Optimal Transport Map Estimation in General Function Spaces

Aram-Alexandre Pooladian
New York University

Simons Institute (UC Berkeley) GMOS Reunion Workshop

in collaboration with

Vincent Divol
Jon Niles-Weed

Dirt Moving

Dirt Moving

Dirt Moving

Dirt Moving

Dirt Moving

Transport maps

Transport maps

Transport maps

Call T a transport map if $T_{\sharp} P=Q$ i.e. $X \sim P, T(X) \sim Q$

Optimal transport maps

Optimal transport maps

Optimal transport maps

$$
T_{0}:=\underset{T: T_{\sharp} P=Q}{\operatorname{argmin}} \int \frac{1}{2}\|x-T(x)\|_{2}^{2} \mathrm{~d} P(x)
$$

Brenier's Theorem: $T_{0}=\nabla \varphi_{0}$ for some convex function φ_{0}

Statistical estimation of OT maps

Given P (e.g. standard Normal) and i.i.d samples $Y_{1}, \ldots, Y_{n} \sim Q$

Statistical estimation of OT maps

Given P (e.g. standard Normal) and i.i.d samples $Y_{1}, \ldots, Y_{n} \sim Q$
Question: How to estimate T_{0} on the basis of samples?

Statistical estimation of OT maps

Goal: Define estimator \hat{T}_{n} s.t. under appropriate assumptions, $\mathbb{E}\left\|\hat{T}_{n}-T_{0}\right\|_{L^{2}(P)}^{2} \lesssim$?

Prior work

Assumptions (prior work):

- P and Q have compact support, with densities bounded above and below
- $T_{0} \in C^{s}$ (s-times differentiable)
- T_{0} is bi-Lipschitz, equivalently $I \alpha \leq \nabla^{2} \varphi_{0} \leq \beta I$

Results (prior work):

- [HR21] proposed a wavelet based estimator
- $[\mathrm{MB}+21]$ proposed the 1-Nearest-Neighbor estimator
- [PNW21] proposed the entropic map estimator
- among others

Prior work

Results (prior work):

- [HR21] proposed a wavelet based estimator, $\nabla \hat{\varphi}_{W}$
- [MB+21] proposed a 1-Nearest-Neighbor estimator
- [PNW21] proposed the entropic map estimator

Method: estimate φ_{0} with wavelet class $W_{J}^{\alpha, \beta}$, need $0<P_{\text {min }} \leq P(x) \leq P_{\max }$

Prior work

Results (prior work):

- [HR21] proposed a wavelet based estimator, $\nabla \hat{\varphi}_{W}$
- [MB+21] proposed a 1-Nearest-Neighbor estimator
- [PNW21] proposed the entropic map estimator

$$
\mathbb{E}\left\|\nabla \hat{\varphi}_{W}-\nabla \varphi_{0}\right\|_{L^{2}(P)}^{2} \lesssim_{\log (n)} n^{-\frac{2 s}{2 s+d-2}}
$$

Method: estimate φ_{0} with wavelet class $W_{J}^{\alpha, \beta}$, need $0<P_{\min } \leq P(x) \leq P_{\max }$

Prior work

Results (prior work):

- [HR21] proposed a wavelet based estimator, $\nabla \hat{\varphi}_{W}$
- [MB+21] proposed a 1-Nearest-Neighbor estimator ($s=1$), \hat{T}_{1} NN
- [PNW21] proposed the entropic map estimator

Method: compute OT coupling $\left(X_{i}, Y_{\sigma(i)}\right)$, match to closest $Y_{\sigma(i)}$ from training set

Prior work

Results (prior work):

- [HR21] proposed a wavelet based estimator, $\nabla \hat{\varphi}_{W}$
- [MB+21] proposed a 1-Nearest-Neighbor estimator ($s=1$), \hat{T}_{1} NN
- [PNW21] proposed the entropic map estimator

$$
\mathbb{E}\left\|\hat{T}_{1 \mathrm{NN}}-\nabla \varphi_{0}\right\|_{L^{2}(P)}^{2} \lesssim_{\log (n)} n^{-\frac{2}{d}}
$$

Method: compute OT coupling $\left(X_{i}, Y_{\sigma(i)}\right)$, match to closest $Y_{\sigma(i)}$ from training set

Prior work

Results (prior work):

