𝜀 − 𝑇 𝜈𝜀 ‖𝐿2 (𝜌) ≤
(∬

‖𝑦 − 𝑧‖2𝛾 𝜇𝜀 (𝑥,𝑦) d𝜏 (𝑦, 𝑧) d𝜌 (𝑥)
)1/2
+




∫ 𝑧 d(𝑄 (𝑧 |·) − 𝜋𝜈𝜀 (𝑧 |·))




𝐿2 (𝜌)

.

Since 𝜏 is an optimal coupling between 𝜇 and 𝜈 and
∫
𝛾
𝜇
𝜀 (𝑥,𝑦) d𝜌 (𝑥) = 1, the �rst term is𝑊2(𝜇, 𝜈).

For the second term, Corollary 6.2 implies for all 𝑥 ∈ R𝑑




∫ 𝑧 d(𝑄 (𝑧 |𝑥) − 𝜋𝜈𝜀 (𝑧 |𝑥))



 ≤ √︁

2𝐻max(𝜑𝜈𝜀 )KL(𝑄 (·|𝑥)‖𝜋𝜈𝜀 (·|𝑥)) .
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Therefore




∫ 𝑧 d(𝑄 (𝑧 |·) − 𝜋𝜈𝜀 (𝑧 |·))




𝐿2 (𝜌)

≤

√︄
2𝐻max(𝜑𝜈𝜀 )

∫
KL(𝑄 (·|𝑥)‖𝜋𝜈𝜀 (·|𝑥)) d𝜌 (𝑥)

= (2𝐻max(𝜑𝜈𝜀 )𝐼 )1/2 ,

which completes the proof.

E.4 Proof of Proposition 6.10

We assume that𝜓𝜈𝜀 is �nite everywhere, for otherwise there is nothing to prove. Recall that

𝑆𝜈𝜀 (𝑧) =
∫
𝑥 d𝜋𝜈𝜀 (𝑥 |𝑧) and similarly for 𝑆𝜇𝜀 (𝑦). By Corollary 6.2, we have the following bound

‖𝑆𝜈𝜀 (𝑧) − 𝑆
𝜇
𝜀 (𝑦)‖2 =




∫ 𝑥 d(𝜋𝜈𝜀 (𝑥 |𝑧) − 𝜋
𝜇
𝜀 (𝑥 |𝑦))




2
≤ 2𝐻max(𝜓𝜈𝜀 )KL(𝜋

𝜇
𝜀 (·|𝑦)‖𝜋𝜈𝜀 (·|𝑧))

= 2𝐻max(𝜓𝜈𝜀 )
∫

log
(𝛾 𝜇𝜀 (𝑥,𝑦)
𝛾𝜈𝜀 (𝑥, 𝑧)

)
𝛾
𝜇
𝜀 (𝑥,𝑦) d𝜌 (𝑥) .

Integrating with respect to 𝜏 concludes the proof.

E.5 Proof of the bias term

Recall that our target measures are discrete measures of the form

𝜇 =

𝐽∑︁
𝑗=1

𝜇 𝑗𝛿𝑦 𝑗 .

and that we write the Laguerre cells as 𝐿𝑖 for 𝑖 ∈ {1, . . . , 𝐽 }.

We require the following de�nitions, which we borrow from Altschuler et al. (2022). For 𝑥 ∈ 𝐿𝑖

245



and any other 𝑗 ∈ {1, . . . , 𝐽 }, we write

Δ𝑖 𝑗 (𝑥) B 2(〈𝑥,𝑦𝑖 − 𝑦 𝑗 〉 −𝜓 𝜇0 (𝑦𝑖) +𝜓
𝜇

0 (𝑦 𝑗 )) ,

and 𝐻𝑖 𝑗 (𝑡) = {𝑥 ∈ 𝐿𝑖 : Δ𝑖 𝑗 (𝑥) = 𝑡}, which represents the trace on 𝐿𝑖 of the hyperplane spanned by

the boundary between 𝐿𝑖 and 𝐿 𝑗 , shifted by 𝑡 (should the two cells have non-empty intersection).

Moreover, we have the following co-area formula: for every nonnegative measurable function

𝑓 : R→ R+, ∫
𝐿𝑖

𝑓 (Δ𝑖 𝑗 (𝑥))𝜌 (𝑥) d𝑥 =
1

2‖𝑦𝑖 − 𝑦 𝑗 ‖

∫ ∞

0
𝑓 (𝑡)ℎ𝑖 𝑗 (𝑡) d𝑡,

where

ℎ𝑖 𝑗 (𝑡) =
∫
𝐻𝑖 𝑗 (𝑡)

𝜌 (𝑥) dH𝑑−1(𝑥) , (E.1)

andH𝑑−1 is the (𝑑 − 1)-dimensional Hausdor� measure.

Proof of Proposition 6.11. Let 𝑥 ∈ 𝐿𝑖 . For 𝑗 ∈ {1, . . . , 𝐽 } other than 𝑖 , we have the upper bound

𝜋
𝜇
𝜀 (𝑦 𝑗 |𝑥) = 𝑒 (〈𝑥,𝑦 𝑗 〉−𝜑

𝜇
𝜀 (𝑥)−𝜓

𝜇
𝜀 (𝑦 𝑗 ))/𝜀

=
𝑒 (〈𝑥,𝑦 𝑗 〉−𝜓

𝜇
𝜀 (𝑦 𝑗 ))/𝜀∑𝐽

𝑘=1 𝑒
(〈𝑥,𝑦𝑘 〉−𝜓 𝜇

𝜀 (𝑦𝑘 ))/𝜀

≤ 𝑒 (〈𝑥,𝑦 𝑗 〉−𝜓
𝜇
𝜀 (𝑦 𝑗 ))/𝜀

𝑒 (〈𝑥,𝑦𝑖 〉−𝜓
𝜇
𝜀 (𝑦𝑖 ))/𝜀 + 𝑒 (〈𝑥,𝑦 𝑗 〉−𝜓

𝜇
𝜀 (𝑦 𝑗 ))/𝜀

.

Adding and subtracting appropriate factors of𝜓 𝜇0 (𝑦𝑖) and𝜓
𝜇

0 (𝑦 𝑗 ), we obtain

𝜋
𝜇
𝜀 (𝑦 𝑗 |𝑥) ≤ 𝑒2‖𝜓

𝜇

0 −𝜓
𝜇
𝜀 ‖∞/𝜀 𝑒 (〈𝑥,𝑦 𝑗 〉−𝜓

𝜇

0 (𝑦 𝑗 ))/𝜀

𝑒 (〈𝑥,𝑦𝑖 〉−𝜓
𝜇

0 (𝑦𝑖 ))/𝜀 + 𝑒 (〈𝑥,𝑦 𝑗 〉−𝜓
𝜇

0 (𝑦 𝑗 ))/𝜀
= 𝑒2‖𝜓

𝜇

0 −𝜓
𝜇
𝜀 ‖∞/𝜀

(
1 + 𝑒Δ𝑖 𝑗 (𝑥)/2𝜀

)−1
,

246



By an application of Jensen’s inequality, we have

‖𝑇 𝜇𝜀 (𝑥) − 𝑦𝑖 ‖2 ≤
𝐽∑︁
𝑗=1

𝜋
𝜇
𝜀 (𝑦 𝑗 |𝑥)‖𝑦𝑖 − 𝑦 𝑗 ‖2 ≤ 𝑒2‖𝜓

𝜇

0 −𝜓
𝜇
𝜀 ‖∞/𝜀

𝐽∑︁
𝑗=1
‖𝑦𝑖 − 𝑦 𝑗 ‖2

(
1 + 𝑒Δ𝑖 𝑗 (𝑥)/2𝜀

)−1
,

so integrating against 𝜌 (partitioned into the 𝐽 Laguerre cells) yields

‖𝑇 𝜇𝜀 −𝑇
𝜇

0 ‖
2
𝐿2 (𝜌) ≤ 𝑒

2‖𝜓 𝜇

0 −𝜓
𝜇
𝜀 ‖∞/𝜀

∑︁
𝑖, 𝑗

‖𝑦𝑖 − 𝑦 𝑗 ‖2
∫
𝐿𝑖

(
1 + 𝑒Δ𝑖 𝑗 (𝑥)/2𝜀

)−1
d𝜌 (𝑥)

= 𝑒2‖𝜓
𝜇

0 −𝜓
𝜇
𝜀 ‖∞/𝜀

∑︁
𝑖, 𝑗

‖𝑦𝑖 − 𝑦 𝑗 ‖/2
∫ ∞

0
ℎ𝑖 𝑗 (𝑡)

(
1 + 𝑒𝑡/2𝜀

)−1
d𝑡

= 𝑒2‖𝜓
𝜇

0 −𝜓
𝜇
𝜀 ‖∞/𝜀𝜀

∑︁
𝑖, 𝑗

‖𝑦𝑖 − 𝑦 𝑗 ‖/2
∫ ∞

0
ℎ𝑖 𝑗 (𝑢𝜀)

(
1 + 𝑒𝑢/2

)−1
d𝑢 ,

where the second line follows from the de�nition of the co-area formula, and the last line is a

change of variables 𝑢 = 𝑡/𝜀. This gives (6.16).

With the additional assumptions (T1) and (T2), we can use Corollary 2.2 by Delalande (2022),

which tells us that

𝜀−1‖𝜓 𝜇0 −𝜓
𝜇
𝜀 ‖∞ ≤ 𝐶1𝜀

𝛼 , (E.2)

where the underlying constant depends on 𝑑, 𝑅, 𝐽 , 𝜇min,min𝑖≠ 𝑗 ‖𝑦𝑖 − 𝑦 𝑗 ‖, 𝜌min, 𝜌max, and on the

maximum angle formed by three non aligned points among the atoms {𝑦 𝑗 }𝐽𝑗=1. This gives and

upper bound of

‖𝑇 𝜇𝜀 −𝑇
𝜇

0 ‖
2
𝐿2 (𝜌) ≤ 𝑒

𝐶1𝜀
𝛼
(∑︁
𝑖, 𝑗

‖𝑦𝑖 − 𝑦 𝑗 ‖/2
∫ ∞

0
ℎ𝑖 𝑗 (𝑢𝜀)

(
1 + 𝑒𝑢/2

)−1
d𝑢)𝜀 .

