Optimal Transport Map Estimation in General Function Spaces

Aram-Alexandre Pooladian New York University

Simons Institute (UC Berkeley) GMOS Reunion Workshop

in collaboration with

Vincent Divol

Jon Niles-Weed

Transport maps

Transport maps

Call T a transport map if $T_{\sharp}P = Q$ i.e. $X \sim P, T(X) \sim Q$

()

Optimal transport maps

Optimal transport maps

Monge Problem

 $T_0 := \underset{T: T_{\sharp}P=Q}{\operatorname{argmin}} \int \frac{1}{2} ||x - T(x)||_2^2 dP(x)$

Optimal transport maps

Brenier's Theorem: $T_0 = \nabla \varphi_0$ for some convex function φ_0

Statistical estimation of OT maps

Given P (e.g. standard Normal) and i.i.d samples $Y_1, \ldots, Y_n \sim Q$

Statistical estimation of OT maps

P

Given *P* (e.g. standard Norm **Question:** How to estima

Q

Given P (e.g. standard Normal) and i.i.d samples $Y_1, \ldots, Y_n \sim Q$

Question: How to estimate T_0 on the basis of samples?

Statistical estimation of OT maps

P

Goal: Define estimator \hat{T}_n s.t. under appropriate assumptions, $\mathbb{E}\|\hat{T}_n - T_0\|_{L^2(P)}^2 \leq ?$

 \hat{T}_n

()

- P and Q have compact support, with densities bounded above and below
- $T_0 \in C^s$ (s-times differentiable)
- T_0 is bi-Lipschitz, equivalently $I\alpha \leq \nabla^2 \varphi_0 \leq \beta I$

Results (prior work):

- [HR21] proposed a *wavelet* based estimator
- [MB+21] proposed the 1-Nearest-Neighbor estimator
- [PNW21] proposed the entropic map estimator
- among others

- [HR21] proposed a wavelet based estimator, $\nabla \hat{\varphi}_W$
- [MB+21] proposed a 1-Nearest-Neighbor estimator
- [PNW21] proposed the entropic map estimator

Method: estimate φ_0 with wavelet class $W_J^{\alpha,\beta}$, need $0 < P_{\min} \leq P(x) \leq P_{\max}$

- [HR21] proposed a wavelet based estimator, $\nabla \hat{\varphi}_W$
- [MB+21] proposed a 1-Nearest-Neighbor estimator • [PNW21] proposed the entropic map estimator

$\mathbb{E} \| \nabla \hat{\varphi}_W - \nabla \varphi$

$$\varphi_0 \|_{L^2(P)}^2 \lesssim_{\log(n)} n^{-\frac{2s}{2s+d-2}}$$

Method: estimate φ_0 with wavelet class $W_J^{\alpha,\beta}$, need $0 < P_{\min} \leq P(x) \leq P_{\max}$

- [HR21] proposed a wavelet based estimator, $abla \hat{\phi}_W$ • [MB+21] proposed a 1-Nearest-Neighbor estimator (s=1), \hat{T}_{1NN} • [PNW21] proposed the entropic map estimator

Method: compute OT coupling $(X_i, Y_{\sigma(i)})$, match to closest $Y_{\sigma(i)}$ from training set

- [HR21] proposed a wavelet based estimator, $abla \hat{\phi}_W$ • [MB+21] proposed a 1-Nearest-Neighbor estimator (s=1), \hat{T}_{1NN} • [PNW21] proposed the entropic map estimator

$$\mathbb{E}\|\hat{T}_{1NN} - \nabla\varphi_0\|_{L^2(P)}^2 \lesssim_{\log(n)} n^{-\frac{2}{d}}$$

Method: compute OT coupling $(X_i, Y_{\sigma(i)})$, match to closest $Y_{\sigma(i)}$ from training set

- [HR21] proposed a wavelet based estimator, $abla \hat{\phi}_W$ • [MB+21] proposed a 1-Nearest-Neighbor estimator (s=1), \hat{T}_{1NN}
- [PNW21] proposed the entropic map estimator (s=1), $\nabla \hat{\varphi}_{\varepsilon}$