- [HR21] proposed a wavelet based estimator, $\nabla \hat{\varphi}_{W}$
- [MB+21] proposed a 1-Nearest-Neighbor estimator ($s=1$), $\hat{T}_{1} \mathrm{NN}$
- [PNW21] proposed the entropic map estimator ($s=1$), $\nabla \hat{\varphi}_{\varepsilon}$

Method: entropic optimal transport

Prior work

Results (prior work):

- [HR21] proposed a wavelet based estimator, $\nabla \hat{\varphi}_{W}$
- [MB+21] proposed a 1-Nearest-Neighbor estimator ($s=1$), $\hat{T}_{1} \mathrm{NN}$
- [PNW21] proposed the entropic map estimator ($s=1$), $\nabla \hat{\varphi}_{\varepsilon}$

$$
\mathbb{E}\left\|\nabla \hat{\varphi}_{\varepsilon}-\nabla \varphi_{0}\right\|_{L^{2}(P)}^{2} \lesssim_{\log (n)} n^{-\frac{1}{d+2}}
$$

Method: entropic optimal transport

Prior work

Assumptions (prior work):

- P and Q have compact support, with densities bounded above and below
- $T_{0} \in C^{s}$ (s-times differentiable)
- T_{0} is bi-Lipschitz, equivalently $I \alpha \leq \nabla^{2} \varphi_{0} \leq \beta I$

This talk:

Prior work

Assumptions (prior work):

- P and Q have compact support, with densities bounded above and below
- $T_{0} \in C^{s}$ (s-times differentiable)
- T_{0} is bi-Lipschitz, equivalently $I \alpha \leq \nabla^{2} \varphi_{0} \leq \beta I$

This talk: extend assumptions to include

Prior work

Assumptions (prior work):

- P and Q have compact support, with densities bounded above and below
- $T_{0} \in C^{s}$ (s-times differentiable)
- T_{0} is bi-Lipschitz, equivalently $I \alpha \leq \nabla^{2} \varphi_{0} \leq \beta I$

This talk: extend assumptions to include

- P and Q not having compact support
- φ_{0} can exist in more general function spaces

Semidual formulation

Semidual formulation

$$
\frac{1}{2} W_{2}^{2}(P, Q)=\min _{T: T_{A} P=Q} \int \frac{1}{2}\|x-T(x)\|_{2}^{2} \mathrm{~d} P(x)
$$

Semidual formulation

$$
\begin{aligned}
\frac{1}{2} W_{2}^{2}(P, Q)= & \min _{T: T_{P} P=Q} \int \frac{1}{2}\|x-T(x)\|_{2}^{2} \mathrm{~d} P(x)=\frac{1}{2}\left(M_{2}(P)+M_{2}(Q)\right)-S\left(\varphi_{0}\right) \\
& \text { with } \quad S\left(\varphi_{0}\right)=\min _{\varphi} \int \varphi(x) \mathrm{d} P(x)+\int \varphi^{*}(y) \mathrm{d} Q(y)
\end{aligned}
$$

Semidual formulation

$$
\begin{aligned}
\frac{1}{2} W_{2}^{2}(P, Q)= & \min _{T: T_{P} P=Q} \int \frac{1}{2}\|x-T(x)\|_{2}^{2} \mathrm{~d} P(x)=\frac{1}{2}\left(M_{2}(P)+M_{2}(Q)\right)-S\left(\varphi_{0}\right) \\
& \text { with } \quad S\left(\varphi_{0}\right)=\min _{\varphi} \int \varphi(x) \mathrm{d} P(x)+\int \varphi^{*}(y) \mathrm{d} Q(y)
\end{aligned}
$$

Why? φ_{0} is the optimal Brenier potential, and $T_{0}=\nabla \varphi_{0}$

Semidual formulation

Established that map estimation is equivalent to solving:

$$
\operatorname{argmin}_{\varphi} S(\varphi)=\int \varphi(x) \mathrm{d} P(x)+\int \varphi^{*}(y) \mathrm{d} Q(y)
$$

Semidual formulation

Established that map estimation is equivalent to solving:

$$
\operatorname{argmin}_{\varphi} S(\varphi)=\int \varphi(x) \mathrm{d} P(x)+\int \varphi^{*}(y) \mathrm{d} Q(y)
$$