Since ‖𝑦𝑖 − 𝑦 𝑗 ‖ ≤ 2𝑅, ℎ𝑖 𝑗 (𝑢𝜀) is bounded under our assumptions on 𝜌 , the proof is concluded. �
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F | Supplement to Chapter 7

F.1 Proofs for Section 7.3

Proof of Lemma 7.3. Take 𝑇1(𝑥) = 𝐴1𝑥 and 𝑇2(𝑥) = 𝐴2𝑥 for 𝐴1, 𝐴2 positive de�nite, and mutually

diagonalizable: there exists an orthogonal matrix𝑈 such that 𝐴𝑖 = 𝑈Λ𝑖𝑈
−1 with Λ𝑖 diagonal with

positive entries. Then

(𝑇1 ◦ (𝑇2)−1) (𝑥) = 𝑈Λ1𝑈
−1 (𝑈Λ2𝑈

−1)−1 𝑥 = 𝑈Λ1Λ
−1
2 𝑈

−1𝑥 = 𝐴̃𝑥 ,

with 𝐴̃ � 0; this completes the claim. �

Proof of Lemma 7.4. See Panaretos and Zemel (2020, Section 2.3.2). �

Proof of Lemma 7.5. Let 𝑆,𝑇 ∈ M, and for simplicity assume they are strictly increasing. Note

that 𝑇 −1 is also strictly increasing, so 𝑆 ◦𝑇 −1 is strictly increasing. �

Proof of Lemma 7.6. Take 𝑆1,𝑇1 ∈ M1 and 𝑆2,𝑇2 ∈ M2. Take (𝑥,𝑦) ∈ R𝑑1×𝑑2 , and write 𝑆 (𝑥,𝑦) =

(𝑆1(𝑥), 𝑆2(𝑦)), and similarly for 𝑇 . Since each of 𝑆1 ◦ 𝑇 −11 and 𝑆2 ◦ 𝑇 −12 are gradients of convex

functions, then 𝑆 ◦ 𝑇 −1 = (𝑆1 ◦ 𝑇 −11 , 𝑆2 ◦ 𝑇 −12 ) is also the gradient of a convex (and separable)

function. �

Proof of Lemma 7.7. For any 𝑇 ∈ M, 𝑇 and 𝑇 −1 are both gradients of convex functions, so the

claim is immediate. �
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Proof of Lemma 7.8. Suppose𝑇1,𝑇2 ∈ M are compatible i.e., 𝑇1 ◦ (𝑇2)−1 is the gradient of a convex

function. Write 𝑇1 = ∇𝜑̃1 = ∇(𝜑1 + 〈𝑢, ·〉) and 𝑇2 = ∇𝜑̃2 = ∇(𝜑2 + 〈𝑣, ·〉). One can check that

𝜑̃∗2 (𝑦) = 𝜑∗2 (𝑦 − 𝑣), and then by convex duality (𝑇2)−1 = ∇𝜑∗2 (· − 𝑣) is the gradient of a convex

function. So,

𝑇1(𝑇 −12 (𝑦)) = ∇𝜑1(∇𝜑∗2 (𝑦 − 𝑣)) + 𝑢 ,

which is the gradient of a sum of convex functions. �

Proof of Lemma 7.9. For 𝜂, 𝜆 ∈ R|M|+ , write 𝑆𝜂 =
∑
𝑆∈M 𝜂𝑆𝑆 and 𝑇 𝜆 =

∑
𝑇∈M 𝜆𝑇𝑇 in cone(M).

Assume 𝜂, 𝜆 ≠ 0 or otherwise the statement is trivial. The composition reads

𝑇 𝜆 ◦ (𝑆𝜂)−1 = ∑
𝑇∈M 𝜆𝑇𝑇 ◦

(∑
𝑆∈M 𝜂𝑆𝑆

)−1
,

so it su�ces to show that 𝑇 B 𝑇 ◦
(∑

𝑆∈M 𝜂𝑆𝑆
)−1 is the gradient of a convex function. Since each

𝑆 ∈ M is the gradient of a convex function, we have that

𝑇 −1 =
(∑︁
𝑆∈M

𝜂𝑆𝑆
)
◦𝑇 −1 =

∑︁
𝑆∈M

𝜂𝑆 (𝑆 ◦𝑇 −1) .

Since 𝑇 −1 is the gradient of a convex function, by conjugacy, it holds that 𝑇 is the gradient of a

convex function. �

F.2 Proofs for Section 7.4.2

Proof of Theorem 7.14. For an iteration number 𝑡 ∈ N, we use the shorthand ∇̂𝜆F𝑡 B ∇̂𝜆F (𝜇𝜆 (𝑡 ) ),

and similarly for the true gradient.
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Since projections are contractive, a �rst manipulation gives

‖𝜆(𝑡+1) − 𝜆★‖2𝑄 ≤ ‖𝜆
(𝑡) − 𝜆★‖2𝑄 + ℎ

2 ‖𝑄−1 ∇̂𝜆F𝑡 ‖2𝑄 + 2ℎ 〈∇̂𝜆F𝑡 , 𝜆
★ − 𝜆(𝑡)〉 .

Taking expectations conditioned on 𝜆(𝑡) yields, by linearity,

E𝑡 ‖𝜆(𝑡+1) − 𝜆★‖2𝑄 ≤ ‖𝜆
(𝑡) − 𝜆★‖2𝑄 + ℎ

2 E𝑡 ‖𝑄−1 ∇̂𝜆F𝑡 ‖2𝑄 + 2ℎ 〈∇𝜆F𝑡 , 𝜆
★ − 𝜆(𝑡)〉 .

By𝑚-strong convexity of F , we obtain

E𝑡 ‖𝜆(𝑡+1) − 𝜆★‖2𝑄 ≤ (1 −𝑚ℎ) ‖𝜆
(𝑡) − 𝜆★‖2𝑄 + ℎ

2 E𝑡 ‖𝑄−1 ∇̂𝜆F𝑡 ‖2𝑄 + 2ℎ (F (𝜇★) − F (𝜇𝜆 (𝑡 ) ))

≤ (1 − 2𝑚ℎ)‖𝜆(𝑡) − 𝜆★‖2𝑄 + ℎ
2 E𝑡 ‖𝑄−1 ∇̂𝜆F𝑡 ‖2𝑄 .

Taking expectations again,

E‖𝜆(𝑡+1) − 𝜆★‖2𝑄 ≤ (1 − 2𝑚ℎ) E‖𝜆
(𝑡) − 𝜆★‖2𝑄 + ℎ

2 E[E𝑡 ‖𝑄−1 ∇̂𝜆F𝑡 ‖2𝑄 ] .

Adding and subtracting the true gradient at iterate 𝜆(𝑡) , written 𝑄−1 ∇𝜆F𝑡 , the second term can be

bounded via smoothness of F :

ℎ2 E[E𝑡 ‖𝑄−1 ∇̂𝜆F𝑡 ‖2𝑄 ] ≤ 2ℎ2 E[E𝑡 ‖𝑄−1 (∇̂𝜆F𝑡 − ∇𝜆F𝑡 )‖2𝑄 ] + 2ℎ
2 E‖𝑄−1 ∇𝜆F𝑡 ‖2𝑄

≤ 2ℎ2 E[E𝑡 ‖𝑄−1 (∇̂𝜆F𝑡 − ∇𝜆F𝑡 )‖2𝑄 ] + 2𝑀
2ℎ2 E‖𝜆(𝑡) − 𝜆★‖2𝑄 .

Combining this with our previous bound results in

E‖𝜆(𝑡+1) − 𝜆★‖2𝑄 ≤ (1 − 2𝑚ℎ + 2𝑀
2ℎ2) E‖𝜆(𝑡) − 𝜆★‖2𝑄 + 2ℎ

2 E[E𝑡 ‖𝑄−1 (∇̂𝜆F𝑡 − ∇𝜆F𝑡 )‖2𝑄 ]

≤ (1 −𝑚ℎ) E‖𝜆(𝑡) − 𝜆★‖2𝑄 + 2ℎ
2 E[E𝑡 ‖𝑄−1 (∇̂𝜆F𝑡 − ∇𝜆F𝑡 )‖2𝑄 ] ,
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where in the last step we took ℎ ≤ 1
2𝜅𝑀 .

By (VB), we obtain

E‖𝜆(𝑡+1) − 𝜆★‖2𝑄 ≤ (1 −𝑚ℎ + 𝑐1ℎ
2) E‖𝜆(𝑡) − 𝜆★‖2𝑄 + 𝑐0ℎ

2 .

If 𝑐1ℎ2 ≤ 𝑚ℎ/2, i.e., ℎ ≤ 𝑚/(2𝑐1), then

E‖𝜆(𝑡+1) − 𝜆★‖2𝑄 ≤ (1 −𝑚ℎ/2) E‖𝜆
(𝑡) − 𝜆★‖2𝑄 + 𝑐0ℎ

2 .

Iterating this bound gives

E‖𝜆(𝑡) − 𝜆★‖2𝑄 ≤ (1 − 𝑚ℎ
2 )

𝑡 ‖𝜆(0) − 𝜆★‖2𝑄 +
2𝑐0ℎ
𝑚
≤ exp(−𝑚ℎ𝑡/2) ‖𝜆(0) − 𝜆★‖2𝑄 +

2𝑐0ℎ
𝑚

.