Method: entropic optimal transport

- [HR21] proposed a wavelet based estimator, $abla \hat{\phi}_W$ • [MB+21] proposed a 1-Nearest-Neighbor estimator (s=1), \hat{T}_{1NN} • [PNW21] proposed the entropic map estimator (s=1), $\nabla \hat{\varphi}_{\varepsilon}$

$\mathbb{E} \| \nabla \hat{\varphi}_{\varepsilon} - \nabla q$

$$\rho_0 \|_{L^2(P)}^2 \lesssim_{\log(n)} n^{-\frac{1}{d+2}}$$

Method: entropic optimal transport

- $T_0 \in C^s$ (s-times differentiable)
- T_0 is bi-Lipschitz, equivalently $I\alpha \leq \nabla^2 \varphi_0 \leq \beta I$

This talk:

• P and Q have compact support, with densities bounded above and below

- $T_0 \in C^s$ (s-times differentiable)
- T_0 is bi-Lipschitz, equivalently $I\alpha \leq \nabla^2 \varphi_0 \leq \beta I$

This talk: extend assumptions to include

• P and Q have compact support, with densities bounded above and below

- P and Q have compact support, with densities bounded above and below
- $T_0 \in C^s$ (s-times differentiable)
- T_0 is bi-Lipschitz, equivalently $I\alpha \leq \nabla^2 \varphi_0 \leq \beta I$

This talk: extend assumptions to include

- *P* and *Q* not having compact support • φ_0 can exist in more general function spaces

$\frac{1}{2}W_2^2(P,Q) = \min_{T: T_{\sharp}P=Q} \int \frac{1}{2} \|x - T(x)\|_2^2 dP(x)$

Semidual formulation

$$\frac{1}{2}W_2^2(P,Q) = \min_{T: T_{\sharp}P=Q} \int \frac{1}{2} \|x - T(x)\|_2^2 dP(x)$$

with
$$S(\varphi_0) = \min_{\varphi} \int \varphi(x) dP(x) + \int \varphi^*(y) dQ(y)$$

$= \frac{1}{2}(M_2(P) + M_2(Q)) - S(\varphi_0)$

$$\frac{1}{2}W_2^2(P,Q) = \min_{T: T_{\sharp}P=Q} \int \frac{1}{2} \|x - T(x)\|_2^2 dP(x) = \frac{1}{2} (M_2(P) + M_2(Q)) - S(\varphi_0)$$

with
$$S(\varphi_0) = \min_{\varphi} \int \varphi(x) dP(x) + \int \varphi^*(y) dQ(y)$$

Why? φ_0 is the optimal Brenier potential, and $T_0 = \nabla \varphi_0$

Established that map estimation is equivalent to solving:

 $\operatorname{argmin}_{\varphi} S(\varphi) = \int \varphi$

Semidual formulation

$$\varphi(x)dP(x) + \int \varphi^*(y)dQ(y)$$

- Established that map estimation is equivalent to solving:
 - $\operatorname{argmin}_{\varphi} S(\varphi) = \int_{\Theta} d\varphi$

$$\varphi(x)dP(x) + \int \varphi^*(y)dQ(y)$$

Idea from [HR21]: study properties of the minimizer to the <u>empirical semidual</u>

- Established that map estimation is equivalent to solving:
 - $\operatorname{argmin}_{\varphi} S(\varphi) = \int \varphi$
- - $\hat{\varphi}_{\mathcal{F}} = \operatorname{argmin} S_n(\varphi) :=$ $\phi \in \mathcal{F}$
 - for some function class \mathcal{F} that φ_0 lies in or is close to.