Idea from [HR21]: study properties of the minimizer to the empirical semidual

Semidual formulation

Established that map estimation is equivalent to solving:

$$
\operatorname{argmin}_{\varphi} S(\varphi)=\int \varphi(x) \mathrm{d} P(x)+\int \varphi^{*}(y) \mathrm{d} Q(y)
$$

Idea from [HR21]: study properties of the minimizer to the empirical semidual

$$
\hat{\varphi}_{\mathscr{F}}=\underset{\varphi \in \mathscr{F}}{\operatorname{argmin}} S_{n}(\varphi):=\int \varphi(x) \mathrm{d} P(x)+\frac{1}{n} \sum_{i=1}^{n} \varphi^{*}\left(Y_{i}\right)
$$

for some function class \mathscr{F} that φ_{0} lies in or is close to.

Semidual formulation

Established that map estimation is equivalent to solving:

$$
\operatorname{argmin}_{\varphi} S(\varphi)=\int \varphi(x) \mathrm{d} P(x)+\int \varphi^{*}(y) \mathrm{d} Q(y)
$$

Idea from [HR21]: study properties of the minimizer to the empirical semidual

$$
\hat{\varphi}_{\mathscr{F}}=\underset{\varphi \in \mathscr{F}}{\operatorname{argmin}} S_{n}(\varphi):=\int \varphi(x) \mathrm{d} P(x)+\frac{1}{n} \sum_{i=1}^{n} \varphi^{*}\left(Y_{i}\right)
$$

for some function class \mathscr{F} that φ_{0} lies in or is close to.
Our final estimator is then $\hat{T}=\nabla \hat{\varphi}_{\mathscr{F}}$

Potential function classes

Examples of non-parametric classes:

- s-Hölder smooth functions (prior work)
- Reproducing Kernel Hilbert Spaces (new!)
- Shallow Neural Networks (a.k.a Barron space) (new!)
- "Low-dimensional" potential functions (new!)

Examples of parametric classes:

- Finite set (new!)
- Quadratics potentials (new!)
- Input Convex Neural Networks (ICNNs) (new!)

Assumptions

- (A1) P satisfies a Poincaré inequality (with bounded or unbounded domain!)
- (A2) All $\varphi \in \mathscr{F}$ are β-smooth $-\nabla^{2} \varphi \leq \beta I$
- (A3) φ_{0} is α-strongly convex and β-smooth $-\alpha I \leq \nabla^{2} \varphi_{0} \leq \beta I$
- (A4) Metric entropy condition on \mathscr{F}

"Meta" theorems

[Theorem 2+3, (Divol, Niles-Weed, P. 2022)]

"Meta" theorems

[Theorem 2+3, (Divol, Niles-Weed, P. 2022)]

$$
\mathbb{E}\left\|\nabla \hat{\varphi}_{\mathscr{F}}-\nabla \varphi_{0}\right\|_{L^{2}(P)}^{2} \lesssim_{\log (n), \log (d)} \operatorname{Rate}(\mathscr{F}, n)
$$

"Meta" theorems

[Theorem 2+3, (Divol, Niles-Weed, P. 2022)]

$$
\mathbb{E}\left\|\nabla \hat{\varphi}_{\mathscr{F}}-\nabla \varphi_{0}\right\|_{L^{2}(P)}^{2} \lesssim_{\log (n), \log (d)} \operatorname{Rate}(\mathscr{F}, n)
$$

Today: second of two "meta" theorems:

- Theorem 2 has suboptimal rates but weaker conditions
- To have improved rates: need strong convexity, Poincaré inequality, and P having a nice density

Sanity checks

Sanity check: \mathscr{F} is a finite set

Suppose:

- $\mathscr{F}=\left\{\varphi_{1}, \ldots, \varphi_{K}\right\}$ is a set of strongly convex, smooth potentials
- You know that $\varphi_{0} \in \mathscr{F}$

$$
\mathbb{E}\left\|\nabla \hat{\varphi}_{\mathscr{F}}-\nabla \varphi_{0}\right\|_{L^{2}(P)}^{2} \lesssim_{\log (n)} n^{-1}
$$

Improves upon the work of [VV21]; they don't assume Poincaré

Sanity check: \mathscr{F} is the set of Quadratics

Suppose:

- $\mathscr{F}=\left\{x \mapsto \frac{1}{2} x^{\top} A^{1 / 2} x+b^{\top} x: A \in \mathbb{S}_{+}^{d}, b \in \mathbb{R}^{d}\right\}$
- You know that $\varphi_{0} \in \mathscr{F}$ i.e. $T_{0}(x)=A^{1 / 2} x+b$

$$
\mathbb{E}\left\|\nabla \hat{\varphi}_{\mathscr{F}}-\nabla \varphi_{0}\right\|_{L^{2}(P)}^{2} \lesssim_{\log (n)} n^{-1}
$$

Recovers the work of [FLF19] where they use the plug-in estimator

Sanity check: Parametric family

Let $\Theta \subseteq \mathbb{R}^{m}$ and consider potentials s.t. $\left|\varphi_{\theta}(x)-\varphi_{\theta}(x)\right| \leq L\left\|\theta-\theta^{\prime}\right\|(1+\|x\|)^{p}$

Example: φ_{0} can be represented as an ICNN with m parameters

$$
\mathbb{E}\left\|\nabla \hat{\varphi}_{\mathscr{F}}-\nabla \varphi_{0}\right\|_{L^{2}(P)}^{2} \lesssim_{\log (n)} \frac{m}{n}
$$

Example 1: RKHS

Suppose $f \in \mathscr{H}$ with $f(x)=\langle f, \mathscr{K}(\cdot, x)\rangle_{\mathscr{H}}$ and \mathscr{K} is sufficiently nice

- \mathscr{K} has finite spectrum
- \mathscr{K} has exponentially decaying spectrum (e.g. Gaussian Kernel)

$$
\mathbb{E}\left\|\nabla \hat{\varphi}_{\mathscr{F}}-\nabla \varphi_{0}\right\|_{L^{2}(P)}^{2} \lesssim_{\log (n)} n^{-1}
$$

Example 2: Hölder-smooth functions

Suppose $\varphi_{0} \in C_{L}^{s+1}(\Omega)$ and let $\mathscr{F}=W_{J}\left(\square_{R}\right)$ (finite wavelets over cube)

$$
\mathbb{E}\left\|\nabla \hat{\varphi}_{\mathscr{F}}-\nabla \varphi_{0}\right\|_{L^{2}(P)}^{2} \lesssim_{\log (n)} n^{-\frac{2 s}{2 s+d-2}}
$$

Special case: when both P and Q are log-smooth, and log-strongly concave, Caffarelli contraction kicks in (see [Chewi, P. 2022]):

$$
\mathbb{E}\left\|\nabla \hat{\varphi}_{\mathscr{F}}-\nabla \varphi_{0}\right\|_{L^{2}(P)}^{2} \lesssim_{\log (n)} n^{-2 / d}
$$

Example 3: "Low-dimensional" potentials

Potential functions that resemble the "Spiked Transport Model" [NWR21]

- P and Q live on \mathscr{U}
- Support \mathscr{U} with $\operatorname{dim}(\mathscr{U})=k$
- Noise outside i.e. on \mathscr{U}^{\perp}
- Only pay for underlying dimension $k \ll d$

Example 3: "Low-dimensional" potentials

Potential functions that resemble the "Spiked Transport Model" [NWR21]

- P and Q live on \mathscr{U}
- Support \mathscr{U} with $\operatorname{dim}(\mathscr{U})=k$
- Noise outside i.e. on \mathscr{U}^{\perp}
- Only pay for underlying dimension $k \ll d$

Final rate: $n^{-\frac{2 s}{2 s+k-2}}<n^{-\frac{2 s}{2 s+d-2}}$

Example 4: Barron Spaces

Example 4: Barron Spaces

We now say $\varphi \in \mathscr{F}_{\sigma}$ if we can write $\varphi(x)=\int \sigma(x, v) \mathrm{d} \theta(v)$ where

Example 4: Barron Spaces

We now say $\varphi \in \mathscr{F}_{\sigma}$ if we can write $\varphi(x)=\int \sigma(x, v) \mathrm{d} \theta(v)$ where

- $x \mapsto \sigma(x, v)$ is convex, with $\sigma(0, v)=0$, and β-smooth
- $v \mapsto \sigma(x, v) \in C^{s}(\mathscr{M})$

Example 4: Barron Spaces

We now say $\varphi \in \mathscr{F}_{\sigma}$ if we can write $\varphi(x)=\int \sigma(x, v) \mathrm{d} \theta(v)$ where

- $x \mapsto \sigma(x, v)$ is convex, with $\sigma(0, v)=0$, and β-smooth
- $v \mapsto \sigma(x, v) \in C^{s}(\mathscr{M})$

See e.g.