Choosing ℎ �𝑚𝜀2/𝑐0 concludes the proof. �

F.3 Proofs for Section 7.5

F.3.1 Proofs for Section 7.5.1

To derive the mean-�eld equations, we recall that the KL divergence is

KL(𝜇‖𝜋) =
∫

𝑉 d𝜇 +
∫

log 𝜇 d𝜇 + log𝑍 .

Over the space of product measures, we obtain the functional

(𝜇1, . . . , 𝜇𝑑) ↦→ KL
( 𝑑⊗
𝑖=1

𝜇𝑖




 𝜋 )
=

∫
𝑉 d

𝑑⊗
𝑖=1

𝜇𝑖 +
𝑑∑︁
𝑖=1

∫
log 𝜇𝑖 d𝜇𝑖 + log𝑍 .

251



If we take the �rst variation of this functional (c.f. Santambrogio, 2015, Section 7.2) w.r.t. 𝜇𝑖 , we

obtain the equation

[
𝛿𝜇𝑖 KL

( 𝑑⊗
𝑗=1

𝜇 𝑗




 𝜋 )]
(𝑥𝑖) =

∫
𝑉 (𝑥1, . . . , 𝑥𝑑)

⊗
𝑗≠𝑖

𝜇 𝑗 (d𝑥 𝑗 ) + log 𝜇𝑖 (𝑥𝑖) + const .

At optimality, the �rst variation must equal a constant, which leads to

𝜋★𝑖 (𝑥𝑖) ∝ exp
(
−

∫
𝑉 (𝑥1, . . . , 𝑥𝑑)

⊗
𝑗≠𝑖

𝜋★𝑗 (d𝑥 𝑗 )
)
.

F.3.2 Proofs for Section 7.5.2

In this section, we prove the regularity bounds on the optimal transport maps given as Theo-

rem 7.21. Recall that 𝜋★ denotes the mean-�eld VI solution and 𝑇★ is the optimal transport map

from 𝜌 to 𝜋★. Let 𝜋★𝑖 and 𝑇★
𝑖 denote the 𝑖-th components respectively, and recall also from (7.14)

that 𝜋★𝑖 ∝ exp(−𝑉𝑖), where

𝑉𝑖 (𝑥𝑖) B
∫

𝑉 (𝑥1, . . . , 𝑥𝑑)
⊗
𝑗≠𝑖

𝜋★𝑗 (d𝑥 𝑗 ) .

We begin with a few simple lemmas which show that 𝑇★
𝑖 (0), the mean of 𝜋★𝑖 , and the mode of 𝜋★𝑖

are all close to each other.

Lemma F.1. Let 𝑇 denote the optimal transport map from 𝜌 = N(0, 1) to 𝜇, and let𝑚 denote the

mean of 𝜇. If 𝑇 ′ ≤ 𝛽 , then |𝑇 (0) −𝑚 | ≤
√︁
2/π 𝛽 .

Proof. Let 𝑍 ∼ N(0, 1), so that 𝑇 (𝑍 ) ∼ 𝜇 and𝑚 B E𝑇 (𝑍 ). Since 𝑇 ′ ≤ 𝛽 ,

|𝑇 (0) −𝑚 | = |E(𝑇 (0) −𝑇 (𝑍 )) | ≤ 𝛽 E|𝑍 | =
√︂

2
π
𝛽 .

�
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Lemma F.2. Let𝑚 and 𝑚̃ denote the mean and the mode of 𝜇, respectively, where 𝜇 is ℓ𝑉 -strongly

log concave and univariate. Then, |𝑚 − 𝑚̃ | 6 1/
√
ℓ𝑉 .

Proof. This is a standard consequence of strong log-concavity, see, e.g., Dalalyan et al. (2022,

Proposition 4). �

We are now ready to prove Theorem 7.21.

Proof of Theorem 7.21. As the main text contains the proof of the bounds on the �rst derivative of

𝑇 , we continue with the second and third derivative bounds.

We, obviously, start with the second derivative bounds. Recall the Monge–Ampère equation

(or the change of variables formula) yields

log𝜋★𝑖 ◦𝑇★
𝑖 (𝑥) = −

𝑥2

2
− log(𝑇★

𝑖 )′(𝑥) − 1
2 log(2π) . (F.1)

Di�erentiating once yields

(log𝜋★𝑖 ◦𝑇★
𝑖 )′(𝑥) = −𝑉 ′𝑖 (𝑇★

𝑖 (𝑥)) (𝑇★
𝑖 )′(𝑥) = −𝑥 −

(𝑇★
𝑖 )′′(𝑥)
(𝑇★
𝑖
)′(𝑥) . (F.2)

Rearranging to isolate (𝑇★
𝑖 )′′ gives

(𝑇★
𝑖 )′′(𝑥) = −(𝑇★

𝑖 )′(𝑥)
(
𝑥−𝑉 ′𝑖 (𝑇★

𝑖 (𝑥)) (𝑇★
𝑖 )′(𝑥)

)
. (F.3)

Let 𝑚★
𝑖 and 𝑚̃★

𝑖 denote the mean and mode of 𝜋★𝑖 respectively. Recall also that 0 < 1/
√
𝐿𝑉 ≤
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(𝑇★
𝑖 )′ ≤ 1/

√
ℓ𝑉 . By Lemma F.1 and Lemma F.2,

|𝑉 ′𝑖 (𝑇★
𝑖 (𝑥)) | 6 |𝑉 ′𝑖 (𝑚̃★

𝑖 ) |︸    ︷︷    ︸
=0

+ 𝐿𝑉 |𝑇★
𝑖 (𝑥) − 𝑚̃★

𝑖 |

6 𝐿𝑉 ( |𝑇★
𝑖 (𝑥) −𝑇★

𝑖 (0) | + |𝑇★
𝑖 (0) −𝑚★

𝑖 | + |𝑚★
𝑖 − 𝑚̃★

𝑖 |)

6 𝐿𝑉
( 1
√
ℓ𝑉
|𝑥 | +

√︂
2
π

1
√
ℓ𝑉
+ 1
√
ℓ𝑉

)
.

𝐿𝑉√
ℓ𝑉
(1 + |𝑥 |) .

Substituting this into (F.3), we obtain

| (𝑇★
𝑖 )′′(𝑥) | .

1
√
ℓ𝑉

(
|𝑥 | + 𝐿𝑉

ℓ𝑉
(1 + |𝑥 |)

)
.

𝜅
√
ℓ𝑉
(1 + |𝑥 |) .

For the third derivative control, we di�erentiate (F.2) again to yield

(log𝜋★𝑖 ◦𝑇★
𝑖 )′′(𝑥) = −

(
𝑉 ′′𝑖 (𝑇★

𝑖 (𝑥)) (𝑇★
𝑖 )′(𝑥)2 +𝑉 ′𝑖 (𝑇★

𝑖 (𝑥)) (𝑇★
𝑖 )′′(𝑥)

)
= −1 −

(𝑇★
𝑖 )′′′(𝑥) (𝑇★

𝑖 )′(𝑥) − (𝑇★
𝑖 )′′(𝑥)2

(𝑇★
𝑖
)′(𝑥)2 .

Again, we rearrange and isolate, giving

(𝑇★
𝑖 )′′′(𝑥) =

(𝑇★
𝑖 )′′(𝑥)2

(𝑇★
𝑖
)′(𝑥) − (𝑇

★
𝑖 )′(𝑥)

(
1−𝑉 ′′𝑖 (𝑇★

𝑖 (𝑥)) (𝑇★
𝑖 )′(𝑥)2−𝑉 ′𝑖 (𝑇★

𝑖 (𝑥)) (𝑇★
𝑖 )′′(𝑥)

)
.

Taking absolute values, we can collect the terms one by one:

| (𝑇★
𝑖 )′′(𝑥)2/(𝑇★

𝑖 )′(𝑥) | .
𝜅2
√
ℓ𝑉
(1 + |𝑥 |2) ,

|𝑉 ′′𝑖 (𝑇★
𝑖 (𝑥)) (𝑇★

𝑖 )′(𝑥)2 | ≤ 𝜅 ,

|𝑉 ′𝑖 (𝑇★
𝑖 (𝑥)) (𝑇★

𝑖 )′′(𝑥) | .
𝐿𝑉√
ℓ𝑉
(1 + |𝑥 |) · 𝜅

√
ℓ𝑉
(1 + |𝑥 |) . 𝜅2 (1 + |𝑥 |2) .
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To obtain the �rst bound, note that by (F.3) and the subsequent calculations, we have

| (𝑇★
𝑖 )′′(𝑥)/(𝑇★

𝑖 )′(𝑥) | . 𝜅 (1 + |𝑥 |) .

Square and use (𝑇★
𝑖 )′(𝑥) 6 1/

√
ℓ𝑉 . Hence, the �nal bound scales as

| (𝑇★
𝑖 )′′′(𝑥) | .

𝜅2
√
ℓ𝑉
(1 + |𝑥 |2) .

�

F.3.3 Proofs for Section 7.5.3

For our approximation results, we begin with a simple construction via piecewise linear maps.

Let 𝑅 > 0 denote a truncation parameter, and partition the interval [−𝑅, +𝑅] into sub-intervals of

length 𝛿 > 0. Let𝜓 be the elementary step function

𝜓 : R→ R , 𝜓 (𝑥) B



0 , 𝑥 6 0 ,

𝑥 , 𝑥 ∈ [0, 1] ,

1 , 𝑥 > 1 .

We then de�ne the following family of compatible maps:

M B
{
𝑥 ↦→ 𝜓 (𝛿−1 (𝑥𝑖 − 𝑎)) 𝑒𝑖

�� 𝑖 ∈ [𝑑], 𝐼 = [𝑎, 𝑎 + 𝛿] is a sub-interval} .
We suppress the dependence on the parameters 𝑅, 𝛿 in the notation.