$$\varphi(x)dP(x) + \int \varphi^*(y)dQ(y)$$

Idea from [HR21]: study properties of the minimizer to the <u>empirical semidual</u>

$$= \int \varphi(x) dP(x) + \frac{1}{n} \sum_{i=1}^{n} \varphi^*(Y_i)$$

- Established that map estimation is equivalent to solving:
 - $\operatorname{argmin}_{\varphi} S(\varphi) = \int \varphi$
- - $\hat{\varphi}_{\mathcal{F}} = \operatorname{argmin} S_n(\varphi) :=$ $\phi \in \mathcal{F}$
 - for some function class \mathscr{F} that φ_0 lies in or is close to.

$$\varphi(x)dP(x) + \int \varphi^*(y)dQ(y)$$

Idea from [HR21]: study properties of the minimizer to the <u>empirical semidual</u>

$$= \int \varphi(x) dP(x) + \frac{1}{n} \sum_{i=1}^{n} \varphi^*(Y_i)$$

Our final estimator is then $\hat{T} = \nabla \hat{\varphi}_{\mathscr{F}}$

Potential function classes

Examples of non-parametric classes:

- *s*-Hölder smooth functions (prior work)
- Reproducing Kernel Hilbert Spaces (new!)
- Shallow Neural Networks (a.k.a Barron space) (new!)
- "Low-dimensional" potential functions (new!)

Examples of parametric classes:

- Finite set (new!)
- Quadratics potentials (new!)
- Input Convex Neural Networks (ICNNs) (new!)

- (A1) P satisfies a Poincaré inequality (with bounded or unbounded domain!)
- (A2) All $\varphi \in \mathscr{F}$ are β -smooth $\nabla^2 \varphi \preceq \beta I$
- (A3) φ_0 is α -strongly convex and β -smooth $\alpha I \leq \nabla^2 \varphi_0 \leq \beta I$
- (A4) Metric entropy condition on \mathcal{F}

[Theorem 2+3, (Divol, Niles-Weed, P. 2022)]

[Theorem 2+3, (Divol, Niles-Weed, P. 2022)]

[Theorem 2+3, (Divol, Niles-Weed, P. 2022)]

- Today: **second** of two "meta" theorems:
- Theorem 2 has suboptimal rates but weaker conditions
- To have improved rates: need strong convexity, Poincaré inequality, and P having a nice density

"Neta" theorems

- $\mathbb{E} \| \nabla \hat{\varphi}_{\mathcal{F}} \nabla \varphi_0 \|_{L^2(P)}^2 \lesssim_{\log(n), \log(d)} \operatorname{Rate}(\mathcal{F}, n)$

Suppose:

- You know that $\varphi_0 \in \mathscr{F}$
 - $\mathbb{E} \| \nabla \hat{\varphi}_{\mathcal{F}} \nabla \hat{\varphi}_{\mathcal{F}} \|$

Improves upon the work of [VV21]; they don't assume Poincaré

Sanity check: F is a finite set

- $\mathcal{F} = \{\varphi_1, \dots, \varphi_K\}$ is a set of strongly convex, smooth potentials

$$\varphi_0 \|_{L^2(P)}^2 \lesssim_{\log(n)} n^{-1}$$

Sanity check: F is the set of Quadratics

Suppose: $-\mathscr{F} = \{ x \mapsto \frac{1}{2} x^{\mathsf{T}} A^{1/2} x + b^{\mathsf{T}} x : A \in \mathbb{S}^d_+, b \in \mathbb{R}^d \}$ - You know that $\varphi_0 \in \mathscr{F}$ i.e. $T_0(x) = A^{1/2}x + b$

 $\mathbb{E} \| \nabla \hat{\varphi}_{\mathcal{F}} - \nabla \hat{\varphi}_{\mathcal{F}} \|$

Recovers the work of [FLF19] where they use the plug-in estimator

$$\varphi_0 \|_{L^2(P)}^2 \lesssim_{\log(n)} n^{-1}$$

Sanity check: Parametric family

Let $\Theta \subseteq \mathbb{R}^m$ and consider potentials s.t. $|\varphi_{\theta}(x) - \varphi_{\theta'}(x)| \leq L ||\theta - \theta'||(1 + ||x||)^p$

