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Estimating optimal transport maps
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 and  are two (nice) probability measures on :P Q ℝd - have densities

- bounded domain

P Q



T

 is a transport map from  if: for T P to Q X ∼ P, T(X) ∼ Q

Estimating optimal transport maps

P Q



Q

 is a transport map from  if: for T P to Q X ∼ P, T(X) ∼ Q

(write )T ∈ 𝒯(P, Q)
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T0 := argmin
T ∫

1
2

∥x − T(x)∥2
2 dP(x) s.t. T ∈ 𝒯(P, Q)

optimal 
transport 
map:

Monge

Problem

Estimating optimal transport maps

P

T0



Q

Given i.i.d samples  and X1, …, Xn ∼ P Y1, …, Yn ∼ Q

Question: How to estimate  on the basis of samples? T0

Estimating optimal transport maps
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Goal: Construct estimator  with “good” computational and statistical propertieŝTn

P

̂Tn

Estimating optimal transport maps



Prior work
[HR21]: Wavelet-based estimator that achieves the following estimation rate 

𝔼∥ ̂Tn − T0∥2
L2(P) ≲ n− 2α

2α − 2 + d log3(n) (T0 ∈ Cα)
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Prior work
[HR21]: Wavelet-based estimator that achieves the following estimation rate 

𝔼∥ ̂Tn − T0∥2
L2(P) ≲ n− 2α

2α − 2 + d log3(n)

- 1-Nearest-Neighbor is computationally tractable in O(n3)

(T0 ∈ Cα)

Estimators from [DGS21] and [MB+21] also achieve minimax rate

- (Near) minimax optimal 
- numerically intractable in ; complexity d > 3 O(Nd)



Workaround: entropic map
Inspired by entropic optimal transport, we [PNW21] studied  
the entropic map between two distributions

Tε := 𝔼πε
[Y |X = x]

- GPU-friendly implementations

- Complexity: 

-  time to evaluate

O(n2ε−2)
O(n)
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Drawbacks: underdispersed

Q

Qε

Approximation of the  
target distribution is  
underdispersed for 

large ….ε

but we want  large!ε

e.g. [CT+20]P



Fix: Debiasing/Centering

- Conventional wisdom in optimal transport: debias the entropic problem 
 
- Seen in several works [GPC18, GC+19, FS+19, CR+20] 
 
- Idea: add a correction term so that when , we recover  
 
- The correction term is obtained by solving the entropic transport problem 
from a measure onto itself

μ = ν Tε ≃ id



Debiased entropic map TD
ε
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Overdispersed 
for large ε

μ

Q

Qε

QD
ε

Debiased entropic map TD
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Debiased entropic map 

versus (biased) entropic map 

TD
ε

Tε

Fix: Debiasing/Centering

For large , the entropic map 
concentrates around the mean of 

ε
Q



Fix: Debiasing/Centering
For a well-chosen value of , we see that debiasing significantly aids in 
estimating (smooth) optimal transport maps (plots are in )

ε
d = 10

T0(x) = Ax T0(x) = (exp(xi))d
i=1



If  and , then as P = 𝒩(0,A) Q = 𝒩(0,B) ε → 0

Gaussian-to-Gaussian example

∥TD
ε − T0∥2

L2(P) ≲ ε4 + O(ε6)

∥Tε − T0∥2
L2(P) ≲ ε2 + O(ε4)

vs.
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Beware of pitfalls

- Predicting genomic 
trajectories in stem cells 
[SS+19] 
 
- Tradeoff in performance 
as ε → 0



Key takeaways

- Question the convention wisdom in optimal transport, that 
suggests debiasing is always better 
 
- Empirically and theoretically complicate this conventional wisdom 
 
- Important for practitioners to be wary of these phenomena in 
downstream tasks
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