Proof of Theorem 7.23. Owing to the isometry, we wish to show that we can �nd a map 𝑇 ∈
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cone(M; 𝛼 id), with 𝛼 = 1/
√
𝐿𝑉 , such that

‖𝑇 −𝑇 ‖2
𝐿2 (𝜌) 6 𝜀

2/ℓ𝑉 and ‖𝐷 (𝑇 −𝑇 )‖2
𝐿2 (𝜌) 6 𝜀

2
1/ℓ𝑉 . (F.4)

Here, ‖𝐷 (𝑇 −𝑇 )‖2
𝐿2 (𝜌) B

∫
‖𝐷 (𝑇 −𝑇 )‖2F d𝜌 .

We �rst make a series of reductions. By assumption, 𝐷𝑇 � 𝛼𝐼 , and by de�nition, 𝑇 is of the

form 𝛼 id+∑𝑇∈M 𝜆𝑇𝑇 +𝑣 . By replacing𝑇 with𝑇 −𝛼 id, it su�ces to prove the following statement:

assuming that 0 � 𝐷𝑇 � ℓ−1/2
𝑉

𝐼 together with the second derivative bound on 𝑇 , there exists 𝑇 of

the form
∑
𝑇∈M 𝜆𝑇𝑇 + 𝑣 such that (F.4) holds. However, from the structure ofM, the problem now

separates across the coordinates and it su�ces to prove this statement with 𝑑 = 1 and 𝜀 replaced

with 𝜀/
√
𝑑 .

Truncation procedure. We will construct 𝑇 so that 𝑇 (−𝑅) = 𝑇 (−𝑅) and 𝑇 (+𝑅) = 𝑇 (+𝑅).

Assuming that this holds, the bound on 𝑇 ′ and the fact that 𝑇 is constant on (−∞,−𝑅] and on

[+𝑅, +∞) readily imply

|𝑇 (𝑥) −𝑇 (𝑥) | 6 1
√
ℓ𝑉
( |𝑥 | − 𝑅) , for |𝑥 | > 𝑅 .

The error contributed by the tails is therefore bounded by

∫
R\(−𝑅,+𝑅)

|𝑇 −𝑇 |2 d𝜌 6 1
√
2π ℓ𝑉

∫
R\(−𝑅,+𝑅)

( |𝑥 | − 𝑅)2 exp(−𝑥2/2) d𝑥 .

Similarly,

|𝑇 ′(𝑥) −𝑇 ′(𝑥) | 6 1/
√
ℓ𝑉 , for |𝑥 | > 𝑅 ,
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which gives

∫
R\(−𝑅,+𝑅)

|𝑇 ′ −𝑇 ′|2 d𝜌 6 1
√
2π ℓ𝑉

∫
R\(−𝑅,+𝑅)

exp(−𝑥2/2) d𝑥 .

Standard Gaussian tail bounds and the Cauchy–Schwarz inequality imply that with the choice

𝑅 �
√︁
log(1/(ℓ𝑉 𝜀2)), we obtain ‖𝑇 −𝑇 ‖2𝐿2 (𝜌) ∨ ‖𝑇

′−𝑇 ′‖2
𝐿2 (𝜌) . 𝜀

2, where 𝜌 is the Gaussian measure

restricted to the set R \ [−𝑅, 𝑅].

Uniform approximation over a compact domain. We now show that 𝑇 can be chosen to

uniformly approximate 𝑇 on [−𝑅, +𝑅]. Indeed, we take

𝑇 (𝑥) = 𝑇 (−𝑅) +
2𝑅/𝛿−1∑︁
𝑚=0

𝜆𝑚𝜓

(𝑥 − (−𝑅 +𝑚𝛿)
𝛿

)
,

where the 𝜆𝑚 are chosen so that𝑇 and𝑇 agree at each of the endpoints of the sub-intervals of size

𝛿 . Consider such a sub-interval 𝐼 = [𝑎, 𝑎 + 𝛿]. Then, for 𝑥 ∈ 𝐼 ,

|𝑇 (𝑥) −𝑇 (𝑥) | =
���𝑇 (𝑥) −𝑇 (𝑎) − 𝑇 (𝑎 + 𝛿) −𝑇 (𝑎)

𝛿
(𝑥 − 𝑎)

��� .
By the mean value theorem, 𝑇 (𝑥) = 𝑇 (𝑎) +𝑇 ′(𝑐1) (𝑥 − 𝑎) and 𝑇 (𝑎 + 𝛿) = 𝑇 (𝑎) +𝑇 ′(𝑐2) 𝛿 for some

𝑐1, 𝑐2 ∈ 𝐼 . Together with the second derivative bound on 𝑇 , it yields

|𝑇 (𝑥) −𝑇 (𝑥) | = | (𝑇 ′(𝑐1) −𝑇 ′(𝑐2)) (𝑥 − 𝑎) | .
𝜅𝑅
√
ℓ𝑉
𝛿2 .

Similarly, for the derivative,

|𝑇 ′(𝑥) −𝑇 ′(𝑥) | =
���𝑇 ′(𝑥) − 𝑇 (𝑎 + 𝛿) −𝑇 (𝑎)

𝛿

��� = |𝑇 ′(𝑥) −𝑇 ′(𝑐2) | . 𝜅𝑅
√
ℓ𝑉
𝛿 .

To obtain our desired error bounds, we take 𝛿 = Θ̃(
√︁
𝜀/𝜅). Finally, to obtain the stated bounds in
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the theorem in dimension 𝑑 , replace 𝜀 with 𝜀/
√
𝑑 .

With this choice of 𝛿 , we then obtain 𝜀1 = 𝑂 (
√
𝑑 𝜅𝛿) = 𝑂 (𝜅1/2𝑑1/4𝜀1/2).

Size of the generating family. Finally, the size ofM is 𝑂 (𝑑𝑅/𝛿) = 𝑂 (𝜅1/2𝑑5/4/𝜀1/2), which

completes the proof. �

In the proof above, we have used the bounds on the �rst and second derivatives of𝑇 . However,

from Theorem 7.21, we actually have control on the third derivative as well, so we can expect to

exploit this added degree of smoothness to obtain better approximation rates.

As above, we �x a truncation parameter 𝑅 > 0 and a mesh size 𝛿 > 0. Our family of maps will

be constructed from the following basic building blocks.

• Linear function. We let𝜓 lin(𝑥) B 𝑥 for 𝑥 ∈ R.

• Piecewise quadratics. De�ne the piecewise quadratic

𝜓 quad,±(𝑥) B ±



0 , 𝑥 6 0 ,

𝑥2 , 𝑥 ∈ [0, 1] ,

2𝑥 − 1 , 𝑥 > 1 .

• Piecewise cubics. De�ne the piecewise cubic,

𝜓 cub,±(𝑥) B ±



0 , 𝑥 6 0 ,

𝑥2 (3 − 2𝑥) , 𝑥 ∈ [0, 1] ,

1 , 𝑥 > 1 .

Given a univariate function 𝜓 and 𝑖 ∈ [𝑑], we extend it to a map 𝜓𝑖 : R𝑑 → R𝑑 by setting

𝜓𝑖 (𝑥) B 𝜓 (𝑥𝑖). Also, given a sub-interval 𝐼 = [𝑎, 𝑎 + 𝛿], we de�ne the map 𝜓𝐼 ,𝑖 : R𝑑 → R𝑑 via

𝜓𝐼 ,𝑖 (𝑥) B 𝜓 (𝛿−1 (𝑥𝑖 − 𝑎)).
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Let I denote the set of sub-intervals. Our generating family will consist of

M B {𝜓 lin
𝑖 | 𝑖 ∈ [𝑑]} ∪

⋃
𝐼∈I

𝑑⋃
𝑖=1
{𝜓 quad,−

𝐼 ,𝑖
,𝜓

quad,+
𝐼 ,𝑖

,𝜓
cub,−
𝐼 ,𝑖

,𝜓
cub,+
𝐼 ,𝑖
} ,

which consists of (4 |I | + 1) 𝑑 elements. However, we will not consider the full cone generated by

M—indeed, if we did, then the presence of the negative piecewise quadratics and cubics would

mean that we obtain non-monotone maps.

Elements of our polyhedral set will be of the form 𝑥 ↦→ 𝛼 id+∑𝑇∈M 𝜆𝑇𝑇 + 𝑣 , where 𝑣 ∈ R𝑑

and we may decorate components of 𝜆 according to the elements ofM to which they correspond,

e.g., 𝜆quad,−
𝐼 ,𝑖

is the coe�cient in front of𝜓 quad,−
𝐼 ,𝑖

.

To provide some intuition, we will use the linear function and the piecewise quadratics to

approximate the derivative of 𝑇 . Indeed, suppose for the moment that 𝑇 is univariate and note

that the derivatives of the linear and piecewise quadratic functions give rise to piecewise linear

interpolations of 𝑇 ′. The interpolation of 𝑇 ′, once integrated, does not necessarily interpolate 𝑇 ,

and the piecewise cubics will be used to remedy this issue.

Toward this end, note that since 𝑇 is monotonically increasing, 𝑇 ′ is non-negative. We will

want our approximating 𝑇 to have the same property, which will be ensured by imposing linear

constraints on 𝜆. We consider the following polyhedral subset of R|M|+ :

𝐾 B
{
𝜆 ∈ R|M|+

��� ∀𝑖 ∈ [𝑑], 2
𝛿

∑︁
𝐼∈I
(𝜆quad,+
𝐼 ,𝑖

− 𝜆quad,−
𝐼 ,𝑖

) + 𝜆lin𝑖 > 0 ,

and ∀𝐼 ∈ I, ∀𝑖 ∈ [𝑑], 6𝜆
cub,−

𝛿
6
𝛼

2

}
.