- [EMW22], [Bach17] for theory
- [Mak+20], [Hua+21], [BKC22] for practice

Example 4: Barron Spaces

We now say $\varphi \in \mathscr{F}_{\sigma}$ if we can write $\varphi(x)=\int \sigma(x, v) \mathrm{d} \theta(v)$ where

- $x \mapsto \sigma(x, v)$ is convex, with $\sigma(0, v)=0$, and β-smooth
- $v \mapsto \sigma(x, v) \in C^{s}(\mathscr{M})$

Example: $\sigma(\langle x, v\rangle)=\langle x, v\rangle_{+}^{2}$ i.e. $\nabla \varphi_{0}$ is a shallow NN with ReLU activation

Example 4: Barron Spaces

We now say $\varphi \in \mathscr{F}_{\sigma}$ if we can write $\varphi(x)=\int \sigma(x, v) \mathrm{d} \theta(v)$ where

- $\quad x \mapsto \sigma(x, v)$ is convex, with $\sigma(0, v)=0$, and β-smooth
- $v \mapsto \sigma(x, v) \in C^{S}(\mathscr{M})$

Example: $\sigma(\langle x, v\rangle)=\langle x, v\rangle_{+}^{2}$ i.e. $\nabla \varphi_{0}$ is a shallow NN with ReLU activation

$$
\mathbb{E}\left\|\nabla \hat{\boldsymbol{\varphi}}_{\mathscr{F}{ }_{\sigma}^{\prime}}-\nabla \varphi_{0}\right\|_{L^{2}(P)}^{2} \lesssim_{\log (n)} n^{-\frac{1}{2}-\frac{1}{d}}
$$

Example 4: Barron Spaces

We now say $\varphi \in \mathscr{F}_{\sigma}$ if we can write $\varphi(x)=\int \sigma(x, v) \mathrm{d} \theta(v)$ where

- $x \mapsto \sigma(x, v)$ is convex, with $\sigma(0, v)=0$, and β-smooth
- $v \mapsto \sigma(x, v) \in C^{s}(\mathscr{M})$

Example: $\sigma(\langle x, v\rangle)=\langle x, v\rangle_{+}^{2}$ i.e. $\nabla \varphi_{0}$ is a shallow NN with ReLU activation

$$
\mathbb{E}\left\|\nabla \hat{\boldsymbol{\varphi}}_{\mathscr{F}{ }_{\sigma}^{\prime}}-\nabla \varphi_{0}\right\|_{L^{2}(P)}^{2} \lesssim_{\log (n)} n^{-\frac{1}{2}-\frac{1}{d}}
$$

(Can handle more smooth activation functions of this form!)

Future directions:

Hard question: estimation discontinuous transport map e.g.

$$
\varphi_{0}(x)=2\left|x_{1}\right|+\frac{1}{2}\|x\|^{2}
$$

Thanks!

Bibliography

- [HR21] J-C. Hütter, and P. Rigollet. Minimax rates of estimation for smooth optimal transport maps. Annals of Statistics
- [DGS21] N. Deb, P. Ghosal, and B. Sen. Rates of Estimation of Optimal Transport Maps using Plug-in Estimators via Barycentric Projections. NeurIPS 2021
- [MB+21] T. Manole, S. Balakrishnan, J. Niles-Weed, and L. Wasserman. Plugin Estimation of Smooth Optimal Transport Maps. ArXiv 2021
- [Gen19] A. Genevay. Entropy-regularized optimal transport for machine learning. PhD Thesis, 2019
- [SDF+18] V. Seguy, B. Damodaran, R. Flamary, N. Courty, A. Rolet, and M. Blondel. Large-scale optimal transport and mapping estimation. ICLR 2018
- [Pal19] S. Pal. On the difference between entropic cost and the optimal transport cost. ArXiv 2019
- [C13] M. Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. NIPS, 2013
- [CRL+2020] L. Chizat, P. Roussillon, F. Léger, F-X. Vialard, G. Peyré. Faster Wasserstein Distance Estimation with the Sinkhorn Divergence. NeurIPS, 2020