Example: φ_0 can be represented as an ICNN with *m* parameters

 $\mathbb{E} \| \nabla \hat{\varphi}_{\mathcal{F}} - \nabla \varphi_0 \|_{L^2(P)}^2 \lesssim_{\log(n)} \frac{m}{n}$

Example 1: RKHS

Suppose $f \in \mathcal{H}$ with $f(x) = \langle f, \mathcal{K}(\cdot, x) \rangle_{\mathcal{H}}$ and \mathcal{K} is sufficiently nice

X has finite spectrum *X* has exponentially decaying

$\mathbb{E} \| \nabla \hat{\varphi}_{\mathcal{F}} - \nabla$

- \mathscr{K} has exponentially decaying spectrum (e.g. Gaussian Kernel)

$$\varphi_0 \|_{L^2(P)}^2 \lesssim_{\log(n)} n^{-1}$$

Example 2: Hölder-smooth functions

Suppose $\varphi_0 \in C_L^{s+1}(\Omega)$ and let $\mathscr{F} = W_I(\Box_R)$ (finite wavelets over cube)

$\mathbb{E} \| \nabla \hat{\varphi}_{\mathcal{F}} - \nabla \varphi_0$

Caffarelli contraction kicks in (see [Chewi, P. 2022]):

$$\mathbb{E} \| \nabla \hat{\varphi}_{\mathcal{F}} - \nabla \varphi_0 \|_{L^2(P)}^2 \lesssim_{\log(n)} n^{-2/d}$$

$$\|_{L^{2}(P)}^{2} \lesssim_{\log(n)} n^{-\frac{2s}{2s+d-2}}$$

Special case: when both P and Q are log-smooth, and log-strongly concave,

Example 3: "Low-dimensional" potentials

Potential functions that resemble the "Spiked Transport Model" [NWR21]

- P and Q live on \mathcal{U}
- Support \mathscr{U} with dim $(\mathscr{U}) = k$
- Noise outside i.e. on \mathscr{U}^{\perp}
- Only pay for underlying dimension $k \ll d$

Example 3: "Low-dimensional" potentials

Potential functions that resemble the "Spiked Transport Model" [NWR21]

- P and Q live on \mathcal{U}
- Support \mathscr{U} with dim $(\mathscr{U}) = k$
- Noise outside i.e. on \mathscr{U}^{\perp}
- Only pay for underlying dimension $k \ll d$

Final rate: $n^{-\frac{2s}{2s+k-2}} \ll n^{-\frac{2s}{2s+d-2}}$

Example 4: Barron Spaces

We now say $\varphi \in \mathscr{F}_{\sigma}$ if we can write $\varphi(x) = \int \sigma(x, v) \, d\theta(v)$ where

Example 4: Barron Spaces

We now say $\varphi \in \mathscr{F}_{\sigma}$ if we can writ - $x \mapsto \sigma(x, v)$ is convex, with $\sigma(0, v) = 0$, and p $- v \mapsto \sigma(x, v) \in C^{s}(\mathcal{M})$

Example 4: Barron Spaces

te
$$\varphi(x) = \int \sigma(x, v) \, d\theta(v)$$
 where
th $\sigma(0, v) = 0$, and β -smooth

We now say $\varphi \in \mathscr{F}_{\sigma}$ if we can write

- $x \mapsto \sigma(x, v)$ is convex, with $\sigma(0, v) = 0$, and β -smooth - $v \mapsto \sigma(x, v) \in C^{s}(\mathcal{M})$
 - See e.g.
 - [EMW22], [Bach17] for theory

Example 4: Barron Spaces

te
$$\varphi(x) = \int \sigma(x, v) \, d\theta(v)$$
 where
th $\sigma(0, v) = 0$, and β -smooth

- [Mak+20], [Hua+21], [BKC22] for practice

We now say $\varphi \in \mathscr{F}_{\sigma}$ if we can write - $x \mapsto \sigma(x, v)$ is convex, with $\sigma(0, v) = 0$, and β -s - $v \mapsto \sigma(x, v) \in C^{s}(\mathcal{M})$