(F.5)

We then take K B {𝑥 ↦→ 𝛼𝑥 +∑
𝑇∈𝑇 𝜆𝑇𝑇 + 𝑣 | 𝜆 ∈ 𝐾, 𝑣 ∈ R𝑑} and P� B K♯𝜌 . The �rst constraint

ensures that the sum of the linear and piecewise quadratic functions has non-negative slope. As for

the second constraint, it ensures that the sum of the negative piecewise cubic functions has slope

at least −𝛼/2. Since we always add 𝛼 id, each of our maps will have slope at least 𝛼/2 and therefore
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be increasing. With this choice, our family consists of gradients of strongly convex functions with

convexity parameter less than that of the true map 𝑇★, which does a�ect some of the other results

of this paper (e.g., the geodesic smoothness of the KL divergence in Proposition 7.28), but only by

at most a constant factor, and henceforth we ignore this technical issue.

We are now ready to prove our improved approximation result.

Proof of Theorem 7.24. We start with the same reductions as in the proof of Theorem 7.23, reducing

to the univariate case.

Truncation procedure. The truncation procedure is similar to the one before, except that 𝑇

is no longer constant on (−∞,−𝑅] and on [+𝑅, +∞). Instead, on these intervals, 𝑇 will be linear,

with the additional conditions 𝑇 ′(−𝑅) = 𝑇 ′(−𝑅) and 𝑇 ′(+𝑅) = 𝑇 ′(+𝑅). However, the arguments

still go through, and we can take 𝑅 �
√︁
log(1/(ℓ𝑉 𝜀2)) as before.

Uniform approximation over a compact domain. We will �rst construct a preliminary

version of 𝑇 without using the piecewise cubics. Recall from the discussion above that using the

linear and piecewise quadratic functions, we can ensure that 𝑇 ′ is a linear interpolation of 𝑇 ′.

Namely, we set

𝑇 ′ = 𝑇 ′(−𝑅) +
∑︁
𝐼∈I

[
𝜆
quad,−
𝐼

(𝜓 quad,−)′ + 𝜆quad,+
𝐼

(𝜓 quad,+)′
]
,

where the coe�cients are chosen such that 𝑇 ′ and 𝑇 ′ agree at each of the endpoints of the

sub-intervals. Following the argument as before, for a sub-interval 𝐼 = [𝑎, 𝑎 + 𝛿] and 𝑥 ∈ 𝐼 ,

|𝑇 ′(𝑥) −𝑇 ′(𝑥) | =
���𝑇 ′(𝑥) −𝑇 ′(𝑎) − 𝑇 ′(𝑎 + 𝛿) −𝑇 ′(𝑎)

𝛿
(𝑥 − 𝑎)

��� .
By the mean value theorem, 𝑇 ′(𝑥) = 𝑇 ′(𝑎) +𝑇 ′′(𝑐1) (𝑥 − 𝑎) and 𝑇 ′(𝑎 + 𝛿) = 𝑇 ′(𝑎) +𝑇 ′′(𝑐2) 𝛿 for
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some 𝑐1, 𝑐2 ∈ 𝐼 . Using the bounds on the derivatives of 𝑇 ,

|𝑇 ′(𝑥) −𝑇 ′(𝑥) | = | (𝑇 ′′(𝑐1) −𝑇 ′′(𝑐2)) (𝑥 − 𝑎) | .
𝜅2𝑅2
√
ℓ𝑉
𝛿2 . (F.6)

Next, we wish to control |𝑇 (𝑥) −𝑇 (𝑥) |. Here, 𝑇 is de�ned by integrating 𝑇 ′, and choosing the

shift 𝑣 so that 𝑇 (−𝑅) = 𝑇 (−𝑅). First, suppose that 𝑇 (𝑎) = 𝑇 (𝑎). We can then use the fundamental

theorem of calculus to obtain

|𝑇 (𝑥) −𝑇 (𝑥) | =
���∫ 𝑥

𝑎

(𝑇 ′(𝑦) −𝑇 ′(𝑦)) d𝑦
��� . 𝜅2𝑅2√

ℓ𝑉
𝛿3 . (F.7)

In particular, |𝑇 (𝑎 + 𝛿) −𝑇 (𝑎 + 𝛿) | is of order 𝛿3.

To ensure that𝑇 and𝑇 agree at each of these endpoints, we scan the set of sub-intervals left to

right, and we iteratively add non-negative multiples of the piecewise cubics in order to achieve this

interpolating condition. Since the original endpoint error is bounded in (F.7), it follows that the

coe�cients of the piecewise cubics that we add are small: 0 6 𝜆cub,±
𝐼

. 𝜅2𝑅2𝛿3/
√
ℓ𝑉 . In particular,

the constraint on 𝜆cub,−
𝐼

in (F.5) is met for small 𝛿 .

The key property of the piecewise cubics is that (𝜓 cub,±)′(0) = (𝜓 cub,±)′(1) = 0. This means

that even after adding the piecewise cubics, 𝑇 ′ and 𝑇 ′ agree at all of the endpoints of the sub-

intervals. However, we must check that adding these piecewise cubics does not destroy the

approximation rates (F.6) and (F.7). Since | (𝜓 cub,±
𝐼
)′| . 1/𝛿 , the bound on the coe�cients for the

piecewise cubics shows that the derivative of the piecewise cubic part of𝑇 is bounded in magnitude

by𝑂 (𝜅2𝑅2𝛿2/
√
ℓ𝑉 ), so that (F.6) is intact. Similarly, (F.7) is also intact, either by integrating (F.6) or

by using the bound on the coe�cients of the piecewise cubics. Thus, |𝑇 (𝑥) −𝑇 (𝑥) | . 𝜅2𝑅2𝛿3/
√
ℓ𝑉 ,

and setting this to be at most 𝜀/
√
𝑑ℓ𝑉 yields the choice 𝛿 = Θ̃(𝜀1/3/(𝜅2/3𝑑1/6)).

Size of the generating family. The size of the generating family is then 𝑂 (𝑑𝑅/𝛿) =

𝑂 (𝜅2/3𝑑7/6/𝜀1/3), which completes the proof. �
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Using the bounds on the Jacobian 𝐷𝑇� of the approximating map, we can bound the change in

the KL divergence on the path from 𝜋� to 𝜋★. This shows that 𝜋� has a small suboptimality gap

for KL minimization over P�. The following calculation is similar to the one for Proposition 7.28,

which establishes smoothness of the KL divergence over P�. However, since 𝜋★ does not lie in P�,

it does not apply here.

Corollary F.3. Assume that 𝜋 is well-conditioned (WC). Let 𝜋� = (𝑇�)♯𝜌 denote the approximation

to 𝜋★ given by the piecewise linear construction (Theorem 7.23). Then,

KL(𝜋�‖𝜋) − KL(𝜋★� ‖𝜋) 6 KL(𝜋�‖𝜋) − KL(𝜋★‖𝜋) . 𝜅3𝑑1/2𝜀 .

If, on the other hand, 𝜋� = (𝑇�)♯𝜌 is given by the construction of Theorem 7.24,

KL(𝜋�‖𝜋) − KL(𝜋★� ‖𝜋) 6 KL(𝜋�‖𝜋) − KL(𝜋★‖𝜋) . 𝜅10/3𝑑1/3𝜀4/3 .

Proof. Let (𝜇𝑡 )𝑡∈[0,1] denote the geodesic joining 𝜋★ to 𝜋�. Then, by di�erentiating the KL diver-

gence along this geodesic twice, we obtain the following expressions; see Chewi (2024) and Diao

et al. (2023, Appendix B.2) for derivations. We write𝑇 = 𝑇� ◦ (𝑇★)−1 for the optimal transport map

from 𝜋★ to 𝜋�, and 𝑇𝑡 = (1 − 𝑡) id + 𝑡 𝑇 .

For the potential energy term,

𝜕2𝑡V(𝜇𝑡 ) = E𝜋★〈𝑇 − id, (∇2𝑉 ◦𝑇𝑡 ) (𝑇 − id)〉 6 𝐿𝑉 E𝜋★‖𝑇 − id‖2 = 𝐿𝑉 E𝜌 ‖𝑇� −𝑇★‖2 .

Next, for the entropy term,

𝜕2𝑡H(𝜇𝑡 ) = E𝜋★‖(𝐷𝑇𝑡 )−1 (𝐷𝑇 − 𝐼 )‖2F ,

By Theorem 7.21, 𝐷𝑇 = 𝐷 ((𝑇★)−1) 𝐷𝑇� � 1/
√
𝜅, so 𝐷𝑇𝑡 � 1/

√
𝜅. Also, 𝐷𝑇★ � 1/

√
𝐿𝑉 . Therefore,
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we obtain

𝜕2𝑡H(𝜇𝑡 ) 6 𝜅 E𝜋★‖𝐷 ((𝑇★)−1) 𝐷𝑇� ◦ (𝑇★)−1 − 𝐼 ‖2F

6 𝜅𝐿𝑉 E𝜋★‖𝐷𝑇� ◦ (𝑇★)−1 − 𝐷 ((𝑇★)−1)‖2F = 𝜅𝐿𝑉 E𝜌 ‖𝐷𝑇� − 𝐷𝑇★‖2F .

Therefore, adding the two terms together,

𝜕2𝑡 KL(𝜇𝑡 ‖𝜋) 6 𝐿𝑉 ‖𝑇� −𝑇★‖2
𝐿2 (𝜌) + 𝜅𝐿𝑉 ‖𝐷 (𝑇� −𝑇

★)‖2
𝐿2 (𝜌) .

Integrating this expression from 𝑡 = 0 to 𝑡 = 1,

KL(𝜋�‖𝜋) − KL(𝜋★‖𝜋) 6 E𝜋★〈[∇WKL(·‖𝜋)] (𝜋★),𝑇 − id〉

+ 𝐿𝑉
2
(‖𝑇� −𝑇★‖2

𝐿2 (𝜌) + 𝜅 ‖𝐷𝑇� − 𝐷𝑇
★‖2

𝐿2 (𝜌)) .

