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T'is a transport map from P to Q if: for X ~ P, T(X) ~ Q
(write T € I (P, Q))



Estimating optimal transport maps

Monge
Problem
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Estimating optimal transport maps

p &
Given i.i.d samples X;,...,X, ~Pand Y,,....,Y, ~ QO

Question: How to estimate T, on the basis of samples?



Estimating optimal transport maps

P Q

Goal: Construct estimator YA’n with “good” computational and statistical properties
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Prior work

[HR21]: Wavelet-based estimator that achieves the following estimation rate
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N7, = Toll 7oy S 077272 log’(n) (Ty € C9

- (Near) minimax optimal
- numerically intractable in d > 3; complexity O(N9)

Estimators from [DGS21] and [MB+21] also achieve minimax rate

- 1-Nearest-Neighbor is computationally tractable in O(n°)



Workaround: entropic map

Inspired by entropic optimal transport, we [PNW21] studiea
the entropic map between two distributions
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T,:=E,[Y|X=x]
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- GPU-triendly implementations

L3 -

- Complexity: O(n”c )

- O(n) time to evaluate
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Drawbacks: underdispersed

Approximation of the
target distribution is
underdispersed tor

large €....

but we want € large!

P e.qg. [CT+20]




Fix: Debiasing/Centering

- Conventional wisdom in optimal transport: debias the entropic problem
- Seen in several works [GPC18, GC+19, FS+19, CR+20]
- ldea: add a correction term so that when y = v, we recover T, ~ id

- The correction term is obtained by solving the entropic transport problem
from a measure onto itself
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Debiased entropic map 7%
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Fix: Debiasing/Centering
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Debiased entropic map

versus (biased) entropic map /.

For large €, the entropic map

concentrates around the mean of QO



Fix: Debiasing/Centering

For a well-chosen value of €, we see that debiasing significantly aids in

estimating (smooth) optimal transport maps (plots are in d = 10)

Ty(x) = Ax To(x) = (exp(x)L,

MSE




Gaussian-to-Gaussian example

it P = /4(0,A) and QO = 4(0,B), thenas e — 0
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MSE

Beware of pitfalls
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Beware of pitfalls

3.8 x 1071
- Predicting genomic
_ _ J 9 3.6 x 107
trajectories in stem cells
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Key takeaways

- Question the convention wisdom in optimal transport, that
suggests debiasing is always better

- Empirically and theoretically complicate this conventional wisdom

- Important for practitioners to be wary ot these phenomena in
downstream tasks
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