Example 4: Barron Spaces

the
$$\varphi(x) = \int \sigma(x, v) d\theta(v)$$
 where
th $\sigma(0, v) = 0$, and β -smooth

Example: $\sigma(\langle x, v \rangle) = \langle x, v \rangle_{+}^{2}$ i.e. $\nabla \varphi_{0}$ is a shallow NN with ReLU activation

We now say $\varphi \in \mathscr{F}_{\sigma}$ if we can write - $x \mapsto \sigma(x, v)$ is convex, with $\sigma(0, v) = 0$, and β -sr - $v \mapsto \sigma(x, v) \in C^{s}(\mathcal{M})$

 $\mathbb{E} \| \nabla \hat{\varphi}_{\mathcal{F}_{\sigma}^{1}} - \nabla \varphi_{0}$

Example 4: Barron Spaces

the
$$\varphi(x) = \int \sigma(x, v) d\theta(v)$$
 where
th $\sigma(0, v) = 0$, and β -smooth

Example: $\sigma(\langle x, v \rangle) = \langle x, v \rangle_{+}^{2}$ i.e. $\nabla \varphi_{0}$ is a shallow NN with ReLU activation

$$\|_{L^{2}(P)}^{2} \lesssim_{\log(n)} n^{-\frac{1}{2} - \frac{1}{d}}$$

We now say $\varphi \in \mathscr{F}_{\sigma}$ if we can writ - $x \mapsto \sigma(x, v)$ is convex, with $\sigma(0, v) = 0$, and β -sr - $v \mapsto \sigma(x, v) \in C^{s}(\mathcal{M})$

 $\mathbb{E} \| \nabla \hat{\varphi}_{\mathcal{F}_{\sigma}^{1}} - \nabla \varphi_{0}$

(Can handle more smooth activation functions of this form!)

Example 4: Barron Spaces

the
$$\varphi(x) = \int \sigma(x, v) d\theta(v)$$
 where
th $\sigma(0, v) = 0$, and β -smooth

Example: $\sigma(\langle x, v \rangle) = \langle x, v \rangle_{+}^{2}$ i.e. $\nabla \varphi_{0}$ is a shallow NN with ReLU activation

$$\|_{L^{2}(P)}^{2} \lesssim_{\log(n)} n^{-\frac{1}{2} - \frac{1}{d}}$$

Hard question: estimation *discontinuous* transport map e.g.

Future directions:

 $\varphi_0(x) = 2 \|x_1\| + \frac{1}{2} \|x\|^2$

Thanks!

Bibliography

- [HR21] J-C. Hütter, and P. Rigollet. Minimax rates of estimation for smooth optimal transport maps. Annals of Statistics
- [DGS21] N. Deb, P. Ghosal, and B. Sen. Rates of Estimation of Optimal Transport Maps using Plug-in Estimators via Barycentric Projections. NeurIPS 2021
- [MB+21] T. Manole, S. Balakrishnan, J. Niles-Weed, and L. Wasserman. Plugin Estimation of Smooth Optimal Transport Maps. ArXiv 2021
- [Gen19] A. Genevay. Entropy-regularized optimal transport for machine learning. PhD Thesis, 2019
- [SDF+18] V. Seguy, B. Damodaran, R. Flamary, N. Courty, A. Rolet, and M. Blondel. Large-scale optimal transport and mapping estimation. ICLR 2018
- [Pal19] S. Pal. <u>On the difference between entropic cost and the optimal transport cost.</u> ArXiv 2019
- [C13] M. Cuturi. <u>Sinkhorn distances: Lightspeed computation of optimal transport</u>. NIPS, 2013
- [CRL+2020] L. Chizat, P. Roussillon, F. Léger, F-X. Vialard, G. Peyré. Faster Wasserstein Distance Estimation with the Sinkhorn Divergence. NeurIPS, 2020