However, since 𝜋�, 𝜋★ both belong to the geodesically convex set of product measures, and 𝜋★

minimizes the KL divergence over this set, we must have E𝜋★〈[∇WKL(·‖𝜋)] (𝜋★),𝑇 − id〉 = 0.

We are now in a position to apply the approximation guarantees. Applying the result of Theo-

rem 7.23, we obtain

KL(𝜋�‖𝜋) − KL(𝜋★‖𝜋) . 𝜅𝜀2 + 𝜅3𝑑1/2𝜀 .

If we instead use the improved guarantee of Theorem 7.24, we obtain

KL(𝜋�‖𝜋) − KL(𝜋★‖𝜋) . 𝜅𝜀2 + 𝜅10/3𝑑1/3𝜀4/3 .

�

Finally, from the small suboptimality gap of 𝜋� and the strong geodesic convexity of the
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KL divergence, we are able to prove that 𝜋★ is close, not just to our constructed 𝜋�, but to the

minimizer 𝜋★� of the KL divergence over P�, which in turn can be computed via the algorithms

in Section 7.5.4.

Proof of Theorem 7.26. By triangle inequality, we have

𝑊2(𝜋★� , 𝜋★) ≤𝑊2(𝜋★� , 𝜋�) +𝑊2(𝜋�, 𝜋★) ,

and since we can control the second term (recall Theorem 7.23), it su�ces to control the �rst.

Since KL(·‖𝜋) is ℓ𝑉 -strongly geodesically convex, the �rst term can be bounded above by

ℓ𝑉𝑊
2
2 (𝜋★� , 𝜋�)/2 ≤ KL(𝜋�‖𝜋) − KL(𝜋★� ‖𝜋) . 𝜅3𝑑1/2𝜀 ,

where the �nal bound is obtained from Corollary F.3 (we only take the worst-case scaling term),

and 𝜀 is the approximation accuracy guaranteed by Theorem 7.23. Setting this equal to 𝜀2, we

apply Theorem 7.23 with 𝜀2

𝜅3𝑑1/2
replacing 𝜀 and we see that |M| = 𝑂 (𝜅2𝑑3/2/𝜀).

Similarly, for the higher-order approximation scheme, we use Corollary F.3 and apply Theo-

rem 7.24 with 𝜀3/2

𝜅5/2𝑑1/4
replacing 𝜀, obtaining |M| = 𝑂 (𝜅3/2𝑑5/4/𝜀1/2). �

F.3.4 Proofs for Section 7.5.4

Proof of Proposition 7.28. We write

KL(𝜇‖𝜋) = V(𝜇) + H (𝜇) B
∫

𝑉 d𝜇 +
∫

log 𝜇 d𝜇 + log𝑍 .
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To prove smoothness, it su�ces to show that the Wasserstein Hessians for both V and H are

bounded. Since we work with the augmented cone, we let

𝑇 𝜆,𝑣 B 𝛼 id+
∑︁
𝑇∈M

𝜆𝑇𝑇 + 𝑣 , 𝜇𝜆,𝑣 B (𝑇 𝜆,𝑣 )♯𝜌 .

Our goal is to upper bound the following quadratic forms

∇2WV(𝜇𝜆,𝑣 ) [𝑇
𝜂,𝑢

𝜆,𝑣
− id,𝑇 𝜂,𝑢

𝜆,𝑣
− id] = E𝜇𝜆,𝑣 [(𝑇

𝜂,𝑢

𝜆,𝑣
− id)> ∇2𝑉 (𝑇 𝜂,𝑢

𝜆,𝑣
− id)] ,

∇2WH(𝜇𝜆,𝑣 ) [𝑇
𝜂,𝑢

𝜆,𝑣
− id,𝑇 𝜂,𝑢

𝜆,𝑣
− id] = E𝜇𝜆,𝑣 ‖𝐷𝑇

𝜂,𝑢

𝜆,𝑣
− 𝐼 ‖2F ,

in terms of the squaredWasserstein distance between 𝜇𝜆,𝑣 and 𝜇𝜂,𝑢 , and𝑇
𝜂,𝑢

𝜆,𝑣
is the optimal transport

map from 𝜇𝜆,𝑣 to 𝜇𝜂,𝑢 . See Chewi (2024) and Diao et al. (2023, Appendix B.2) for derivations of

these expressions. We bound the two terms separately.

An upper bound on the potential term is straightforward. By (WC), ∇2𝑉 � 𝐿𝑉 𝐼 , and so

∇2WV(𝜇𝜆,𝑣 ) [𝑇
𝜂,𝑢

𝜆,𝑣
− id,𝑇 𝜂,𝑢

𝜆,𝑣
− id] = E𝜇𝜆,𝑣 [(𝑇

𝜂,𝑢

𝜆,𝑣
− id)> ∇2𝑉 (𝑇 𝜂,𝑢

𝜆,𝑣
− id)]

≤ 𝐿𝑉 E𝜇𝜆,𝑣 ‖𝑇
𝜂,𝑢

𝜆,𝑣
− id‖2 = 𝐿𝑉𝑊 2

2 (𝜇𝜆,𝑣 , 𝜇𝜂,𝑢) .

The entropy term needs a bit more work. To start, we note that by compatibility,

𝑇
𝜂,𝑢

𝜆,𝑣
= 𝑇 𝜂,𝑢 ◦ (𝑇 𝜆,𝑣 )−1 = 𝑇 𝜂 ◦ (𝑇 𝜆)−1(· − 𝑣) + 𝑢 , (F.8)

where we write 𝑇 𝜆,𝑣 = 𝑇 𝜆 + 𝑣 and similarly 𝑇 𝜂,𝑢 = 𝑇 𝜂 + 𝑢. By the chain rule,

𝐷𝑇
𝜂,𝑢

𝜆,𝑣
(·) = [𝐷𝑇 𝜂 ◦ (𝑇 𝜆)−1(· − 𝑣)] 𝐷 [(𝑇 𝜆)−1] (· − 𝑣) .

(For simplicity, the reader may wish to �rst read the following calculations setting 𝑢 = 𝑣 = 0.)
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Performing the appropriate change of variables, the Wasserstein Hessian ofH reads

E𝜇𝜆,𝑣 ‖𝐷𝑇
𝜂,𝑢

𝜆,𝑣
− 𝐼 ‖2F = E𝜇𝜆,𝑣 ‖ [𝐷𝑇 𝜂 ◦ (𝑇 𝜆)−1(· − 𝑣)] 𝐷 [(𝑇 𝜆)−1] (· − 𝑣) − 𝐼 ‖2F

= E𝜌 ‖𝐷𝑇 𝜂 𝐷 [(𝑇 𝜆)−1] ◦ (𝑇 𝜆,𝑣 − 𝑣) − 𝐼 ‖2F

= E𝜌 ‖𝐷𝑇 𝜂 𝐷 [(𝑇 𝜆)−1] ◦𝑇 𝜆 − 𝐼 ‖2F

= E𝜌 ‖𝐷𝑇 𝜂 (𝐷𝑇 𝜆)−1 − 𝐼 ‖2F ,

where we invoked the inverse function theorem in the last step. Given our set of maps, we know

that for any 𝜆 ∈ R|M|+ , 𝐷𝑇 𝜆 � 𝛼𝐼 , and since 𝐷𝑇 𝜆 (𝐷𝑇 𝜆)−1 = 𝐼 , we obtain

E𝜇𝜆,𝑣 ‖𝐷𝑇
𝜂,𝑢

𝜆,𝑣
− 𝐼 ‖2F ≤

1
𝛼2
E𝜌 ‖𝐷𝑇 𝜂 − 𝐷𝑇 𝜆‖2F .

Since our maps are regular (i.e., (Υ) holds), there exists Υ > 0 such that

E𝜌 ‖𝐷𝑇 𝜂 − 𝐷𝑇 𝜆‖2F = E𝜌



∑︁
𝑇∈M
(𝜆𝑇 − 𝜂𝑇 ) 𝐷𝑇




2
F
= 〈𝜂 − 𝜆,𝑄 (1) (𝜂 − 𝜆)〉 6 Υ 〈𝜂 − 𝜆,𝑄 (𝜂 − 𝜆)〉 .

Finally, note that

𝑊 2
2 (𝜇𝜆,𝑣 , 𝜇𝜂,𝑢) = E𝜌




∑︁
𝑇∈M
(𝜂𝑇 − 𝜆𝑇 )𝑇 + 𝑢 − 𝑣




2 = E𝜌


∑︁
𝑇∈M
(𝜂𝑇 − 𝜆𝑇 )𝑇




2 + ‖𝑢 − 𝑣 ‖2
= 〈𝜂 − 𝜆,𝑄 (𝜂 − 𝜆)〉 + ‖𝑢 − 𝑣 ‖2 ,

where we used the fact that the maps inM are centered. This shows that

∇2WH(𝜇𝜆,𝑣 ) [𝑇
𝜂,𝑢

𝜆,𝑣
− id,𝑇 𝜂,𝑢

𝜆,𝑣
− id] 6 Υ

𝛼2
𝑊 2

2 (𝜇𝜆,𝑣 , 𝜇𝜂,𝑢) .

Combining all of the terms completes the proof. �
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Proof of Lemma 7.30. We restrict our attention to the piecewise linear family denotedM in di-

mension one with |M| = 𝐽 . This su�ces due to the tensorization property of Υ, see the remark

after the de�nition of Υ. It su�ces to prove, for all 𝜆 ∈ R𝐽 ,



∑︁
𝑇∈M

𝜆𝑇𝑇
′

2
𝐿2 (𝜌) ≤ Υ



∑︁
𝑇∈M

𝜆𝑇𝑇


2
𝐿2 (𝜌) ,

where 𝜌 = N(0, 1). We truncate the domain of 𝜌 to [−𝑅, 𝑅], where 𝑅 �
√︁
log(1/(ℓ𝑉 𝜀2)). On some

interval [𝑎, 𝑎 + 𝛿], note that

𝑇 𝜆 (𝑥) = 𝑇 𝜆 (𝑎) + 𝜆𝑇 ((𝑥 − 𝑎)/𝛿)+ , 𝐷𝑇 𝜆 (𝑥) = 𝜆𝑇 /𝛿 .

It thus su�ces to prove the statement on such an interval. This is equivalent to proving that

∫ 𝑎+𝛿

𝑎

(𝜆𝑇
𝛿

)2
𝜌 (d𝑥) ≤ Υ

∫ 𝑎+𝛿

𝑎

(
𝑇 𝜆 (𝑎) + 𝜆𝑇

𝑥 − 𝑎
𝛿

)2
𝜌 (d𝑥) .

Rearranging, it su�ces to show that

𝛿−2Υ−1 ≤
inf𝑚∈R

∫ 𝑎+𝛿
𝑎

(
𝑥−𝑎
𝛿
−𝑚

)2
𝜌 (d𝑥)∫ 𝑎+𝛿

𝑎
𝜌 (d𝑥)

=
var𝑋
𝛿2

,

or Υ−1 ≤ var𝑋 , with 𝑋 ∼ 𝜌 | [𝑎,𝑎+𝛿] .

Letting𝑚𝑎 B E𝑋 , suppose WLOG𝑚𝑎 ≤ 𝑎 + 𝛿/2. We compute

E[(𝑋 −𝑚𝑎)2] ≥ E[(𝛿/4)2 1𝑋≥𝑎+3𝛿/4] & 𝛿2 P(𝑋 ≥ 𝑎 + 3𝛿/4) = 𝛿2
∫ 𝑎+𝛿
𝑎+3𝛿/4 𝜌 (d𝑥)∫ 𝑎+𝛿
𝑎

𝜌 (d𝑥)
& 𝛿2 ,

provided 𝛿 . 1/𝑅; indeed, for this choice of 𝛿 , |log 𝜌 (𝑥) − log 𝜌 (𝑦) | . 1 for all 𝑥,𝑦 ∈ [𝑎, 𝑎 + 𝛿].

Stringing together the inequalities, we obtain the desired claim. �
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F.3.5 Proofs for Section 7.5.5.2

In this section, we prove our variance bounds for SPGD for mean-�eld VI. We start with a

gradient bound under 𝜋★.

Lemma F.4. Let 𝜋 be a (WC) measure, and let 𝜋★ be the mean-�eld approximation. Then

E𝜋★∇𝑉 = 0 , E𝜋★‖∇𝑉 ‖2 6 𝐿𝑉𝜅𝑑 . (F.9)

Proof. Recall our de�nition of 𝜋★ with components 𝜋𝑖 ∝ exp(−𝑉𝑖) with

𝑉𝑖 (𝑥𝑖)
∫
R𝑑−1

𝑉 (𝑥1, . . . , 𝑥𝑑)
⊗
𝑗≠𝑖

𝜋★𝑗 (d𝑥 𝑗 )

Assuming the �rst claim, we can prove the second by applying the Brascamp–Lieb inequal-

ity (Brascamp and Lieb, 1976):

E𝜋★‖∇𝑉 − E𝜋★∇𝑉 ‖2 ≤ E𝜋★ tr((∇2𝑉 )2 diag( ®𝑉 ′′)−1) ,

where ®𝑉 ′′ B (𝑉 ′′1 , . . . ,𝑉 ′′𝑑 ). By Proposition 7.19, each component satis�es the bound (𝑉 ′′𝑖 )−1 ≤ 1/ℓ𝑉 ,

and we also have by assumption ∇2𝑉 � 𝐿𝑉 𝐼 . Together, the bound is clear:

E𝜋★‖∇𝑉 ‖2 ≤ tr((𝐿𝑉 𝐼 )2)/ℓ𝑉 = 𝐿𝑉𝜅𝑑 .

It remains to prove the �rst equality. Recall that for 𝑖 ∈ [𝑑],

𝑉𝑖 (𝑥𝑖) =
∫

𝑉 (𝑥)
⊗
𝑗≠𝑖

𝜋★𝑗 (d𝑥 𝑗 ) .
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Consider a test vector 𝑒1 = (1, 0, . . . , 0) ∈ R𝑑 . Appropriately interchanging the order of integration,

one can check that we obtain

E𝜋★∇𝑉>𝑒1 =
∫

𝑉 ′1 (𝑥1) 𝜋★1 (d𝑥1) =
∫

𝑉 ′1 (𝑥)
exp(−𝑉1(𝑥1))∫
exp(−𝑉1(𝑥′1)) d𝑥′1

d𝑥1 = 0 ,

by an application of integration by parts. The same is true for the other coordinates. �

Proof of Lemma 7.33. We want to bound the quantity

E[‖𝑄−1 (∇̂𝜆V(𝜇𝜆) − ∇𝜆V(𝜇𝜆))‖2𝑄 ] = E[‖𝑄
−1/2 (∇̂𝜆V(𝜇𝜆) − ∇𝜆V(𝜇𝜆))‖2] .

Using convenient notation choices, we �rst recall the expressions of the stochastic and non-

stochastic gradients of the potential energy:

∇̂𝜆V(𝜇𝜆) = 𝑻 (𝑋 ) ∇𝑉 (𝑇 𝜆 (𝑋 )) , ∇𝜆V(𝜇𝜆) = E𝜌 [𝑻 ∇𝑉 ◦𝑇 𝜆] ,

where 𝑋 ∼ 𝜌 is a random draw, and 𝑻 (𝑋 ) = (𝑇1(𝑋 ), . . . ,𝑇|M| (𝑋 )) ∈ R|M| × R𝑑 is the evaluation

of the whole dictionary at the random draw.

We begin by exploiting symmetry in the problem, reducing it to one dimension. First, note

that 𝑻 can be equivalently expressed as 𝑑 repetitions of the following vectors,

𝑻 = (𝑇1:𝐽 , . . . ,𝑇1:𝐽 ) ,

where 𝑇1:𝐽 denotes the �rst 𝐽 maps in our dictionary (the same maps exist in all dimensions)

(This is a slight abuse of notation because the 𝑖-th occurrence of 𝑇1:𝐽 above acts only on the 𝑖-th

coordinate of the input.) Thus, the matrix 𝑄−1/2 is block-diagonal, written

𝑄−1/2 = 𝐼𝑑 ⊗ 𝑄−1/21:𝐽 ,
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where 𝑄1:𝐽 is the �rst 𝐽 × 𝐽 block of the full 𝑄 matrix, which is 𝐽𝑑 × 𝐽𝑑 . We can similarly express

the gradients with respect to 𝜆 in this way (i.e., only di�erentiating the �rst 𝐽 components), which

results in controlling the following quantity

E[‖𝑄−1/2 (∇̂𝜆V(𝜇𝜆) − ∇𝜆V(𝜇𝜆))‖2] =
𝑑∑︁
𝑖=1
E[‖𝑄−1/21:𝐽 (∇̂1:𝐽V(𝜇𝜆) − ∇1:𝐽V(𝜇𝜆))‖

2] .

Combining these reductions, we are left with bounding the following term in each dimension:

tr Cov
(
𝑄
−1/2
1:𝐽 𝑇1:𝐽 (𝑋𝑖) 𝜕𝑖𝑉 (𝑇 𝜆 (𝑋 )

)
= E

[
〈𝑇1:𝐽 (𝑋𝑖)𝑇1:𝐽 (𝑋𝑖)>, 𝑄−11:𝐽 〉 𝜕𝑖𝑉 (𝑇

𝜆 (𝑋 ))2
]

6 Ξ𝐽 E[𝜕𝑖𝑉 (𝑇 𝜆 (𝑋 ))2] ,

where we invoked (Ξ) in the last inequality. Summing over the coordinates,

E[‖𝑄−1/2 (∇̂𝜆V(𝜇𝜆) − ∇𝜆V(𝜇𝜆))‖2] 6 Ξ𝐽 E𝜌 ‖∇𝑉 ◦𝑇 𝜆‖2 .

We bound the remaining expectation by repeatedly invoking smoothness of 𝑉 . First,

E𝜌 ‖∇𝑉 ◦𝑇 𝜆‖2 ≤ 2E𝜌 ‖∇𝑉 ◦𝑇 𝜆 − ∇𝑉 ◦𝑇★
� ‖2 + 2E𝜌 ‖∇𝑉 ◦𝑇★

� ‖2

≤ 2𝐿2𝑉 ‖𝑇
𝜆 −𝑇★

� ‖2𝐿2 (𝜌) + 2E𝜌 ‖∇𝑉 ◦𝑇
★
� ‖2

= 2𝐿2𝑉𝑊
2
2 (𝜇𝜆, 𝜋★� ) + 2E𝜌 ‖∇𝑉 ◦𝑇★

� ‖2 .

For the next term, we apply the same trick, but we compare against 𝜋★, the true mean-�eld

approximation:

E𝜌 ‖∇𝑉 ◦𝑇 𝜆‖2 ≤ 2𝐿2𝑉𝑊
2
2 (𝜇𝜆, 𝜋★� ) + 4E𝜌 ‖∇𝑉 ◦𝑇★

� − ∇𝑉 ◦𝑇★‖2 + 4E𝜌 ‖∇𝑉 ◦𝑇★‖2

≤ 2𝐿2𝑉𝑊
2
2 (𝜇𝜆, 𝜋★� ) + 4𝐿2𝑉𝑊

2
2 (𝜋★� , 𝜋★) + 4𝐿𝑉𝜅𝑑 ,
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where we used Lemma F.4 in the last step.

Our full variance bound reads

E[‖𝑄−1 (∇̂𝜆V(𝜇𝜆) − ∇𝜆V(𝜇𝜆))‖2𝑄 ] ≤ 2𝐿2𝑉Ξ𝐽 𝑊
2
2 (𝜇𝜆, 𝜋★� ) + 4𝐿𝑉Ξ𝐽 (𝐿𝑉𝑊 2

2 (𝜋★� , 𝜋★) + 𝜅𝑑) .

�

Finally, we also prove the bound on Ξ for the piecewise linear dictionary.

Proof of Lemma 7.32. If we can show that 𝑄 � 𝛾𝐼 for some 𝛾 > 0, then

〈𝑄−1, 𝑄 (𝑥)〉 6 𝛾−1 tr𝑄 (𝑥) = 𝛾−1
∑︁
𝑇∈M

𝑇 (𝑥)2 6 𝛾−1𝐽 ,

where we use the fact that the elements of the piecewise linear dictionary are uniformly bounded

by 1.

To prove the lower bound on 𝑄 , we note that for any 𝜆 ∈ R𝐽 ,

〈𝜆,𝑄 𝜆〉 =



∑︁
𝑇∈M

𝜆𝑇𝑇




2
𝐿2 (𝜌)

.

On an interval [𝑎, 𝑎 + 𝛿], since 𝑇 𝜆 (𝑥) = 𝑇 𝜆 (𝑎) + 𝜆𝑇 ((𝑥 − 𝑎)/𝛿)+,∫ 𝑎+𝛿

𝑎

𝑇 𝜆 (𝑥)2 𝜌 (d𝑥) =
∫ 𝑎+𝛿

𝑎

(
𝑇 𝜆 (𝑎) + 𝜆𝑇

𝑥 − 𝑎
𝛿

)2
𝜌 (d𝑥) > 𝜆2𝑇 inf

𝑚∈R

∫ 𝑏

𝑎

(𝑥 − 𝑎
𝛿
−𝑚

)2
𝜌 (d𝑥)

& 𝜆2𝑇𝛿
2
∫ 𝑎+𝛿

𝑎

𝜌 (d𝑥) ,

where we used the variance bound from the proof of Lemma 7.30. Summing across the intervals,

we �nd that 〈𝜆,𝑄 𝜆〉 & 𝛿2 ∑𝑇∈M 𝜆2
𝑇
, so we can take 𝛾 � 𝛿2. This leads to an upper bound on Ξ of

order 𝛿−2 � 𝐽 2. �
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F.4 Remaining implementation details

F.4.1 Product Gaussian mixture

Let 𝑉1 (resp. 𝑉2) be the potential for a univariate Gaussian mixture with weights𝑤1,1 and𝑤1,2

(resp.𝑤2,1 and𝑤2,2) that sum to unity, and centers𝑚1,1 and𝑚1,2 (resp.𝑚2,1 and𝑚2,2), where all the

mixture components have unit variance. Then, 𝑉 : R2 → R de�ned by 𝑉 (𝑥,𝑦) = 𝑉1(𝑥) +𝑉2(𝑦) is

the potential for the Gaussian mixture with mean-weight pairs given by

{([𝑚1,1,𝑚2,1],𝑤1,1𝑤2,1), ( [𝑚1,1,𝑚2,2],𝑤1,1𝑤2,2), ( [𝑚1,2,𝑚2,1],𝑤1,2𝑤2,1), ( [𝑚1,2,𝑚2,2],𝑤1,2𝑤2,2)} .

We take𝑚1,1 = 𝑚2,1 = 2,𝑚1,2 = 𝑚2,2 = −2, with 𝑤1,1 = 𝑤2,2 = 0.25 and 𝑤1,2 = 𝑤2,1 = 0.75. As for

the hyperparameters of our model, we chose 𝐽 = 28, 𝛼 = 0.1, a step-size ℎ = 10−3 (for both 𝜆 and

𝑣), ran for 3000 iterations, and initialized at 𝜆(0) = 02×𝐽 ∈ R2×𝐽 , and 𝑣 (0) = 02 ∈ R2. The KDE plots

were generated via sklearn, after we generated 50,000 samples from the ground truth density

and from our algorithm.

F.4.2 Non-isotropic Gaussian

We generated 𝐴 ∈ R𝑑×𝑑 with entries 𝐴𝑖, 𝑗 ∼ N(0, 1), and de�ned Σ = 𝐴𝐴> for 𝑑 = 5, which is

�xed once and for all. We computed the optimal 𝛼∗ = 1/
√
𝐿𝑉 , since the potential is a Gaussian.

For the remaining hyper-parameters of our model, we chose 𝐽 = 28, a step-size ℎ = 10−4 (for both

𝜆 and 𝑣), ran for 2000 iterations, and initialized at 𝜆(0) = 1𝑑×𝐽 ∈ R𝑑×𝐽 , the all-ones matrix, and

𝑣 (0) = 0𝑑 ∈ R𝑑 . At each step, we computed Σ̂MF by pushing forward 10,000 samples, computing

the empirical covariance, and computing the Bures–Wasserstein distance to ΣMF.

We now compute the fact that ΣMF is diagonal with components 1/(Σ−1)𝑖,𝑖 for 𝑖 ∈ [𝑑]. Recall
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the KL divergence between two Gaussians with mean zero is given by

KL(N (0, 𝐴)‖N (0, Σ)) = 1
2
[
tr(Σ−1𝐴) − 𝑑 + log det(Σ) − log det(𝐴)

]
.

Now, we impose that 𝐴 is a diagonal matrix with entries 𝐴𝑖,𝑖 = 𝑎𝑖 for some 𝑎𝑖 ≥ 0. In this case, up

to constants denoted by 𝐶 , the above reads

KL(N (0, 𝐴)‖N (0, Σ)) = 1
2

𝑑∑︁
𝑖=1

[
(Σ−1)𝑖,𝑖𝑎𝑖 − log(𝑎𝑖)

]
+𝐶 .

Taking the derivative in 𝑎𝑖 , we see that the optimality conditions yield

1/(Σ−1)𝑖,𝑖 = 𝑎★𝑖

for every 𝑖 ∈ [𝑑], which completes the calculation.

F.4.3 Bayesian logistic regression

We �rst randomly drew 𝜃★ ∼ N(0, 𝐼𝑑) in 𝑑 = 20 as the ground truth parameter. Further,

we let 𝑛 = 100 and randomly generated 𝑋 ∈ R𝑛×𝑑 as in the non-isotropic Gaussian experiment

(here, 𝑋 takes the role of 𝐴), but we divided the matrix by 𝜆max(𝑋>𝑋 ) for normalization purposes.

Subsequently, 𝑌𝑖 was generated for each 𝑖 independently according to

𝑌𝑖 | 𝑋𝑖 ∼ Bern(exp(𝜃>𝑋𝑖)) ,
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where 𝑋𝑖 is a row of 𝑋 . Using this data, and assuming an improper (Lebesgue) prior on 𝜃 , the

potential of the posterior is given by

𝑉 (𝜃 ) =
𝑛∑︁
𝑖=1

[
log(1 + exp(𝜃>𝑋𝑖)) − 𝑌𝑖 𝜃>𝑋𝑖

]
.

With access to 𝑉 and ∇𝑉 , we ran standard Langevin Monte Carlo (LMC) for 5000 iterations

with a step size of ℎ = 10−2, where we generated 2000 samples.

For the hyperparameters of our model, we chose 𝐽 = 28, 𝛼 = 0.1, a step size ℎ = 10−2

for the 𝜆 iterates, and ℎ𝑣 = 10−1 for updating 𝑣 , and ran for 2000 iterations. We initialized at

𝜆(0) = 1𝑑×𝐽/(𝐽𝑑) ∈ R𝑑×𝐽 , and 𝑣 (0) = 0𝑑 ∈ R𝑑 . The �nal histograms were generated using 2000

samples from both the mean-�eld VI algorithm and LMC.

F.5 Proofs for Section 7.7

In this section, we derive the gradient �ows in Section 7.7.

Proof of Theorem 7.36. We refer to Lambert et al. (2022, Appendix F) for the relevant background.

The �rst variation of the functional F (𝑃) B KL(𝜇𝑃 ‖𝜋) is given by

𝛿F (𝑃) : (𝜆, 𝑣) ↦→
∫
(𝑉 + log 𝜇𝑃 + 1) d𝜇𝜆,𝑣 =

∫
log

𝜇𝑃

𝜋
d𝜇𝜆,𝑣 + 1 . (F.10)

Therefore, the Wasserstein gradient is given by

∇WF (𝑃) (𝜆, 𝑣) =
(
𝑄−1 ∇𝜆

∫
log

𝜇𝑃

𝜋
d𝜇𝜆,𝑣 , ∇𝑣

∫
log

𝜇𝑃

𝜋
d𝜇𝜆,𝑣

)
. (F.11)

These terms are further computed as follows. First,

𝜕𝜆𝑇

∫
log

𝜇𝑃

𝜋
d𝜇𝜆,𝑣 = 𝜕𝜆𝑇

∫
log

𝜇𝑃

𝜋
◦𝑇 𝜆,𝑣 d𝜌 =

∫ 〈
∇ log 𝜇𝑃

𝜋
◦𝑇 𝜆,𝑣 ,𝑇

〉
d𝜌 .
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Similarly, we have

∇𝑣
∫

log
𝜇𝑃

𝜋
d𝜇𝜆,𝑣 =

∫
∇ log 𝜇𝑃

𝜋
◦𝑇 𝜆,𝑣 d𝜌 .

This concludes the proof. �

Proof of Theorem 7.37. This theorem follows from the expression of the �rst variation computed

in (F.10), see Lambert et al. (2022, Appendix H). �
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